Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Arend Van Spriel | 3489 | 60.04% | 46 | 35.66% |
Franky Lin | 613 | 10.55% | 17 | 13.18% |
Hante Meuleman | 472 | 8.12% | 16 | 12.40% |
Ian Molton | 339 | 5.83% | 12 | 9.30% |
David S. Miller | 299 | 5.15% | 2 | 1.55% |
Hans de Goede | 229 | 3.94% | 3 | 2.33% |
Adrian Ratiu | 69 | 1.19% | 1 | 0.78% |
Paul Cercueil | 39 | 0.67% | 1 | 0.78% |
Christian Daudt | 38 | 0.65% | 3 | 2.33% |
Ulf Hansson | 36 | 0.62% | 1 | 0.78% |
Chung-Hsien Hsu | 29 | 0.50% | 1 | 0.78% |
Wright Feng | 23 | 0.40% | 1 | 0.78% |
Dmitry Osipenko | 22 | 0.38% | 2 | 1.55% |
Danny van Heumen | 14 | 0.24% | 1 | 0.78% |
Soeren Moch | 13 | 0.22% | 1 | 0.78% |
Marek Vašut | 13 | 0.22% | 2 | 1.55% |
Chi-Hsien Lin | 8 | 0.14% | 2 | 1.55% |
Frank Kao | 8 | 0.14% | 1 | 0.78% |
Peter S. Housel | 7 | 0.12% | 1 | 0.78% |
Michał Mirosław | 6 | 0.10% | 1 | 0.78% |
Martin Blumenstingl | 5 | 0.09% | 1 | 0.78% |
Sean Lanigan | 5 | 0.09% | 1 | 0.78% |
Colin Ian King | 5 | 0.09% | 1 | 0.78% |
Syed Asifful Dayyan | 5 | 0.09% | 1 | 0.78% |
Sebastian Andrzej Siewior | 4 | 0.07% | 1 | 0.78% |
Greg Kroah-Hartman | 3 | 0.05% | 1 | 0.78% |
Stephen Rothwell | 3 | 0.05% | 1 | 0.78% |
Fu Zhonghui | 3 | 0.05% | 1 | 0.78% |
Florian Westphal | 3 | 0.05% | 1 | 0.78% |
Angus Ainslie (Purism) | 3 | 0.05% | 1 | 0.78% |
Joe Perches | 2 | 0.03% | 1 | 0.78% |
Pali Rohár | 2 | 0.03% | 1 | 0.78% |
Linus Torvalds | 1 | 0.02% | 1 | 0.78% |
Lee Jones | 1 | 0.02% | 1 | 0.78% |
Total | 5811 | 129 |
// SPDX-License-Identifier: ISC /* * Copyright (c) 2010 Broadcom Corporation */ /* ****************** SDIO CARD Interface Functions **************************/ #include <linux/types.h> #include <linux/netdevice.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/sched.h> #include <linux/completion.h> #include <linux/interrupt.h> #include <linux/scatterlist.h> #include <linux/mmc/sdio.h> #include <linux/mmc/core.h> #include <linux/mmc/sdio_func.h> #include <linux/mmc/card.h> #include <linux/mmc/host.h> #include <linux/pm_runtime.h> #include <linux/suspend.h> #include <linux/errno.h> #include <linux/module.h> #include <linux/acpi.h> #include <net/cfg80211.h> #include <defs.h> #include <brcm_hw_ids.h> #include <brcmu_utils.h> #include <brcmu_wifi.h> #include <chipcommon.h> #include <soc.h> #include "chip.h" #include "bus.h" #include "debug.h" #include "sdio.h" #include "core.h" #include "common.h" #define SDIOH_API_ACCESS_RETRY_LIMIT 2 #define DMA_ALIGN_MASK 0x03 #define SDIO_FUNC1_BLOCKSIZE 64 #define SDIO_FUNC2_BLOCKSIZE 512 #define SDIO_4373_FUNC2_BLOCKSIZE 256 #define SDIO_435X_FUNC2_BLOCKSIZE 256 #define SDIO_4329_FUNC2_BLOCKSIZE 128 /* Maximum milliseconds to wait for F2 to come up */ #define SDIO_WAIT_F2RDY 3000 #define BRCMF_DEFAULT_RXGLOM_SIZE 32 /* max rx frames in glom chain */ struct brcmf_sdiod_freezer { atomic_t freezing; atomic_t thread_count; u32 frozen_count; wait_queue_head_t thread_freeze; struct completion resumed; }; static irqreturn_t brcmf_sdiod_oob_irqhandler(int irq, void *dev_id) { struct brcmf_bus *bus_if = dev_get_drvdata(dev_id); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; brcmf_dbg(INTR, "OOB intr triggered\n"); /* out-of-band interrupt is level-triggered which won't * be cleared until dpc */ if (sdiodev->irq_en) { disable_irq_nosync(irq); sdiodev->irq_en = false; } brcmf_sdio_isr(sdiodev->bus, true); return IRQ_HANDLED; } static void brcmf_sdiod_ib_irqhandler(struct sdio_func *func) { struct brcmf_bus *bus_if = dev_get_drvdata(&func->dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; brcmf_dbg(INTR, "IB intr triggered\n"); brcmf_sdio_isr(sdiodev->bus, false); } /* dummy handler for SDIO function 2 interrupt */ static void brcmf_sdiod_dummy_irqhandler(struct sdio_func *func) { } int brcmf_sdiod_intr_register(struct brcmf_sdio_dev *sdiodev) { struct brcmfmac_sdio_pd *pdata; int ret = 0; u8 data; u32 addr, gpiocontrol; pdata = &sdiodev->settings->bus.sdio; if (pdata->oob_irq_supported) { brcmf_dbg(SDIO, "Enter, register OOB IRQ %d\n", pdata->oob_irq_nr); spin_lock_init(&sdiodev->irq_en_lock); sdiodev->irq_en = true; ret = request_irq(pdata->oob_irq_nr, brcmf_sdiod_oob_irqhandler, pdata->oob_irq_flags, "brcmf_oob_intr", &sdiodev->func1->dev); if (ret != 0) { brcmf_err("request_irq failed %d\n", ret); return ret; } sdiodev->oob_irq_requested = true; ret = enable_irq_wake(pdata->oob_irq_nr); if (ret != 0) { brcmf_err("enable_irq_wake failed %d\n", ret); return ret; } disable_irq_wake(pdata->oob_irq_nr); sdio_claim_host(sdiodev->func1); if (sdiodev->bus_if->chip == BRCM_CC_43362_CHIP_ID) { /* assign GPIO to SDIO core */ addr = brcmf_chip_enum_base(sdiodev->func1->device); addr = CORE_CC_REG(addr, gpiocontrol); gpiocontrol = brcmf_sdiod_readl(sdiodev, addr, &ret); gpiocontrol |= 0x2; brcmf_sdiod_writel(sdiodev, addr, gpiocontrol, &ret); brcmf_sdiod_writeb(sdiodev, SBSDIO_GPIO_SELECT, 0xf, &ret); brcmf_sdiod_writeb(sdiodev, SBSDIO_GPIO_OUT, 0, &ret); brcmf_sdiod_writeb(sdiodev, SBSDIO_GPIO_EN, 0x2, &ret); } /* must configure SDIO_CCCR_IENx to enable irq */ data = brcmf_sdiod_func0_rb(sdiodev, SDIO_CCCR_IENx, &ret); data |= SDIO_CCCR_IEN_FUNC1 | SDIO_CCCR_IEN_FUNC2 | SDIO_CCCR_IEN_FUNC0; brcmf_sdiod_func0_wb(sdiodev, SDIO_CCCR_IENx, data, &ret); /* redirect, configure and enable io for interrupt signal */ data = SDIO_CCCR_BRCM_SEPINT_MASK | SDIO_CCCR_BRCM_SEPINT_OE; if (pdata->oob_irq_flags & IRQF_TRIGGER_HIGH) data |= SDIO_CCCR_BRCM_SEPINT_ACT_HI; brcmf_sdiod_func0_wb(sdiodev, SDIO_CCCR_BRCM_SEPINT, data, &ret); sdio_release_host(sdiodev->func1); } else { brcmf_dbg(SDIO, "Entering\n"); sdio_claim_host(sdiodev->func1); sdio_claim_irq(sdiodev->func1, brcmf_sdiod_ib_irqhandler); sdio_claim_irq(sdiodev->func2, brcmf_sdiod_dummy_irqhandler); sdio_release_host(sdiodev->func1); sdiodev->sd_irq_requested = true; } return 0; } void brcmf_sdiod_intr_unregister(struct brcmf_sdio_dev *sdiodev) { brcmf_dbg(SDIO, "Entering oob=%d sd=%d\n", sdiodev->oob_irq_requested, sdiodev->sd_irq_requested); if (sdiodev->oob_irq_requested) { struct brcmfmac_sdio_pd *pdata; pdata = &sdiodev->settings->bus.sdio; sdio_claim_host(sdiodev->func1); brcmf_sdiod_func0_wb(sdiodev, SDIO_CCCR_BRCM_SEPINT, 0, NULL); brcmf_sdiod_func0_wb(sdiodev, SDIO_CCCR_IENx, 0, NULL); sdio_release_host(sdiodev->func1); sdiodev->oob_irq_requested = false; free_irq(pdata->oob_irq_nr, &sdiodev->func1->dev); sdiodev->irq_en = false; sdiodev->oob_irq_requested = false; } if (sdiodev->sd_irq_requested) { sdio_claim_host(sdiodev->func1); sdio_release_irq(sdiodev->func2); sdio_release_irq(sdiodev->func1); sdio_release_host(sdiodev->func1); sdiodev->sd_irq_requested = false; } } void brcmf_sdiod_change_state(struct brcmf_sdio_dev *sdiodev, enum brcmf_sdiod_state state) { if (sdiodev->state == BRCMF_SDIOD_NOMEDIUM || state == sdiodev->state) return; brcmf_dbg(TRACE, "%d -> %d\n", sdiodev->state, state); switch (sdiodev->state) { case BRCMF_SDIOD_DATA: /* any other state means bus interface is down */ brcmf_bus_change_state(sdiodev->bus_if, BRCMF_BUS_DOWN); break; case BRCMF_SDIOD_DOWN: /* transition from DOWN to DATA means bus interface is up */ if (state == BRCMF_SDIOD_DATA) brcmf_bus_change_state(sdiodev->bus_if, BRCMF_BUS_UP); break; default: break; } sdiodev->state = state; } static int brcmf_sdiod_set_backplane_window(struct brcmf_sdio_dev *sdiodev, u32 addr) { u32 v, bar0 = addr & SBSDIO_SBWINDOW_MASK; int err = 0, i; if (bar0 == sdiodev->sbwad) return 0; v = bar0 >> 8; for (i = 0 ; i < 3 && !err ; i++, v >>= 8) brcmf_sdiod_writeb(sdiodev, SBSDIO_FUNC1_SBADDRLOW + i, v & 0xff, &err); if (!err) sdiodev->sbwad = bar0; return err; } u32 brcmf_sdiod_readl(struct brcmf_sdio_dev *sdiodev, u32 addr, int *ret) { u32 data = 0; int retval; retval = brcmf_sdiod_set_backplane_window(sdiodev, addr); if (retval) goto out; addr &= SBSDIO_SB_OFT_ADDR_MASK; addr |= SBSDIO_SB_ACCESS_2_4B_FLAG; data = sdio_readl(sdiodev->func1, addr, &retval); out: if (ret) *ret = retval; return data; } void brcmf_sdiod_writel(struct brcmf_sdio_dev *sdiodev, u32 addr, u32 data, int *ret) { int retval; retval = brcmf_sdiod_set_backplane_window(sdiodev, addr); if (retval) goto out; addr &= SBSDIO_SB_OFT_ADDR_MASK; addr |= SBSDIO_SB_ACCESS_2_4B_FLAG; sdio_writel(sdiodev->func1, data, addr, &retval); out: if (ret) *ret = retval; } static int brcmf_sdiod_skbuff_read(struct brcmf_sdio_dev *sdiodev, struct sdio_func *func, u32 addr, struct sk_buff *skb) { unsigned int req_sz; int err; /* Single skb use the standard mmc interface */ req_sz = skb->len + 3; req_sz &= (uint)~3; switch (func->num) { case 1: err = sdio_memcpy_fromio(func, ((u8 *)(skb->data)), addr, req_sz); break; case 2: err = sdio_readsb(func, ((u8 *)(skb->data)), addr, req_sz); break; default: /* bail out as things are really fishy here */ WARN(1, "invalid sdio function number: %d\n", func->num); err = -ENOMEDIUM; } if (err == -ENOMEDIUM) brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM); return err; } static int brcmf_sdiod_skbuff_write(struct brcmf_sdio_dev *sdiodev, struct sdio_func *func, u32 addr, struct sk_buff *skb) { unsigned int req_sz; int err; /* Single skb use the standard mmc interface */ req_sz = skb->len + 3; req_sz &= (uint)~3; err = sdio_memcpy_toio(func, addr, ((u8 *)(skb->data)), req_sz); if (err == -ENOMEDIUM) brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM); return err; } static int mmc_submit_one(struct mmc_data *md, struct mmc_request *mr, struct mmc_command *mc, int sg_cnt, int req_sz, int func_blk_sz, u32 *addr, struct brcmf_sdio_dev *sdiodev, struct sdio_func *func, int write) { int ret; md->sg_len = sg_cnt; md->blocks = req_sz / func_blk_sz; mc->arg |= (*addr & 0x1FFFF) << 9; /* address */ mc->arg |= md->blocks & 0x1FF; /* block count */ /* incrementing addr for function 1 */ if (func->num == 1) *addr += req_sz; mmc_set_data_timeout(md, func->card); mmc_wait_for_req(func->card->host, mr); ret = mc->error ? mc->error : md->error; if (ret == -ENOMEDIUM) { brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_NOMEDIUM); } else if (ret != 0) { brcmf_err("CMD53 sg block %s failed %d\n", write ? "write" : "read", ret); ret = -EIO; } return ret; } /** * brcmf_sdiod_sglist_rw - SDIO interface function for block data access * @sdiodev: brcmfmac sdio device * @func: SDIO function * @write: direction flag * @addr: dongle memory address as source/destination * @pktlist: skb buffer head pointer * * This function takes the respbonsibility as the interface function to MMC * stack for block data access. It assumes that the skb passed down by the * caller has already been padded and aligned. */ static int brcmf_sdiod_sglist_rw(struct brcmf_sdio_dev *sdiodev, struct sdio_func *func, bool write, u32 addr, struct sk_buff_head *pktlist) { unsigned int req_sz, func_blk_sz, sg_cnt, sg_data_sz, pkt_offset; unsigned int max_req_sz, src_offset, dst_offset; unsigned char *pkt_data, *orig_data, *dst_data; struct sk_buff_head local_list, *target_list; struct sk_buff *pkt_next = NULL, *src; unsigned short max_seg_cnt; struct mmc_request mmc_req; struct mmc_command mmc_cmd; struct mmc_data mmc_dat; struct scatterlist *sgl; int ret = 0; if (!pktlist->qlen) return -EINVAL; target_list = pktlist; /* for host with broken sg support, prepare a page aligned list */ __skb_queue_head_init(&local_list); if (!write && sdiodev->settings->bus.sdio.broken_sg_support) { req_sz = 0; skb_queue_walk(pktlist, pkt_next) req_sz += pkt_next->len; req_sz = ALIGN(req_sz, func->cur_blksize); while (req_sz > PAGE_SIZE) { pkt_next = brcmu_pkt_buf_get_skb(PAGE_SIZE); if (pkt_next == NULL) { ret = -ENOMEM; goto exit; } __skb_queue_tail(&local_list, pkt_next); req_sz -= PAGE_SIZE; } pkt_next = brcmu_pkt_buf_get_skb(req_sz); if (pkt_next == NULL) { ret = -ENOMEM; goto exit; } __skb_queue_tail(&local_list, pkt_next); target_list = &local_list; } func_blk_sz = func->cur_blksize; max_req_sz = sdiodev->max_request_size; max_seg_cnt = min_t(unsigned short, sdiodev->max_segment_count, target_list->qlen); memset(&mmc_req, 0, sizeof(struct mmc_request)); memset(&mmc_cmd, 0, sizeof(struct mmc_command)); memset(&mmc_dat, 0, sizeof(struct mmc_data)); mmc_dat.sg = sdiodev->sgtable.sgl; mmc_dat.blksz = func_blk_sz; mmc_dat.flags = write ? MMC_DATA_WRITE : MMC_DATA_READ; mmc_cmd.opcode = SD_IO_RW_EXTENDED; mmc_cmd.arg = write ? 1<<31 : 0; /* write flag */ mmc_cmd.arg |= (func->num & 0x7) << 28; /* SDIO func num */ mmc_cmd.arg |= 1 << 27; /* block mode */ /* for function 1 the addr will be incremented */ mmc_cmd.arg |= (func->num == 1) ? 1 << 26 : 0; mmc_cmd.flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_ADTC; mmc_req.cmd = &mmc_cmd; mmc_req.data = &mmc_dat; req_sz = 0; sg_cnt = 0; sgl = sdiodev->sgtable.sgl; skb_queue_walk(target_list, pkt_next) { pkt_offset = 0; while (pkt_offset < pkt_next->len) { pkt_data = pkt_next->data + pkt_offset; sg_data_sz = pkt_next->len - pkt_offset; if (sg_data_sz > sdiodev->max_segment_size) sg_data_sz = sdiodev->max_segment_size; if (sg_data_sz > max_req_sz - req_sz) sg_data_sz = max_req_sz - req_sz; sg_set_buf(sgl, pkt_data, sg_data_sz); sg_cnt++; sgl = sg_next(sgl); req_sz += sg_data_sz; pkt_offset += sg_data_sz; if (req_sz >= max_req_sz || sg_cnt >= max_seg_cnt) { ret = mmc_submit_one(&mmc_dat, &mmc_req, &mmc_cmd, sg_cnt, req_sz, func_blk_sz, &addr, sdiodev, func, write); if (ret) goto exit_queue_walk; req_sz = 0; sg_cnt = 0; sgl = sdiodev->sgtable.sgl; } } } if (sg_cnt) ret = mmc_submit_one(&mmc_dat, &mmc_req, &mmc_cmd, sg_cnt, req_sz, func_blk_sz, &addr, sdiodev, func, write); exit_queue_walk: if (!write && sdiodev->settings->bus.sdio.broken_sg_support) { src = __skb_peek(&local_list); src_offset = 0; skb_queue_walk(pktlist, pkt_next) { dst_offset = 0; /* This is safe because we must have enough SKB data * in the local list to cover everything in pktlist. */ while (1) { req_sz = pkt_next->len - dst_offset; if (req_sz > src->len - src_offset) req_sz = src->len - src_offset; orig_data = src->data + src_offset; dst_data = pkt_next->data + dst_offset; memcpy(dst_data, orig_data, req_sz); src_offset += req_sz; if (src_offset == src->len) { src_offset = 0; src = skb_peek_next(src, &local_list); } dst_offset += req_sz; if (dst_offset == pkt_next->len) break; } } } exit: sg_init_table(sdiodev->sgtable.sgl, sdiodev->sgtable.orig_nents); while ((pkt_next = __skb_dequeue(&local_list)) != NULL) brcmu_pkt_buf_free_skb(pkt_next); return ret; } int brcmf_sdiod_recv_buf(struct brcmf_sdio_dev *sdiodev, u8 *buf, uint nbytes) { struct sk_buff *mypkt; int err; mypkt = brcmu_pkt_buf_get_skb(nbytes); if (!mypkt) { brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n", nbytes); return -EIO; } err = brcmf_sdiod_recv_pkt(sdiodev, mypkt); if (!err) memcpy(buf, mypkt->data, nbytes); brcmu_pkt_buf_free_skb(mypkt); return err; } int brcmf_sdiod_recv_pkt(struct brcmf_sdio_dev *sdiodev, struct sk_buff *pkt) { u32 addr = sdiodev->cc_core->base; int err = 0; brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pkt->len); err = brcmf_sdiod_set_backplane_window(sdiodev, addr); if (err) goto done; addr &= SBSDIO_SB_OFT_ADDR_MASK; addr |= SBSDIO_SB_ACCESS_2_4B_FLAG; err = brcmf_sdiod_skbuff_read(sdiodev, sdiodev->func2, addr, pkt); done: return err; } int brcmf_sdiod_recv_chain(struct brcmf_sdio_dev *sdiodev, struct sk_buff_head *pktq, uint totlen) { struct sk_buff *glom_skb = NULL; struct sk_buff *skb; u32 addr = sdiodev->cc_core->base; int err = 0; brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pktq->qlen); err = brcmf_sdiod_set_backplane_window(sdiodev, addr); if (err) goto done; addr &= SBSDIO_SB_OFT_ADDR_MASK; addr |= SBSDIO_SB_ACCESS_2_4B_FLAG; if (pktq->qlen == 1) err = brcmf_sdiod_skbuff_read(sdiodev, sdiodev->func2, addr, __skb_peek(pktq)); else if (!sdiodev->sg_support) { glom_skb = brcmu_pkt_buf_get_skb(totlen); if (!glom_skb) return -ENOMEM; err = brcmf_sdiod_skbuff_read(sdiodev, sdiodev->func2, addr, glom_skb); if (err) goto done; skb_queue_walk(pktq, skb) { memcpy(skb->data, glom_skb->data, skb->len); skb_pull(glom_skb, skb->len); } } else err = brcmf_sdiod_sglist_rw(sdiodev, sdiodev->func2, false, addr, pktq); done: brcmu_pkt_buf_free_skb(glom_skb); return err; } int brcmf_sdiod_send_buf(struct brcmf_sdio_dev *sdiodev, u8 *buf, uint nbytes) { struct sk_buff *mypkt; u32 addr = sdiodev->cc_core->base; int err; mypkt = brcmu_pkt_buf_get_skb(nbytes); if (!mypkt) { brcmf_err("brcmu_pkt_buf_get_skb failed: len %d\n", nbytes); return -EIO; } memcpy(mypkt->data, buf, nbytes); err = brcmf_sdiod_set_backplane_window(sdiodev, addr); if (err) goto out; addr &= SBSDIO_SB_OFT_ADDR_MASK; addr |= SBSDIO_SB_ACCESS_2_4B_FLAG; err = brcmf_sdiod_skbuff_write(sdiodev, sdiodev->func2, addr, mypkt); out: brcmu_pkt_buf_free_skb(mypkt); return err; } int brcmf_sdiod_send_pkt(struct brcmf_sdio_dev *sdiodev, struct sk_buff_head *pktq) { struct sk_buff *skb; u32 addr = sdiodev->cc_core->base; int err; brcmf_dbg(SDIO, "addr = 0x%x, size = %d\n", addr, pktq->qlen); err = brcmf_sdiod_set_backplane_window(sdiodev, addr); if (err) return err; addr &= SBSDIO_SB_OFT_ADDR_MASK; addr |= SBSDIO_SB_ACCESS_2_4B_FLAG; if (pktq->qlen == 1 || !sdiodev->sg_support) { skb_queue_walk(pktq, skb) { err = brcmf_sdiod_skbuff_write(sdiodev, sdiodev->func2, addr, skb); if (err) break; } } else { err = brcmf_sdiod_sglist_rw(sdiodev, sdiodev->func2, true, addr, pktq); } return err; } int brcmf_sdiod_ramrw(struct brcmf_sdio_dev *sdiodev, bool write, u32 address, u8 *data, uint size) { int err = 0; struct sk_buff *pkt; u32 sdaddr; uint dsize; dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size); pkt = dev_alloc_skb(dsize); if (!pkt) { brcmf_err("dev_alloc_skb failed: len %d\n", dsize); return -EIO; } pkt->priority = 0; /* Determine initial transfer parameters */ sdaddr = address & SBSDIO_SB_OFT_ADDR_MASK; if ((sdaddr + size) & SBSDIO_SBWINDOW_MASK) dsize = (SBSDIO_SB_OFT_ADDR_LIMIT - sdaddr); else dsize = size; sdio_claim_host(sdiodev->func1); /* Do the transfer(s) */ while (size) { /* Set the backplane window to include the start address */ err = brcmf_sdiod_set_backplane_window(sdiodev, address); if (err) break; brcmf_dbg(SDIO, "%s %d bytes at offset 0x%08x in window 0x%08x\n", write ? "write" : "read", dsize, sdaddr, address & SBSDIO_SBWINDOW_MASK); sdaddr &= SBSDIO_SB_OFT_ADDR_MASK; sdaddr |= SBSDIO_SB_ACCESS_2_4B_FLAG; skb_put(pkt, dsize); if (write) { memcpy(pkt->data, data, dsize); err = brcmf_sdiod_skbuff_write(sdiodev, sdiodev->func1, sdaddr, pkt); } else { err = brcmf_sdiod_skbuff_read(sdiodev, sdiodev->func1, sdaddr, pkt); } if (err) { brcmf_err("membytes transfer failed\n"); break; } if (!write) memcpy(data, pkt->data, dsize); skb_trim(pkt, 0); /* Adjust for next transfer (if any) */ size -= dsize; if (size) { data += dsize; address += dsize; sdaddr = 0; dsize = min_t(uint, SBSDIO_SB_OFT_ADDR_LIMIT, size); } } dev_kfree_skb(pkt); sdio_release_host(sdiodev->func1); return err; } int brcmf_sdiod_abort(struct brcmf_sdio_dev *sdiodev, struct sdio_func *func) { brcmf_dbg(SDIO, "Enter\n"); /* Issue abort cmd52 command through F0 */ brcmf_sdiod_func0_wb(sdiodev, SDIO_CCCR_ABORT, func->num, NULL); brcmf_dbg(SDIO, "Exit\n"); return 0; } void brcmf_sdiod_sgtable_alloc(struct brcmf_sdio_dev *sdiodev) { struct sdio_func *func; struct mmc_host *host; uint max_blocks; uint nents; int err; func = sdiodev->func2; host = func->card->host; sdiodev->sg_support = host->max_segs > 1; max_blocks = min_t(uint, host->max_blk_count, 511u); sdiodev->max_request_size = min_t(uint, host->max_req_size, max_blocks * func->cur_blksize); sdiodev->max_segment_count = min_t(uint, host->max_segs, SG_MAX_SINGLE_ALLOC); sdiodev->max_segment_size = host->max_seg_size; if (!sdiodev->sg_support) return; nents = max_t(uint, BRCMF_DEFAULT_RXGLOM_SIZE, sdiodev->settings->bus.sdio.txglomsz); nents += (nents >> 4) + 1; WARN_ON(nents > sdiodev->max_segment_count); brcmf_dbg(TRACE, "nents=%d\n", nents); err = sg_alloc_table(&sdiodev->sgtable, nents, GFP_KERNEL); if (err < 0) { brcmf_err("allocation failed: disable scatter-gather"); sdiodev->sg_support = false; } sdiodev->txglomsz = sdiodev->settings->bus.sdio.txglomsz; } static int brcmf_sdiod_freezer_attach(struct brcmf_sdio_dev *sdiodev) { if (!IS_ENABLED(CONFIG_PM_SLEEP)) return 0; sdiodev->freezer = kzalloc(sizeof(*sdiodev->freezer), GFP_KERNEL); if (!sdiodev->freezer) return -ENOMEM; atomic_set(&sdiodev->freezer->thread_count, 0); atomic_set(&sdiodev->freezer->freezing, 0); init_waitqueue_head(&sdiodev->freezer->thread_freeze); init_completion(&sdiodev->freezer->resumed); return 0; } static void brcmf_sdiod_freezer_detach(struct brcmf_sdio_dev *sdiodev) { if (sdiodev->freezer) { WARN_ON(atomic_read(&sdiodev->freezer->freezing)); kfree(sdiodev->freezer); sdiodev->freezer = NULL; } } static int brcmf_sdiod_freezer_on(struct brcmf_sdio_dev *sdiodev) { atomic_t *expect = &sdiodev->freezer->thread_count; int res = 0; sdiodev->freezer->frozen_count = 0; reinit_completion(&sdiodev->freezer->resumed); atomic_set(&sdiodev->freezer->freezing, 1); brcmf_sdio_trigger_dpc(sdiodev->bus); wait_event(sdiodev->freezer->thread_freeze, atomic_read(expect) == sdiodev->freezer->frozen_count); sdio_claim_host(sdiodev->func1); res = brcmf_sdio_sleep(sdiodev->bus, true); sdio_release_host(sdiodev->func1); return res; } static void brcmf_sdiod_freezer_off(struct brcmf_sdio_dev *sdiodev) { sdio_claim_host(sdiodev->func1); brcmf_sdio_sleep(sdiodev->bus, false); sdio_release_host(sdiodev->func1); atomic_set(&sdiodev->freezer->freezing, 0); complete_all(&sdiodev->freezer->resumed); } bool brcmf_sdiod_freezing(struct brcmf_sdio_dev *sdiodev) { return IS_ENABLED(CONFIG_PM_SLEEP) && atomic_read(&sdiodev->freezer->freezing); } void brcmf_sdiod_try_freeze(struct brcmf_sdio_dev *sdiodev) { if (!brcmf_sdiod_freezing(sdiodev)) return; sdiodev->freezer->frozen_count++; wake_up(&sdiodev->freezer->thread_freeze); wait_for_completion(&sdiodev->freezer->resumed); } void brcmf_sdiod_freezer_count(struct brcmf_sdio_dev *sdiodev) { if (IS_ENABLED(CONFIG_PM_SLEEP)) atomic_inc(&sdiodev->freezer->thread_count); } void brcmf_sdiod_freezer_uncount(struct brcmf_sdio_dev *sdiodev) { if (IS_ENABLED(CONFIG_PM_SLEEP)) atomic_dec(&sdiodev->freezer->thread_count); } int brcmf_sdiod_remove(struct brcmf_sdio_dev *sdiodev) { sdiodev->state = BRCMF_SDIOD_DOWN; if (sdiodev->bus) { brcmf_sdio_remove(sdiodev->bus); sdiodev->bus = NULL; } brcmf_sdiod_freezer_detach(sdiodev); /* Disable functions 2 then 1. */ sdio_claim_host(sdiodev->func1); sdio_disable_func(sdiodev->func2); sdio_disable_func(sdiodev->func1); sdio_release_host(sdiodev->func1); sg_free_table(&sdiodev->sgtable); sdiodev->sbwad = 0; pm_runtime_allow(sdiodev->func1->card->host->parent); return 0; } static void brcmf_sdiod_host_fixup(struct mmc_host *host) { /* runtime-pm powers off the device */ pm_runtime_forbid(host->parent); /* avoid removal detection upon resume */ host->caps |= MMC_CAP_NONREMOVABLE; } int brcmf_sdiod_probe(struct brcmf_sdio_dev *sdiodev) { int ret = 0; unsigned int f2_blksz = SDIO_FUNC2_BLOCKSIZE; sdio_claim_host(sdiodev->func1); ret = sdio_set_block_size(sdiodev->func1, SDIO_FUNC1_BLOCKSIZE); if (ret) { brcmf_err("Failed to set F1 blocksize\n"); sdio_release_host(sdiodev->func1); return ret; } switch (sdiodev->func2->device) { case SDIO_DEVICE_ID_BROADCOM_CYPRESS_4373: f2_blksz = SDIO_4373_FUNC2_BLOCKSIZE; break; case SDIO_DEVICE_ID_BROADCOM_4359: case SDIO_DEVICE_ID_BROADCOM_4354: case SDIO_DEVICE_ID_BROADCOM_4356: f2_blksz = SDIO_435X_FUNC2_BLOCKSIZE; break; case SDIO_DEVICE_ID_BROADCOM_4329: f2_blksz = SDIO_4329_FUNC2_BLOCKSIZE; break; default: break; } ret = sdio_set_block_size(sdiodev->func2, f2_blksz); if (ret) { brcmf_err("Failed to set F2 blocksize\n"); sdio_release_host(sdiodev->func1); return ret; } else { brcmf_dbg(SDIO, "set F2 blocksize to %d\n", f2_blksz); } /* increase F2 timeout */ sdiodev->func2->enable_timeout = SDIO_WAIT_F2RDY; /* Enable Function 1 */ ret = sdio_enable_func(sdiodev->func1); sdio_release_host(sdiodev->func1); if (ret) { brcmf_err("Failed to enable F1: err=%d\n", ret); goto out; } ret = brcmf_sdiod_freezer_attach(sdiodev); if (ret) goto out; /* try to attach to the target device */ sdiodev->bus = brcmf_sdio_probe(sdiodev); if (!sdiodev->bus) { ret = -ENODEV; goto out; } brcmf_sdiod_host_fixup(sdiodev->func2->card->host); out: if (ret) brcmf_sdiod_remove(sdiodev); return ret; } #define BRCMF_SDIO_DEVICE(dev_id, fw_vend) \ { \ SDIO_DEVICE(SDIO_VENDOR_ID_BROADCOM, dev_id), \ .driver_data = BRCMF_FWVENDOR_ ## fw_vend \ } #define CYW_SDIO_DEVICE(dev_id, fw_vend) \ { \ SDIO_DEVICE(SDIO_VENDOR_ID_CYPRESS, dev_id), \ .driver_data = BRCMF_FWVENDOR_ ## fw_vend \ } /* devices we support, null terminated */ static const struct sdio_device_id brcmf_sdmmc_ids[] = { BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43143, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43241, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4329, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4330, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4334, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43340, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43341, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43362, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43364, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4335_4339, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4339, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43430, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43439, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4345, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_43455, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4354, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4356, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_4359, WCC), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_CYPRESS_4373, CYW), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_CYPRESS_43012, CYW), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_CYPRESS_43752, CYW), BRCMF_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_CYPRESS_89359, CYW), CYW_SDIO_DEVICE(SDIO_DEVICE_ID_BROADCOM_CYPRESS_43439, CYW), { /* end: all zeroes */ } }; MODULE_DEVICE_TABLE(sdio, brcmf_sdmmc_ids); static void brcmf_sdiod_acpi_save_power_manageable(struct brcmf_sdio_dev *sdiodev) { #if IS_ENABLED(CONFIG_ACPI) struct acpi_device *adev; adev = ACPI_COMPANION(&sdiodev->func1->dev); if (adev) sdiodev->func1_power_manageable = adev->flags.power_manageable; adev = ACPI_COMPANION(&sdiodev->func2->dev); if (adev) sdiodev->func2_power_manageable = adev->flags.power_manageable; #endif } static void brcmf_sdiod_acpi_set_power_manageable(struct brcmf_sdio_dev *sdiodev, int enable) { #if IS_ENABLED(CONFIG_ACPI) struct acpi_device *adev; adev = ACPI_COMPANION(&sdiodev->func1->dev); if (adev) adev->flags.power_manageable = enable ? sdiodev->func1_power_manageable : 0; adev = ACPI_COMPANION(&sdiodev->func2->dev); if (adev) adev->flags.power_manageable = enable ? sdiodev->func2_power_manageable : 0; #endif } static int brcmf_ops_sdio_probe(struct sdio_func *func, const struct sdio_device_id *id) { int err; struct brcmf_sdio_dev *sdiodev; struct brcmf_bus *bus_if; if (!id) { dev_err(&func->dev, "Error no sdio_device_id passed for %x:%x\n", func->vendor, func->device); return -ENODEV; } brcmf_dbg(SDIO, "Enter\n"); brcmf_dbg(SDIO, "Class=%x\n", func->class); brcmf_dbg(SDIO, "sdio vendor ID: 0x%04x\n", func->vendor); brcmf_dbg(SDIO, "sdio device ID: 0x%04x\n", func->device); brcmf_dbg(SDIO, "Function#: %d\n", func->num); /* Set MMC_QUIRK_LENIENT_FN0 for this card */ func->card->quirks |= MMC_QUIRK_LENIENT_FN0; /* Consume func num 1 but dont do anything with it. */ if (func->num == 1) return 0; /* Ignore anything but func 2 */ if (func->num != 2) return -ENODEV; bus_if = kzalloc(sizeof(struct brcmf_bus), GFP_KERNEL); if (!bus_if) return -ENOMEM; sdiodev = kzalloc(sizeof(struct brcmf_sdio_dev), GFP_KERNEL); if (!sdiodev) { kfree(bus_if); return -ENOMEM; } /* store refs to functions used. mmc_card does * not hold the F0 function pointer. */ sdiodev->func1 = func->card->sdio_func[0]; sdiodev->func2 = func; sdiodev->bus_if = bus_if; bus_if->bus_priv.sdio = sdiodev; bus_if->proto_type = BRCMF_PROTO_BCDC; bus_if->fwvid = id->driver_data; dev_set_drvdata(&func->dev, bus_if); dev_set_drvdata(&sdiodev->func1->dev, bus_if); sdiodev->dev = &sdiodev->func1->dev; brcmf_sdiod_acpi_save_power_manageable(sdiodev); brcmf_sdiod_change_state(sdiodev, BRCMF_SDIOD_DOWN); brcmf_dbg(SDIO, "F2 found, calling brcmf_sdiod_probe...\n"); err = brcmf_sdiod_probe(sdiodev); if (err) { brcmf_err("F2 error, probe failed %d...\n", err); goto fail; } brcmf_dbg(SDIO, "F2 init completed...\n"); return 0; fail: dev_set_drvdata(&func->dev, NULL); dev_set_drvdata(&sdiodev->func1->dev, NULL); kfree(sdiodev); kfree(bus_if); return err; } static void brcmf_ops_sdio_remove(struct sdio_func *func) { struct brcmf_bus *bus_if; struct brcmf_sdio_dev *sdiodev; brcmf_dbg(SDIO, "Enter\n"); brcmf_dbg(SDIO, "sdio vendor ID: 0x%04x\n", func->vendor); brcmf_dbg(SDIO, "sdio device ID: 0x%04x\n", func->device); brcmf_dbg(SDIO, "Function: %d\n", func->num); bus_if = dev_get_drvdata(&func->dev); if (bus_if) { sdiodev = bus_if->bus_priv.sdio; /* start by unregistering irqs */ brcmf_sdiod_intr_unregister(sdiodev); if (func->num != 1) return; /* only proceed with rest of cleanup if func 1 */ brcmf_sdiod_remove(sdiodev); dev_set_drvdata(&sdiodev->func1->dev, NULL); dev_set_drvdata(&sdiodev->func2->dev, NULL); kfree(bus_if); kfree(sdiodev); } brcmf_dbg(SDIO, "Exit\n"); } void brcmf_sdio_wowl_config(struct device *dev, bool enabled) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; mmc_pm_flag_t pm_caps = sdio_get_host_pm_caps(sdiodev->func1); /* Power must be preserved to be able to support WOWL. */ if (!(pm_caps & MMC_PM_KEEP_POWER)) goto notsup; if (sdiodev->settings->bus.sdio.oob_irq_supported || pm_caps & MMC_PM_WAKE_SDIO_IRQ) { /* Stop ACPI from turning off the device when wowl is enabled */ brcmf_sdiod_acpi_set_power_manageable(sdiodev, !enabled); sdiodev->wowl_enabled = enabled; brcmf_dbg(SDIO, "Configuring WOWL, enabled=%d\n", enabled); return; } notsup: brcmf_dbg(SDIO, "WOWL not supported\n"); } static int brcmf_ops_sdio_suspend(struct device *dev) { struct sdio_func *func; struct brcmf_bus *bus_if; struct brcmf_sdio_dev *sdiodev; mmc_pm_flag_t sdio_flags; int ret = 0; func = container_of(dev, struct sdio_func, dev); brcmf_dbg(SDIO, "Enter: F%d\n", func->num); if (func->num != 1) return 0; bus_if = dev_get_drvdata(dev); sdiodev = bus_if->bus_priv.sdio; if (sdiodev->wowl_enabled) { brcmf_sdiod_freezer_on(sdiodev); brcmf_sdio_wd_timer(sdiodev->bus, 0); sdio_flags = MMC_PM_KEEP_POWER; if (sdiodev->settings->bus.sdio.oob_irq_supported) enable_irq_wake(sdiodev->settings->bus.sdio.oob_irq_nr); else sdio_flags |= MMC_PM_WAKE_SDIO_IRQ; if (sdio_set_host_pm_flags(sdiodev->func1, sdio_flags)) brcmf_err("Failed to set pm_flags %x\n", sdio_flags); } else { /* power will be cut so remove device, probe again in resume */ brcmf_sdiod_intr_unregister(sdiodev); ret = brcmf_sdiod_remove(sdiodev); if (ret) brcmf_err("Failed to remove device on suspend\n"); } return ret; } static int brcmf_ops_sdio_resume(struct device *dev) { struct brcmf_bus *bus_if = dev_get_drvdata(dev); struct brcmf_sdio_dev *sdiodev = bus_if->bus_priv.sdio; struct sdio_func *func = container_of(dev, struct sdio_func, dev); int ret = 0; brcmf_dbg(SDIO, "Enter: F%d\n", func->num); if (func->num != 2) return 0; if (!sdiodev->wowl_enabled) { /* bus was powered off and device removed, probe again */ ret = brcmf_sdiod_probe(sdiodev); if (ret) brcmf_err("Failed to probe device on resume\n"); } else { if (sdiodev->settings->bus.sdio.oob_irq_supported) disable_irq_wake(sdiodev->settings->bus.sdio.oob_irq_nr); brcmf_sdiod_freezer_off(sdiodev); } return ret; } static DEFINE_SIMPLE_DEV_PM_OPS(brcmf_sdio_pm_ops, brcmf_ops_sdio_suspend, brcmf_ops_sdio_resume); static struct sdio_driver brcmf_sdmmc_driver = { .probe = brcmf_ops_sdio_probe, .remove = brcmf_ops_sdio_remove, .name = KBUILD_MODNAME, .id_table = brcmf_sdmmc_ids, .drv = { .pm = pm_sleep_ptr(&brcmf_sdio_pm_ops), .coredump = brcmf_dev_coredump, }, }; int brcmf_sdio_register(void) { return sdio_register_driver(&brcmf_sdmmc_driver); } void brcmf_sdio_exit(void) { brcmf_dbg(SDIO, "Enter\n"); sdio_unregister_driver(&brcmf_sdmmc_driver); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1