Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Emmanuel Grumbach | 1875 | 37.80% | 82 | 26.89% |
Johannes Berg | 993 | 20.02% | 79 | 25.90% |
Mordechai Goodstein | 294 | 5.93% | 10 | 3.28% |
Shahar S Matityahu | 260 | 5.24% | 17 | 5.57% |
Sara Sharon | 239 | 4.82% | 14 | 4.59% |
Alon Giladi | 170 | 3.43% | 8 | 2.62% |
Luciano Coelho | 148 | 2.98% | 14 | 4.59% |
Mukesh Sisodiya | 137 | 2.76% | 9 | 2.95% |
Arik Nemtsov | 115 | 2.32% | 7 | 2.30% |
Sharon Dvir | 83 | 1.67% | 1 | 0.33% |
Eliad Peller | 67 | 1.35% | 4 | 1.31% |
Golan Ben-Ami | 58 | 1.17% | 5 | 1.64% |
Don Fry | 55 | 1.11% | 5 | 1.64% |
Alex Malamud | 54 | 1.09% | 1 | 0.33% |
Stanislaw Gruszka | 43 | 0.87% | 2 | 0.66% |
Meenakshi Venkataraman | 38 | 0.77% | 3 | 0.98% |
Liad Kaufman | 37 | 0.75% | 3 | 0.98% |
Aviya Erenfeld | 32 | 0.65% | 1 | 0.33% |
Tomas Winkler | 31 | 0.62% | 7 | 2.30% |
Lilach Edelstein | 28 | 0.56% | 2 | 0.66% |
Wey-Yi Guy | 27 | 0.54% | 5 | 1.64% |
Yi Zhu | 24 | 0.48% | 1 | 0.33% |
Christoph Hellwig | 22 | 0.44% | 1 | 0.33% |
Haim Dreyfuss | 21 | 0.42% | 4 | 1.31% |
Kenny Hsu | 17 | 0.34% | 1 | 0.33% |
Matti Gottlieb | 16 | 0.32% | 1 | 0.33% |
Ben M Cahill | 15 | 0.30% | 2 | 0.66% |
Miri Korenblit | 8 | 0.16% | 1 | 0.33% |
Lior Cohen | 6 | 0.12% | 1 | 0.33% |
Eran Harary | 6 | 0.12% | 1 | 0.33% |
Ayala Barazani | 6 | 0.12% | 1 | 0.33% |
David Spinadel | 5 | 0.10% | 1 | 0.33% |
Avraham Stern | 5 | 0.10% | 1 | 0.33% |
Eric Dumazet | 4 | 0.08% | 1 | 0.33% |
Andrei Otcheretianski | 4 | 0.08% | 1 | 0.33% |
Mike Golant | 3 | 0.06% | 1 | 0.33% |
Gregory Greenman | 3 | 0.06% | 1 | 0.33% |
Oren Givon | 3 | 0.06% | 1 | 0.33% |
Assaf Krauss | 2 | 0.04% | 1 | 0.33% |
Jay Sternberg | 2 | 0.04% | 1 | 0.33% |
Abhijeet Kolekar | 2 | 0.04% | 1 | 0.33% |
Daniel C. Halperin | 1 | 0.02% | 1 | 0.33% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 0.33% |
Total | 4960 | 305 |
/* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ /* * Copyright (C) 2005-2014, 2018-2023 Intel Corporation * Copyright (C) 2013-2015 Intel Mobile Communications GmbH * Copyright (C) 2016-2017 Intel Deutschland GmbH */ #ifndef __iwl_trans_h__ #define __iwl_trans_h__ #include <linux/ieee80211.h> #include <linux/mm.h> /* for page_address */ #include <linux/lockdep.h> #include <linux/kernel.h> #include "iwl-debug.h" #include "iwl-config.h" #include "fw/img.h" #include "iwl-op-mode.h" #include <linux/firmware.h> #include "fw/api/cmdhdr.h" #include "fw/api/txq.h" #include "fw/api/dbg-tlv.h" #include "iwl-dbg-tlv.h" /** * DOC: Transport layer - what is it ? * * The transport layer is the layer that deals with the HW directly. It provides * an abstraction of the underlying HW to the upper layer. The transport layer * doesn't provide any policy, algorithm or anything of this kind, but only * mechanisms to make the HW do something. It is not completely stateless but * close to it. * We will have an implementation for each different supported bus. */ /** * DOC: Life cycle of the transport layer * * The transport layer has a very precise life cycle. * * 1) A helper function is called during the module initialization and * registers the bus driver's ops with the transport's alloc function. * 2) Bus's probe calls to the transport layer's allocation functions. * Of course this function is bus specific. * 3) This allocation functions will spawn the upper layer which will * register mac80211. * * 4) At some point (i.e. mac80211's start call), the op_mode will call * the following sequence: * start_hw * start_fw * * 5) Then when finished (or reset): * stop_device * * 6) Eventually, the free function will be called. */ /* default preset 0 (start from bit 16)*/ #define IWL_FW_DBG_DOMAIN_POS 16 #define IWL_FW_DBG_DOMAIN BIT(IWL_FW_DBG_DOMAIN_POS) #define IWL_TRANS_FW_DBG_DOMAIN(trans) IWL_FW_INI_DOMAIN_ALWAYS_ON #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ #define FH_RSCSR_FRAME_INVALID 0x55550000 #define FH_RSCSR_FRAME_ALIGN 0x40 #define FH_RSCSR_RPA_EN BIT(25) #define FH_RSCSR_RADA_EN BIT(26) #define FH_RSCSR_RXQ_POS 16 #define FH_RSCSR_RXQ_MASK 0x3F0000 struct iwl_rx_packet { /* * The first 4 bytes of the RX frame header contain both the RX frame * size and some flags. * Bit fields: * 31: flag flush RB request * 30: flag ignore TC (terminal counter) request * 29: flag fast IRQ request * 28-27: Reserved * 26: RADA enabled * 25: Offload enabled * 24: RPF enabled * 23: RSS enabled * 22: Checksum enabled * 21-16: RX queue * 15-14: Reserved * 13-00: RX frame size */ __le32 len_n_flags; struct iwl_cmd_header hdr; u8 data[]; } __packed; static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) { return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; } static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) { return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); } /** * enum CMD_MODE - how to send the host commands ? * * @CMD_ASYNC: Return right away and don't wait for the response * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of * the response. The caller needs to call iwl_free_resp when done. * @CMD_SEND_IN_RFKILL: Send the command even if the NIC is in RF-kill. * @CMD_BLOCK_TXQS: Block TXQs while the comment is executing. * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to * SUSPEND and RESUME commands. We are in D3 mode when we set * trans->system_pm_mode to IWL_PLAT_PM_MODE_D3. */ enum CMD_MODE { CMD_ASYNC = BIT(0), CMD_WANT_SKB = BIT(1), CMD_SEND_IN_RFKILL = BIT(2), CMD_BLOCK_TXQS = BIT(3), CMD_SEND_IN_D3 = BIT(4), }; #define DEF_CMD_PAYLOAD_SIZE 320 /** * struct iwl_device_cmd * * For allocation of the command and tx queues, this establishes the overall * size of the largest command we send to uCode, except for commands that * aren't fully copied and use other TFD space. */ struct iwl_device_cmd { union { struct { struct iwl_cmd_header hdr; /* uCode API */ u8 payload[DEF_CMD_PAYLOAD_SIZE]; }; struct { struct iwl_cmd_header_wide hdr_wide; u8 payload_wide[DEF_CMD_PAYLOAD_SIZE - sizeof(struct iwl_cmd_header_wide) + sizeof(struct iwl_cmd_header)]; }; }; } __packed; /** * struct iwl_device_tx_cmd - buffer for TX command * @hdr: the header * @payload: the payload placeholder * * The actual structure is sized dynamically according to need. */ struct iwl_device_tx_cmd { struct iwl_cmd_header hdr; u8 payload[]; } __packed; #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) /* * number of transfer buffers (fragments) per transmit frame descriptor; * this is just the driver's idea, the hardware supports 20 */ #define IWL_MAX_CMD_TBS_PER_TFD 2 /* We need 2 entries for the TX command and header, and another one might * be needed for potential data in the SKB's head. The remaining ones can * be used for frags. */ #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3) /** * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command * * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's * ring. The transport layer doesn't map the command's buffer to DMA, but * rather copies it to a previously allocated DMA buffer. This flag tells * the transport layer not to copy the command, but to map the existing * buffer (that is passed in) instead. This saves the memcpy and allows * commands that are bigger than the fixed buffer to be submitted. * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this * chunk internally and free it again after the command completes. This * can (currently) be used only once per command. * Note that a TFD entry after a DUP one cannot be a normal copied one. */ enum iwl_hcmd_dataflag { IWL_HCMD_DFL_NOCOPY = BIT(0), IWL_HCMD_DFL_DUP = BIT(1), }; enum iwl_error_event_table_status { IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0), IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1), IWL_ERROR_EVENT_TABLE_UMAC = BIT(2), IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3), IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4), IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5), IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6), }; /** * struct iwl_host_cmd - Host command to the uCode * * @data: array of chunks that composes the data of the host command * @resp_pkt: response packet, if %CMD_WANT_SKB was set * @_rx_page_order: (internally used to free response packet) * @_rx_page_addr: (internally used to free response packet) * @flags: can be CMD_* * @len: array of the lengths of the chunks in data * @dataflags: IWL_HCMD_DFL_* * @id: command id of the host command, for wide commands encoding the * version and group as well */ struct iwl_host_cmd { const void *data[IWL_MAX_CMD_TBS_PER_TFD]; struct iwl_rx_packet *resp_pkt; unsigned long _rx_page_addr; u32 _rx_page_order; u32 flags; u32 id; u16 len[IWL_MAX_CMD_TBS_PER_TFD]; u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; }; static inline void iwl_free_resp(struct iwl_host_cmd *cmd) { free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); } struct iwl_rx_cmd_buffer { struct page *_page; int _offset; bool _page_stolen; u32 _rx_page_order; unsigned int truesize; }; static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) { return (void *)((unsigned long)page_address(r->_page) + r->_offset); } static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) { return r->_offset; } static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) { r->_page_stolen = true; get_page(r->_page); return r->_page; } static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) { __free_pages(r->_page, r->_rx_page_order); } #define MAX_NO_RECLAIM_CMDS 6 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) /* * Maximum number of HW queues the transport layer * currently supports */ #define IWL_MAX_HW_QUEUES 32 #define IWL_MAX_TVQM_QUEUES 512 #define IWL_MAX_TID_COUNT 8 #define IWL_MGMT_TID 15 #define IWL_FRAME_LIMIT 64 #define IWL_MAX_RX_HW_QUEUES 16 #define IWL_9000_MAX_RX_HW_QUEUES 1 /** * enum iwl_wowlan_status - WoWLAN image/device status * @IWL_D3_STATUS_ALIVE: firmware is still running after resume * @IWL_D3_STATUS_RESET: device was reset while suspended */ enum iwl_d3_status { IWL_D3_STATUS_ALIVE, IWL_D3_STATUS_RESET, }; /** * enum iwl_trans_status: transport status flags * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed * @STATUS_DEVICE_ENABLED: APM is enabled * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) * @STATUS_INT_ENABLED: interrupts are enabled * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode * @STATUS_FW_ERROR: the fw is in error state * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands * are sent * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once, * e.g. for testing */ enum iwl_trans_status { STATUS_SYNC_HCMD_ACTIVE, STATUS_DEVICE_ENABLED, STATUS_TPOWER_PMI, STATUS_INT_ENABLED, STATUS_RFKILL_HW, STATUS_RFKILL_OPMODE, STATUS_FW_ERROR, STATUS_TRANS_GOING_IDLE, STATUS_TRANS_IDLE, STATUS_TRANS_DEAD, STATUS_SUPPRESS_CMD_ERROR_ONCE, }; static inline int iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size) { switch (rb_size) { case IWL_AMSDU_2K: return get_order(2 * 1024); case IWL_AMSDU_4K: return get_order(4 * 1024); case IWL_AMSDU_8K: return get_order(8 * 1024); case IWL_AMSDU_12K: return get_order(16 * 1024); default: WARN_ON(1); return -1; } } static inline int iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size) { switch (rb_size) { case IWL_AMSDU_2K: return 2 * 1024; case IWL_AMSDU_4K: return 4 * 1024; case IWL_AMSDU_8K: return 8 * 1024; case IWL_AMSDU_12K: return 16 * 1024; default: WARN_ON(1); return 0; } } struct iwl_hcmd_names { u8 cmd_id; const char *const cmd_name; }; #define HCMD_NAME(x) \ { .cmd_id = x, .cmd_name = #x } struct iwl_hcmd_arr { const struct iwl_hcmd_names *arr; int size; }; #define HCMD_ARR(x) \ { .arr = x, .size = ARRAY_SIZE(x) } /** * struct iwl_dump_sanitize_ops - dump sanitization operations * @frob_txf: Scrub the TX FIFO data * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header * but that might be short or long (&struct iwl_cmd_header or * &struct iwl_cmd_header_wide) * @frob_mem: Scrub memory data */ struct iwl_dump_sanitize_ops { void (*frob_txf)(void *ctx, void *buf, size_t buflen); void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen); void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen); }; /** * struct iwl_trans_config - transport configuration * * @op_mode: pointer to the upper layer. * @cmd_queue: the index of the command queue. * Must be set before start_fw. * @cmd_fifo: the fifo for host commands * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue. * @no_reclaim_cmds: Some devices erroneously don't set the * SEQ_RX_FRAME bit on some notifications, this is the * list of such notifications to filter. Max length is * %MAX_NO_RECLAIM_CMDS. * @n_no_reclaim_cmds: # of commands in list * @rx_buf_size: RX buffer size needed for A-MSDUs * if unset 4k will be the RX buffer size * @bc_table_dword: set to true if the BC table expects the byte count to be * in DWORD (as opposed to bytes) * @scd_set_active: should the transport configure the SCD for HCMD queue * @command_groups: array of command groups, each member is an array of the * commands in the group; for debugging only * @command_groups_size: number of command groups, to avoid illegal access * @cb_data_offs: offset inside skb->cb to store transport data at, must have * space for at least two pointers * @fw_reset_handshake: firmware supports reset flow handshake * @queue_alloc_cmd_ver: queue allocation command version, set to 0 * for using the older SCD_QUEUE_CFG, set to the version of * SCD_QUEUE_CONFIG_CMD otherwise. */ struct iwl_trans_config { struct iwl_op_mode *op_mode; u8 cmd_queue; u8 cmd_fifo; unsigned int cmd_q_wdg_timeout; const u8 *no_reclaim_cmds; unsigned int n_no_reclaim_cmds; enum iwl_amsdu_size rx_buf_size; bool bc_table_dword; bool scd_set_active; const struct iwl_hcmd_arr *command_groups; int command_groups_size; u8 cb_data_offs; bool fw_reset_handshake; u8 queue_alloc_cmd_ver; }; struct iwl_trans_dump_data { u32 len; u8 data[]; }; struct iwl_trans; struct iwl_trans_txq_scd_cfg { u8 fifo; u8 sta_id; u8 tid; bool aggregate; int frame_limit; }; /** * struct iwl_trans_rxq_dma_data - RX queue DMA data * @fr_bd_cb: DMA address of free BD cyclic buffer * @fr_bd_wid: Initial write index of the free BD cyclic buffer * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr * @ur_bd_cb: DMA address of used BD cyclic buffer */ struct iwl_trans_rxq_dma_data { u64 fr_bd_cb; u32 fr_bd_wid; u64 urbd_stts_wrptr; u64 ur_bd_cb; }; /* maximal number of DRAM MAP entries supported by FW */ #define IPC_DRAM_MAP_ENTRY_NUM_MAX 64 /** * struct iwl_pnvm_image - contains info about the parsed pnvm image * @chunks: array of pointers to pnvm payloads and their sizes * @n_chunks: the number of the pnvm payloads. * @version: the version of the loaded PNVM image */ struct iwl_pnvm_image { struct { const void *data; u32 len; } chunks[IPC_DRAM_MAP_ENTRY_NUM_MAX]; u32 n_chunks; u32 version; }; /** * struct iwl_trans_ops - transport specific operations * * All the handlers MUST be implemented * * @start_hw: starts the HW. From that point on, the HW can send interrupts. * May sleep. * @op_mode_leave: Turn off the HW RF kill indication if on * May sleep * @start_fw: allocates and inits all the resources for the transport * layer. Also kick a fw image. * May sleep * @fw_alive: called when the fw sends alive notification. If the fw provides * the SCD base address in SRAM, then provide it here, or 0 otherwise. * May sleep * @stop_device: stops the whole device (embedded CPU put to reset) and stops * the HW. From that point on, the HW will be stopped but will still issue * an interrupt if the HW RF kill switch is triggered. * This callback must do the right thing and not crash even if %start_hw() * was called but not &start_fw(). May sleep. * @d3_suspend: put the device into the correct mode for WoWLAN during * suspend. This is optional, if not implemented WoWLAN will not be * supported. This callback may sleep. * @d3_resume: resume the device after WoWLAN, enabling the opmode to * talk to the WoWLAN image to get its status. This is optional, if not * implemented WoWLAN will not be supported. This callback may sleep. * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. * If RFkill is asserted in the middle of a SYNC host command, it must * return -ERFKILL straight away. * May sleep only if CMD_ASYNC is not set * @tx: send an skb. The transport relies on the op_mode to zero the * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all * the CSUM will be taken care of (TCP CSUM and IP header in case of * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP * header if it is IPv4. * Must be atomic * @reclaim: free packet until ssn. Returns a list of freed packets. * Must be atomic * @set_q_ptrs: set queue pointers internally, after D3 when HW state changed * @txq_enable: setup a queue. To setup an AC queue, use the * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before * this one. The op_mode must not configure the HCMD queue. The scheduler * configuration may be %NULL, in which case the hardware will not be * configured. If true is returned, the operation mode needs to increment * the sequence number of the packets routed to this queue because of a * hardware scheduler bug. May sleep. * @txq_disable: de-configure a Tx queue to send AMPDUs * Must be atomic * @txq_alloc: Allocate a new TX queue, may sleep. * @txq_free: Free a previously allocated TX queue. * @txq_set_shared_mode: change Tx queue shared/unshared marking * @wait_tx_queues_empty: wait until tx queues are empty. May sleep. * @wait_txq_empty: wait until specific tx queue is empty. May sleep. * @freeze_txq_timer: prevents the timer of the queue from firing until the * queue is set to awake. Must be atomic. * @write8: write a u8 to a register at offset ofs from the BAR * @write32: write a u32 to a register at offset ofs from the BAR * @read32: read a u32 register at offset ofs from the BAR * @read_prph: read a DWORD from a periphery register * @write_prph: write a DWORD to a periphery register * @read_mem: read device's SRAM in DWORD * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory * will be zeroed. * @read_config32: read a u32 value from the device's config space at * the given offset. * @configure: configure parameters required by the transport layer from * the op_mode. May be called several times before start_fw, can't be * called after that. * @set_pmi: set the power pmi state * @sw_reset: trigger software reset of the NIC * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. * Sleeping is not allowed between grab_nic_access and * release_nic_access. * @release_nic_access: let the NIC go to sleep. The "flags" parameter * must be the same one that was sent before to the grab_nic_access. * @set_bits_mask: set SRAM register according to value and mask. * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last * TX'ed commands and similar. The buffer will be vfree'd by the caller. * Note that the transport must fill in the proper file headers. * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup * of the trans debugfs * @sync_nmi: trigger a firmware NMI and wait for it to complete * @load_pnvm: save the pnvm data in DRAM * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the * context info. * @load_reduce_power: copy reduce power table to the corresponding DRAM memory * @set_reduce_power: set reduce power table addresses in the sratch buffer * @interrupts: disable/enable interrupts to transport * @imr_dma_data: set up IMR DMA * @rxq_dma_data: retrieve RX queue DMA data, see @struct iwl_trans_rxq_dma_data */ struct iwl_trans_ops { int (*start_hw)(struct iwl_trans *iwl_trans); void (*op_mode_leave)(struct iwl_trans *iwl_trans); int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, bool run_in_rfkill); void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); void (*stop_device)(struct iwl_trans *trans); int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset); int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, bool test, bool reset); int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_tx_cmd *dev_cmd, int queue); void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, struct sk_buff_head *skbs, bool is_flush); void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr); bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn, const struct iwl_trans_txq_scd_cfg *cfg, unsigned int queue_wdg_timeout); void (*txq_disable)(struct iwl_trans *trans, int queue, bool configure_scd); /* 22000 functions */ int (*txq_alloc)(struct iwl_trans *trans, u32 flags, u32 sta_mask, u8 tid, int size, unsigned int queue_wdg_timeout); void (*txq_free)(struct iwl_trans *trans, int queue); int (*rxq_dma_data)(struct iwl_trans *trans, int queue, struct iwl_trans_rxq_dma_data *data); void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id, bool shared); int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm); int (*wait_txq_empty)(struct iwl_trans *trans, int queue); void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs, bool freeze); void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); u32 (*read32)(struct iwl_trans *trans, u32 ofs); u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); int (*read_mem)(struct iwl_trans *trans, u32 addr, void *buf, int dwords); int (*write_mem)(struct iwl_trans *trans, u32 addr, const void *buf, int dwords); int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val); void (*configure)(struct iwl_trans *trans, const struct iwl_trans_config *trans_cfg); void (*set_pmi)(struct iwl_trans *trans, bool state); int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership); bool (*grab_nic_access)(struct iwl_trans *trans); void (*release_nic_access)(struct iwl_trans *trans); void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, u32 value); struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans, u32 dump_mask, const struct iwl_dump_sanitize_ops *sanitize_ops, void *sanitize_ctx); void (*debugfs_cleanup)(struct iwl_trans *trans); void (*sync_nmi)(struct iwl_trans *trans); int (*load_pnvm)(struct iwl_trans *trans, const struct iwl_pnvm_image *pnvm_payloads, const struct iwl_ucode_capabilities *capa); void (*set_pnvm)(struct iwl_trans *trans, const struct iwl_ucode_capabilities *capa); int (*load_reduce_power)(struct iwl_trans *trans, const struct iwl_pnvm_image *payloads, const struct iwl_ucode_capabilities *capa); void (*set_reduce_power)(struct iwl_trans *trans, const struct iwl_ucode_capabilities *capa); void (*interrupts)(struct iwl_trans *trans, bool enable); int (*imr_dma_data)(struct iwl_trans *trans, u32 dst_addr, u64 src_addr, u32 byte_cnt); }; /** * enum iwl_trans_state - state of the transport layer * * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet * @IWL_TRANS_FW_ALIVE: FW has sent an alive response */ enum iwl_trans_state { IWL_TRANS_NO_FW, IWL_TRANS_FW_STARTED, IWL_TRANS_FW_ALIVE, }; /** * DOC: Platform power management * * In system-wide power management the entire platform goes into a low * power state (e.g. idle or suspend to RAM) at the same time and the * device is configured as a wakeup source for the entire platform. * This is usually triggered by userspace activity (e.g. the user * presses the suspend button or a power management daemon decides to * put the platform in low power mode). The device's behavior in this * mode is dictated by the wake-on-WLAN configuration. * * The terms used for the device's behavior are as follows: * * - D0: the device is fully powered and the host is awake; * - D3: the device is in low power mode and only reacts to * specific events (e.g. magic-packet received or scan * results found); * * These terms reflect the power modes in the firmware and are not to * be confused with the physical device power state. */ /** * enum iwl_plat_pm_mode - platform power management mode * * This enumeration describes the device's platform power management * behavior when in system-wide suspend (i.e WoWLAN). * * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this * device. In system-wide suspend mode, it means that the all * connections will be closed automatically by mac80211 before * the platform is suspended. * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN). */ enum iwl_plat_pm_mode { IWL_PLAT_PM_MODE_DISABLED, IWL_PLAT_PM_MODE_D3, }; /** * enum iwl_ini_cfg_state * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs * are corrupted. The rest of the debug TLVs will still be used */ enum iwl_ini_cfg_state { IWL_INI_CFG_STATE_NOT_LOADED, IWL_INI_CFG_STATE_LOADED, IWL_INI_CFG_STATE_CORRUPTED, }; /* Max time to wait for nmi interrupt */ #define IWL_TRANS_NMI_TIMEOUT (HZ / 4) /** * struct iwl_dram_data * @physical: page phy pointer * @block: pointer to the allocated block/page * @size: size of the block/page */ struct iwl_dram_data { dma_addr_t physical; void *block; int size; }; /** * struct iwl_dram_regions - DRAM regions container structure * @drams: array of several DRAM areas that contains the pnvm and power * reduction table payloads. * @n_regions: number of DRAM regions that were allocated * @prph_scratch_mem_desc: points to a structure allocated in dram, * designed to show FW where all the payloads are. */ struct iwl_dram_regions { struct iwl_dram_data drams[IPC_DRAM_MAP_ENTRY_NUM_MAX]; struct iwl_dram_data prph_scratch_mem_desc; u8 n_regions; }; /** * struct iwl_fw_mon - fw monitor per allocation id * @num_frags: number of fragments * @frags: an array of DRAM buffer fragments */ struct iwl_fw_mon { u32 num_frags; struct iwl_dram_data *frags; }; /** * struct iwl_self_init_dram - dram data used by self init process * @fw: lmac and umac dram data * @fw_cnt: total number of items in array * @paging: paging dram data * @paging_cnt: total number of items in array */ struct iwl_self_init_dram { struct iwl_dram_data *fw; int fw_cnt; struct iwl_dram_data *paging; int paging_cnt; }; /** * struct iwl_imr_data - imr dram data used during debug process * @imr_enable: imr enable status received from fw * @imr_size: imr dram size received from fw * @sram_addr: sram address from debug tlv * @sram_size: sram size from debug tlv * @imr2sram_remainbyte: size remained after each dma transfer * @imr_curr_addr: current dst address used during dma transfer * @imr_base_addr: imr address received from fw */ struct iwl_imr_data { u32 imr_enable; u32 imr_size; u32 sram_addr; u32 sram_size; u32 imr2sram_remainbyte; u64 imr_curr_addr; __le64 imr_base_addr; }; #define IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES 32 /** * struct iwl_pc_data - program counter details * @pc_name: cpu name * @pc_address: cpu program counter */ struct iwl_pc_data { u8 pc_name[IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES]; u32 pc_address; }; /** * struct iwl_trans_debug - transport debug related data * * @n_dest_reg: num of reg_ops in %dbg_dest_tlv * @rec_on: true iff there is a fw debug recording currently active * @dest_tlv: points to the destination TLV for debug * @conf_tlv: array of pointers to configuration TLVs for debug * @trigger_tlv: array of pointers to triggers TLVs for debug * @lmac_error_event_table: addrs of lmacs error tables * @umac_error_event_table: addr of umac error table * @tcm_error_event_table: address(es) of TCM error table(s) * @rcm_error_event_table: address(es) of RCM error table(s) * @error_event_table_tlv_status: bitmap that indicates what error table * pointers was recevied via TLV. uses enum &iwl_error_event_table_status * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state * @fw_mon_cfg: debug buffer allocation configuration * @fw_mon_ini: DRAM buffer fragments per allocation id * @fw_mon: DRAM buffer for firmware monitor * @hw_error: equals true if hw error interrupt was received from the FW * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location * @unsupported_region_msk: unsupported regions out of active_regions * @active_regions: active regions * @debug_info_tlv_list: list of debug info TLVs * @time_point: array of debug time points * @periodic_trig_list: periodic triggers list * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON * @ucode_preset: preset based on ucode * @restart_required: indicates debug restart is required * @last_tp_resetfw: last handling of reset during debug timepoint * @imr_data: IMR debug data allocation * @dump_file_name_ext: dump file name extension * @dump_file_name_ext_valid: dump file name extension if valid or not * @num_pc: number of program counter for cpu * @pc_data: details of the program counter * @yoyo_bin_loaded: tells if a yoyo debug file has been loaded */ struct iwl_trans_debug { u8 n_dest_reg; bool rec_on; const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv; const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX]; struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv; u32 lmac_error_event_table[2]; u32 umac_error_event_table; u32 tcm_error_event_table[2]; u32 rcm_error_event_table[2]; unsigned int error_event_table_tlv_status; enum iwl_ini_cfg_state internal_ini_cfg; enum iwl_ini_cfg_state external_ini_cfg; struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM]; struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM]; struct iwl_dram_data fw_mon; bool hw_error; enum iwl_fw_ini_buffer_location ini_dest; u64 unsupported_region_msk; struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID]; struct list_head debug_info_tlv_list; struct iwl_dbg_tlv_time_point_data time_point[IWL_FW_INI_TIME_POINT_NUM]; struct list_head periodic_trig_list; u32 domains_bitmap; u32 ucode_preset; bool restart_required; u32 last_tp_resetfw; struct iwl_imr_data imr_data; u8 dump_file_name_ext[IWL_FW_INI_MAX_NAME]; bool dump_file_name_ext_valid; u32 num_pc; struct iwl_pc_data *pc_data; bool yoyo_bin_loaded; }; struct iwl_dma_ptr { dma_addr_t dma; void *addr; size_t size; }; struct iwl_cmd_meta { /* only for SYNC commands, iff the reply skb is wanted */ struct iwl_host_cmd *source; u32 flags; u32 tbs; }; /* * The FH will write back to the first TB only, so we need to copy some data * into the buffer regardless of whether it should be mapped or not. * This indicates how big the first TB must be to include the scratch buffer * and the assigned PN. * Since PN location is 8 bytes at offset 12, it's 20 now. * If we make it bigger then allocations will be bigger and copy slower, so * that's probably not useful. */ #define IWL_FIRST_TB_SIZE 20 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64) struct iwl_pcie_txq_entry { void *cmd; struct sk_buff *skb; /* buffer to free after command completes */ const void *free_buf; struct iwl_cmd_meta meta; }; struct iwl_pcie_first_tb_buf { u8 buf[IWL_FIRST_TB_SIZE_ALIGN]; }; /** * struct iwl_txq - Tx Queue for DMA * @tfds: transmit frame descriptors (DMA memory) * @first_tb_bufs: start of command headers, including scratch buffers, for * the writeback -- this is DMA memory and an array holding one buffer * for each command on the queue * @first_tb_dma: DMA address for the first_tb_bufs start * @entries: transmit entries (driver state) * @lock: queue lock * @stuck_timer: timer that fires if queue gets stuck * @trans: pointer back to transport (for timer) * @need_update: indicates need to update read/write index * @ampdu: true if this queue is an ampdu queue for an specific RA/TID * @wd_timeout: queue watchdog timeout (jiffies) - per queue * @frozen: tx stuck queue timer is frozen * @frozen_expiry_remainder: remember how long until the timer fires * @block: queue is blocked * @bc_tbl: byte count table of the queue (relevant only for gen2 transport) * @write_ptr: 1-st empty entry (index) host_w * @read_ptr: last used entry (index) host_r * @dma_addr: physical addr for BD's * @n_window: safe queue window * @id: queue id * @low_mark: low watermark, resume queue if free space more than this * @high_mark: high watermark, stop queue if free space less than this * @overflow_q: overflow queue for handling frames that didn't fit on HW queue * @overflow_tx: need to transmit from overflow * * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame * descriptors) and required locking structures. * * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless * there might be HW changes in the future). For the normal TX * queues, n_window, which is the size of the software queue data * is also 256; however, for the command queue, n_window is only * 32 since we don't need so many commands pending. Since the HW * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256. * This means that we end up with the following: * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 | * SW entries: | 0 | ... | 31 | * where N is a number between 0 and 7. This means that the SW * data is a window overlayed over the HW queue. */ struct iwl_txq { void *tfds; struct iwl_pcie_first_tb_buf *first_tb_bufs; dma_addr_t first_tb_dma; struct iwl_pcie_txq_entry *entries; /* lock for syncing changes on the queue */ spinlock_t lock; unsigned long frozen_expiry_remainder; struct timer_list stuck_timer; struct iwl_trans *trans; bool need_update; bool frozen; bool ampdu; int block; unsigned long wd_timeout; struct sk_buff_head overflow_q; struct iwl_dma_ptr bc_tbl; int write_ptr; int read_ptr; dma_addr_t dma_addr; int n_window; u32 id; int low_mark; int high_mark; bool overflow_tx; }; /** * struct iwl_trans_txqs - transport tx queues data * * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes) * @page_offs: offset from skb->cb to mac header page pointer * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer * @queue_used: bit mask of used queues * @queue_stopped: bit mask of stopped queues * @txq: array of TXQ data structures representing the TXQs * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler * @queue_alloc_cmd_ver: queue allocation command version * @bc_pool: bytecount DMA allocations pool * @bc_tbl_size: bytecount table size * @tso_hdr_page: page allocated (per CPU) for A-MSDU headers when doing TSO * (and similar usage) * @tfd: TFD data * @tfd.max_tbs: max number of buffers per TFD * @tfd.size: TFD size * @tfd.addr_size: TFD/TB address size */ struct iwl_trans_txqs { unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES]; struct dma_pool *bc_pool; size_t bc_tbl_size; bool bc_table_dword; u8 page_offs; u8 dev_cmd_offs; struct iwl_tso_hdr_page __percpu *tso_hdr_page; struct { u8 fifo; u8 q_id; unsigned int wdg_timeout; } cmd; struct { u8 max_tbs; u16 size; u8 addr_size; } tfd; struct iwl_dma_ptr scd_bc_tbls; u8 queue_alloc_cmd_ver; }; /** * struct iwl_trans - transport common data * * @csme_own: true if we couldn't get ownership on the device * @ops: pointer to iwl_trans_ops * @op_mode: pointer to the op_mode * @trans_cfg: the trans-specific configuration part * @cfg: pointer to the configuration * @drv: pointer to iwl_drv * @state: current device state * @status: a bit-mask of transport status flags * @dev: pointer to struct device * that represents the device * @max_skb_frags: maximum number of fragments an SKB can have when transmitted. * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported. * @hw_rf_id: a u32 with the device RF ID * @hw_cnv_id: a u32 with the device CNV ID * @hw_crf_id: a u32 with the device CRF ID * @hw_wfpm_id: a u32 with the device wfpm ID * @hw_id: a u32 with the ID of the device / sub-device. * Set during transport allocation. * @hw_id_str: a string with info about HW ID. Set during transport allocation. * @sku_id: the SKU identifier (for PNVM matching) * @pnvm_loaded: indicates PNVM was loaded * @hw_rev: the revision data of the HW * @hw_rev_step: The mac step of the HW * @pm_support: set to true in start_hw if link pm is supported * @ltr_enabled: set to true if the LTR is enabled * @fail_to_parse_pnvm_image: set to true if pnvm parsing failed * @reduce_power_loaded: indicates reduced power section was loaded * @failed_to_load_reduce_power_image: set to true if pnvm loading failed * @command_groups: pointer to command group name list array * @command_groups_size: array size of @command_groups * @wide_cmd_header: true when ucode supports wide command header format * @wait_command_queue: wait queue for sync commands * @num_rx_queues: number of RX queues allocated by the transport; * the transport must set this before calling iwl_drv_start() * @iml_len: the length of the image loader * @iml: a pointer to the image loader itself * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. * The user should use iwl_trans_{alloc,free}_tx_cmd. * @dev_cmd_pool_name: name for the TX command allocation pool * @dbgfs_dir: iwlwifi debugfs base dir for this device * @sync_cmd_lockdep_map: lockdep map for checking sync commands * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before * starting the firmware, used for tracing * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the * start of the 802.11 header in the @rx_mpdu_cmd * @dbg: additional debug data, see &struct iwl_trans_debug * @init_dram: FW initialization DMA data * @system_pm_mode: the system-wide power management mode in use. * This mode is set dynamically, depending on the WoWLAN values * configured from the userspace at runtime. * @name: the device name * @txqs: transport tx queues data. * @mbx_addr_0_step: step address data 0 * @mbx_addr_1_step: step address data 1 * @pcie_link_speed: current PCIe link speed (%PCI_EXP_LNKSTA_CLS_*), * only valid for discrete (not integrated) NICs * @invalid_tx_cmd: invalid TX command buffer * @reduced_cap_sku: reduced capability supported SKU * @no_160: device not supporting 160 MHz * @step_urm: STEP is in URM, no support for MCS>9 in 320 MHz * @trans_specific: data for the specific transport this is allocated for/with */ struct iwl_trans { bool csme_own; const struct iwl_trans_ops *ops; struct iwl_op_mode *op_mode; const struct iwl_cfg_trans_params *trans_cfg; const struct iwl_cfg *cfg; struct iwl_drv *drv; enum iwl_trans_state state; unsigned long status; struct device *dev; u32 max_skb_frags; u32 hw_rev; u32 hw_rev_step; u32 hw_rf_id; u32 hw_crf_id; u32 hw_cnv_id; u32 hw_wfpm_id; u32 hw_id; char hw_id_str[52]; u32 sku_id[3]; bool reduced_cap_sku; u8 no_160:1, step_urm:1; u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; bool pm_support; bool ltr_enabled; u8 pnvm_loaded:1; u8 fail_to_parse_pnvm_image:1; u8 reduce_power_loaded:1; u8 failed_to_load_reduce_power_image:1; const struct iwl_hcmd_arr *command_groups; int command_groups_size; bool wide_cmd_header; wait_queue_head_t wait_command_queue; u8 num_rx_queues; size_t iml_len; u8 *iml; /* The following fields are internal only */ struct kmem_cache *dev_cmd_pool; char dev_cmd_pool_name[50]; struct dentry *dbgfs_dir; #ifdef CONFIG_LOCKDEP struct lockdep_map sync_cmd_lockdep_map; #endif struct iwl_trans_debug dbg; struct iwl_self_init_dram init_dram; enum iwl_plat_pm_mode system_pm_mode; const char *name; struct iwl_trans_txqs txqs; u32 mbx_addr_0_step; u32 mbx_addr_1_step; u8 pcie_link_speed; struct iwl_dma_ptr invalid_tx_cmd; /* pointer to trans specific struct */ /*Ensure that this pointer will always be aligned to sizeof pointer */ char trans_specific[] __aligned(sizeof(void *)); }; const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id); int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans); static inline void iwl_trans_configure(struct iwl_trans *trans, const struct iwl_trans_config *trans_cfg) { trans->op_mode = trans_cfg->op_mode; trans->ops->configure(trans, trans_cfg); WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg)); } static inline int iwl_trans_start_hw(struct iwl_trans *trans) { might_sleep(); return trans->ops->start_hw(trans); } static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) { might_sleep(); if (trans->ops->op_mode_leave) trans->ops->op_mode_leave(trans); trans->op_mode = NULL; trans->state = IWL_TRANS_NO_FW; } static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) { might_sleep(); trans->state = IWL_TRANS_FW_ALIVE; trans->ops->fw_alive(trans, scd_addr); } static inline int iwl_trans_start_fw(struct iwl_trans *trans, const struct fw_img *fw, bool run_in_rfkill) { int ret; might_sleep(); WARN_ON_ONCE(!trans->rx_mpdu_cmd); clear_bit(STATUS_FW_ERROR, &trans->status); ret = trans->ops->start_fw(trans, fw, run_in_rfkill); if (ret == 0) trans->state = IWL_TRANS_FW_STARTED; return ret; } static inline void iwl_trans_stop_device(struct iwl_trans *trans) { might_sleep(); trans->ops->stop_device(trans); trans->state = IWL_TRANS_NO_FW; } static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, bool reset) { might_sleep(); if (!trans->ops->d3_suspend) return -EOPNOTSUPP; return trans->ops->d3_suspend(trans, test, reset); } static inline int iwl_trans_d3_resume(struct iwl_trans *trans, enum iwl_d3_status *status, bool test, bool reset) { might_sleep(); if (!trans->ops->d3_resume) return -EOPNOTSUPP; return trans->ops->d3_resume(trans, status, test, reset); } static inline struct iwl_trans_dump_data * iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask, const struct iwl_dump_sanitize_ops *sanitize_ops, void *sanitize_ctx) { if (!trans->ops->dump_data) return NULL; return trans->ops->dump_data(trans, dump_mask, sanitize_ops, sanitize_ctx); } static inline struct iwl_device_tx_cmd * iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) { return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC); } int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, struct iwl_device_tx_cmd *dev_cmd) { kmem_cache_free(trans->dev_cmd_pool, dev_cmd); } static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, struct iwl_device_tx_cmd *dev_cmd, int queue) { if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) return -EIO; if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); return -EIO; } return trans->ops->tx(trans, skb, dev_cmd, queue); } static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, int ssn, struct sk_buff_head *skbs, bool is_flush) { if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); return; } trans->ops->reclaim(trans, queue, ssn, skbs, is_flush); } static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue, int ptr) { if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); return; } trans->ops->set_q_ptrs(trans, queue, ptr); } static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue, bool configure_scd) { trans->ops->txq_disable(trans, queue, configure_scd); } static inline bool iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn, const struct iwl_trans_txq_scd_cfg *cfg, unsigned int queue_wdg_timeout) { might_sleep(); if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); return false; } return trans->ops->txq_enable(trans, queue, ssn, cfg, queue_wdg_timeout); } static inline int iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue, struct iwl_trans_rxq_dma_data *data) { if (WARN_ON_ONCE(!trans->ops->rxq_dma_data)) return -EOPNOTSUPP; return trans->ops->rxq_dma_data(trans, queue, data); } static inline void iwl_trans_txq_free(struct iwl_trans *trans, int queue) { if (WARN_ON_ONCE(!trans->ops->txq_free)) return; trans->ops->txq_free(trans, queue); } static inline int iwl_trans_txq_alloc(struct iwl_trans *trans, u32 flags, u32 sta_mask, u8 tid, int size, unsigned int wdg_timeout) { might_sleep(); if (WARN_ON_ONCE(!trans->ops->txq_alloc)) return -EOPNOTSUPP; if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); return -EIO; } return trans->ops->txq_alloc(trans, flags, sta_mask, tid, size, wdg_timeout); } static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans, int queue, bool shared_mode) { if (trans->ops->txq_set_shared_mode) trans->ops->txq_set_shared_mode(trans, queue, shared_mode); } static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, int fifo, int sta_id, int tid, int frame_limit, u16 ssn, unsigned int queue_wdg_timeout) { struct iwl_trans_txq_scd_cfg cfg = { .fifo = fifo, .sta_id = sta_id, .tid = tid, .frame_limit = frame_limit, .aggregate = sta_id >= 0, }; iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout); } static inline void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo, unsigned int queue_wdg_timeout) { struct iwl_trans_txq_scd_cfg cfg = { .fifo = fifo, .sta_id = -1, .tid = IWL_MAX_TID_COUNT, .frame_limit = IWL_FRAME_LIMIT, .aggregate = false, }; iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout); } static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans, unsigned long txqs, bool freeze) { if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); return; } if (trans->ops->freeze_txq_timer) trans->ops->freeze_txq_timer(trans, txqs, freeze); } static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, u32 txqs) { if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty)) return -EOPNOTSUPP; /* No need to wait if the firmware is not alive */ if (trans->state != IWL_TRANS_FW_ALIVE) { IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); return -EIO; } return trans->ops->wait_tx_queues_empty(trans, txqs); } static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue) { if (WARN_ON_ONCE(!trans->ops->wait_txq_empty)) return -EOPNOTSUPP; if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); return -EIO; } return trans->ops->wait_txq_empty(trans, queue); } static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) { trans->ops->write8(trans, ofs, val); } static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) { trans->ops->write32(trans, ofs, val); } static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) { return trans->ops->read32(trans, ofs); } static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) { return trans->ops->read_prph(trans, ofs); } static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, u32 val) { return trans->ops->write_prph(trans, ofs, val); } static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, void *buf, int dwords) { return trans->ops->read_mem(trans, addr, buf, dwords); } #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ do { \ if (__builtin_constant_p(bufsize)) \ BUILD_BUG_ON((bufsize) % sizeof(u32)); \ iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ } while (0) static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans, u32 dst_addr, u64 src_addr, u32 byte_cnt) { if (trans->ops->imr_dma_data) return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt); return 0; } static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) { u32 value; if (iwl_trans_read_mem(trans, addr, &value, 1)) return 0xa5a5a5a5; return value; } static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, const void *buf, int dwords) { return trans->ops->write_mem(trans, addr, buf, dwords); } static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, u32 val) { return iwl_trans_write_mem(trans, addr, &val, 1); } static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) { if (trans->ops->set_pmi) trans->ops->set_pmi(trans, state); } static inline int iwl_trans_sw_reset(struct iwl_trans *trans, bool retake_ownership) { if (trans->ops->sw_reset) return trans->ops->sw_reset(trans, retake_ownership); return 0; } static inline void iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) { trans->ops->set_bits_mask(trans, reg, mask, value); } #define iwl_trans_grab_nic_access(trans) \ __cond_lock(nic_access, \ likely((trans)->ops->grab_nic_access(trans))) static inline void __releases(nic_access) iwl_trans_release_nic_access(struct iwl_trans *trans) { trans->ops->release_nic_access(trans); __release(nic_access); } static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync) { if (WARN_ON_ONCE(!trans->op_mode)) return; /* prevent double restarts due to the same erroneous FW */ if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) { iwl_op_mode_nic_error(trans->op_mode, sync); trans->state = IWL_TRANS_NO_FW; } } static inline bool iwl_trans_fw_running(struct iwl_trans *trans) { return trans->state == IWL_TRANS_FW_ALIVE; } static inline void iwl_trans_sync_nmi(struct iwl_trans *trans) { if (trans->ops->sync_nmi) trans->ops->sync_nmi(trans); } void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr, u32 sw_err_bit); static inline int iwl_trans_load_pnvm(struct iwl_trans *trans, const struct iwl_pnvm_image *pnvm_data, const struct iwl_ucode_capabilities *capa) { return trans->ops->load_pnvm(trans, pnvm_data, capa); } static inline void iwl_trans_set_pnvm(struct iwl_trans *trans, const struct iwl_ucode_capabilities *capa) { if (trans->ops->set_pnvm) trans->ops->set_pnvm(trans, capa); } static inline int iwl_trans_load_reduce_power (struct iwl_trans *trans, const struct iwl_pnvm_image *payloads, const struct iwl_ucode_capabilities *capa) { return trans->ops->load_reduce_power(trans, payloads, capa); } static inline void iwl_trans_set_reduce_power(struct iwl_trans *trans, const struct iwl_ucode_capabilities *capa) { if (trans->ops->set_reduce_power) trans->ops->set_reduce_power(trans, capa); } static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans) { return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED || trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED; } static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable) { if (trans->ops->interrupts) trans->ops->interrupts(trans, enable); } /***************************************************** * transport helper functions *****************************************************/ struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, struct device *dev, const struct iwl_trans_ops *ops, const struct iwl_cfg_trans_params *cfg_trans); int iwl_trans_init(struct iwl_trans *trans); void iwl_trans_free(struct iwl_trans *trans); static inline bool iwl_trans_is_hw_error_value(u32 val) { return ((val & ~0xf) == 0xa5a5a5a0) || ((val & ~0xf) == 0x5a5a5a50); } /***************************************************** * driver (transport) register/unregister functions ******************************************************/ int __must_check iwl_pci_register_driver(void); void iwl_pci_unregister_driver(void); void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan); #endif /* __iwl_trans_h__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1