Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daire McNamara | 5284 | 97.85% | 9 | 52.94% |
Conor Dooley | 48 | 0.89% | 1 | 5.88% |
Björn Helgaas | 25 | 0.46% | 2 | 11.76% |
Krzysztof Wilczynski | 25 | 0.46% | 2 | 11.76% |
Marc Zyngier | 11 | 0.20% | 1 | 5.88% |
Wei Yongjun | 4 | 0.07% | 1 | 5.88% |
Uwe Kleine-König | 3 | 0.06% | 1 | 5.88% |
Total | 5400 | 17 |
// SPDX-License-Identifier: GPL-2.0 /* * Microchip AXI PCIe Bridge host controller driver * * Copyright (c) 2018 - 2020 Microchip Corporation. All rights reserved. * * Author: Daire McNamara <daire.mcnamara@microchip.com> */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/irqchip/chained_irq.h> #include <linux/irqdomain.h> #include <linux/module.h> #include <linux/msi.h> #include <linux/of_address.h> #include <linux/of_pci.h> #include <linux/pci-ecam.h> #include <linux/platform_device.h> #include "../pci.h" /* Number of MSI IRQs */ #define MC_MAX_NUM_MSI_IRQS 32 /* PCIe Bridge Phy and Controller Phy offsets */ #define MC_PCIE1_BRIDGE_ADDR 0x00008000u #define MC_PCIE1_CTRL_ADDR 0x0000a000u #define MC_PCIE_BRIDGE_ADDR (MC_PCIE1_BRIDGE_ADDR) #define MC_PCIE_CTRL_ADDR (MC_PCIE1_CTRL_ADDR) /* PCIe Bridge Phy Regs */ #define PCIE_PCI_IRQ_DW0 0xa8 #define MSIX_CAP_MASK BIT(31) #define NUM_MSI_MSGS_MASK GENMASK(6, 4) #define NUM_MSI_MSGS_SHIFT 4 #define IMASK_LOCAL 0x180 #define DMA_END_ENGINE_0_MASK 0x00000000u #define DMA_END_ENGINE_0_SHIFT 0 #define DMA_END_ENGINE_1_MASK 0x00000000u #define DMA_END_ENGINE_1_SHIFT 1 #define DMA_ERROR_ENGINE_0_MASK 0x00000100u #define DMA_ERROR_ENGINE_0_SHIFT 8 #define DMA_ERROR_ENGINE_1_MASK 0x00000200u #define DMA_ERROR_ENGINE_1_SHIFT 9 #define A_ATR_EVT_POST_ERR_MASK 0x00010000u #define A_ATR_EVT_POST_ERR_SHIFT 16 #define A_ATR_EVT_FETCH_ERR_MASK 0x00020000u #define A_ATR_EVT_FETCH_ERR_SHIFT 17 #define A_ATR_EVT_DISCARD_ERR_MASK 0x00040000u #define A_ATR_EVT_DISCARD_ERR_SHIFT 18 #define A_ATR_EVT_DOORBELL_MASK 0x00000000u #define A_ATR_EVT_DOORBELL_SHIFT 19 #define P_ATR_EVT_POST_ERR_MASK 0x00100000u #define P_ATR_EVT_POST_ERR_SHIFT 20 #define P_ATR_EVT_FETCH_ERR_MASK 0x00200000u #define P_ATR_EVT_FETCH_ERR_SHIFT 21 #define P_ATR_EVT_DISCARD_ERR_MASK 0x00400000u #define P_ATR_EVT_DISCARD_ERR_SHIFT 22 #define P_ATR_EVT_DOORBELL_MASK 0x00000000u #define P_ATR_EVT_DOORBELL_SHIFT 23 #define PM_MSI_INT_INTA_MASK 0x01000000u #define PM_MSI_INT_INTA_SHIFT 24 #define PM_MSI_INT_INTB_MASK 0x02000000u #define PM_MSI_INT_INTB_SHIFT 25 #define PM_MSI_INT_INTC_MASK 0x04000000u #define PM_MSI_INT_INTC_SHIFT 26 #define PM_MSI_INT_INTD_MASK 0x08000000u #define PM_MSI_INT_INTD_SHIFT 27 #define PM_MSI_INT_INTX_MASK 0x0f000000u #define PM_MSI_INT_INTX_SHIFT 24 #define PM_MSI_INT_MSI_MASK 0x10000000u #define PM_MSI_INT_MSI_SHIFT 28 #define PM_MSI_INT_AER_EVT_MASK 0x20000000u #define PM_MSI_INT_AER_EVT_SHIFT 29 #define PM_MSI_INT_EVENTS_MASK 0x40000000u #define PM_MSI_INT_EVENTS_SHIFT 30 #define PM_MSI_INT_SYS_ERR_MASK 0x80000000u #define PM_MSI_INT_SYS_ERR_SHIFT 31 #define NUM_LOCAL_EVENTS 15 #define ISTATUS_LOCAL 0x184 #define IMASK_HOST 0x188 #define ISTATUS_HOST 0x18c #define IMSI_ADDR 0x190 #define ISTATUS_MSI 0x194 /* PCIe Master table init defines */ #define ATR0_PCIE_WIN0_SRCADDR_PARAM 0x600u #define ATR0_PCIE_ATR_SIZE 0x25 #define ATR0_PCIE_ATR_SIZE_SHIFT 1 #define ATR0_PCIE_WIN0_SRC_ADDR 0x604u #define ATR0_PCIE_WIN0_TRSL_ADDR_LSB 0x608u #define ATR0_PCIE_WIN0_TRSL_ADDR_UDW 0x60cu #define ATR0_PCIE_WIN0_TRSL_PARAM 0x610u /* PCIe AXI slave table init defines */ #define ATR0_AXI4_SLV0_SRCADDR_PARAM 0x800u #define ATR_SIZE_SHIFT 1 #define ATR_IMPL_ENABLE 1 #define ATR0_AXI4_SLV0_SRC_ADDR 0x804u #define ATR0_AXI4_SLV0_TRSL_ADDR_LSB 0x808u #define ATR0_AXI4_SLV0_TRSL_ADDR_UDW 0x80cu #define ATR0_AXI4_SLV0_TRSL_PARAM 0x810u #define PCIE_TX_RX_INTERFACE 0x00000000u #define PCIE_CONFIG_INTERFACE 0x00000001u #define ATR_ENTRY_SIZE 32 /* PCIe Controller Phy Regs */ #define SEC_ERROR_EVENT_CNT 0x20 #define DED_ERROR_EVENT_CNT 0x24 #define SEC_ERROR_INT 0x28 #define SEC_ERROR_INT_TX_RAM_SEC_ERR_INT GENMASK(3, 0) #define SEC_ERROR_INT_RX_RAM_SEC_ERR_INT GENMASK(7, 4) #define SEC_ERROR_INT_PCIE2AXI_RAM_SEC_ERR_INT GENMASK(11, 8) #define SEC_ERROR_INT_AXI2PCIE_RAM_SEC_ERR_INT GENMASK(15, 12) #define SEC_ERROR_INT_ALL_RAM_SEC_ERR_INT GENMASK(15, 0) #define NUM_SEC_ERROR_INTS (4) #define SEC_ERROR_INT_MASK 0x2c #define DED_ERROR_INT 0x30 #define DED_ERROR_INT_TX_RAM_DED_ERR_INT GENMASK(3, 0) #define DED_ERROR_INT_RX_RAM_DED_ERR_INT GENMASK(7, 4) #define DED_ERROR_INT_PCIE2AXI_RAM_DED_ERR_INT GENMASK(11, 8) #define DED_ERROR_INT_AXI2PCIE_RAM_DED_ERR_INT GENMASK(15, 12) #define DED_ERROR_INT_ALL_RAM_DED_ERR_INT GENMASK(15, 0) #define NUM_DED_ERROR_INTS (4) #define DED_ERROR_INT_MASK 0x34 #define ECC_CONTROL 0x38 #define ECC_CONTROL_TX_RAM_INJ_ERROR_0 BIT(0) #define ECC_CONTROL_TX_RAM_INJ_ERROR_1 BIT(1) #define ECC_CONTROL_TX_RAM_INJ_ERROR_2 BIT(2) #define ECC_CONTROL_TX_RAM_INJ_ERROR_3 BIT(3) #define ECC_CONTROL_RX_RAM_INJ_ERROR_0 BIT(4) #define ECC_CONTROL_RX_RAM_INJ_ERROR_1 BIT(5) #define ECC_CONTROL_RX_RAM_INJ_ERROR_2 BIT(6) #define ECC_CONTROL_RX_RAM_INJ_ERROR_3 BIT(7) #define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_0 BIT(8) #define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_1 BIT(9) #define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_2 BIT(10) #define ECC_CONTROL_PCIE2AXI_RAM_INJ_ERROR_3 BIT(11) #define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_0 BIT(12) #define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_1 BIT(13) #define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_2 BIT(14) #define ECC_CONTROL_AXI2PCIE_RAM_INJ_ERROR_3 BIT(15) #define ECC_CONTROL_TX_RAM_ECC_BYPASS BIT(24) #define ECC_CONTROL_RX_RAM_ECC_BYPASS BIT(25) #define ECC_CONTROL_PCIE2AXI_RAM_ECC_BYPASS BIT(26) #define ECC_CONTROL_AXI2PCIE_RAM_ECC_BYPASS BIT(27) #define PCIE_EVENT_INT 0x14c #define PCIE_EVENT_INT_L2_EXIT_INT BIT(0) #define PCIE_EVENT_INT_HOTRST_EXIT_INT BIT(1) #define PCIE_EVENT_INT_DLUP_EXIT_INT BIT(2) #define PCIE_EVENT_INT_MASK GENMASK(2, 0) #define PCIE_EVENT_INT_L2_EXIT_INT_MASK BIT(16) #define PCIE_EVENT_INT_HOTRST_EXIT_INT_MASK BIT(17) #define PCIE_EVENT_INT_DLUP_EXIT_INT_MASK BIT(18) #define PCIE_EVENT_INT_ENB_MASK GENMASK(18, 16) #define PCIE_EVENT_INT_ENB_SHIFT 16 #define NUM_PCIE_EVENTS (3) /* PCIe Config space MSI capability structure */ #define MC_MSI_CAP_CTRL_OFFSET 0xe0u /* Events */ #define EVENT_PCIE_L2_EXIT 0 #define EVENT_PCIE_HOTRST_EXIT 1 #define EVENT_PCIE_DLUP_EXIT 2 #define EVENT_SEC_TX_RAM_SEC_ERR 3 #define EVENT_SEC_RX_RAM_SEC_ERR 4 #define EVENT_SEC_PCIE2AXI_RAM_SEC_ERR 5 #define EVENT_SEC_AXI2PCIE_RAM_SEC_ERR 6 #define EVENT_DED_TX_RAM_DED_ERR 7 #define EVENT_DED_RX_RAM_DED_ERR 8 #define EVENT_DED_PCIE2AXI_RAM_DED_ERR 9 #define EVENT_DED_AXI2PCIE_RAM_DED_ERR 10 #define EVENT_LOCAL_DMA_END_ENGINE_0 11 #define EVENT_LOCAL_DMA_END_ENGINE_1 12 #define EVENT_LOCAL_DMA_ERROR_ENGINE_0 13 #define EVENT_LOCAL_DMA_ERROR_ENGINE_1 14 #define EVENT_LOCAL_A_ATR_EVT_POST_ERR 15 #define EVENT_LOCAL_A_ATR_EVT_FETCH_ERR 16 #define EVENT_LOCAL_A_ATR_EVT_DISCARD_ERR 17 #define EVENT_LOCAL_A_ATR_EVT_DOORBELL 18 #define EVENT_LOCAL_P_ATR_EVT_POST_ERR 19 #define EVENT_LOCAL_P_ATR_EVT_FETCH_ERR 20 #define EVENT_LOCAL_P_ATR_EVT_DISCARD_ERR 21 #define EVENT_LOCAL_P_ATR_EVT_DOORBELL 22 #define EVENT_LOCAL_PM_MSI_INT_INTX 23 #define EVENT_LOCAL_PM_MSI_INT_MSI 24 #define EVENT_LOCAL_PM_MSI_INT_AER_EVT 25 #define EVENT_LOCAL_PM_MSI_INT_EVENTS 26 #define EVENT_LOCAL_PM_MSI_INT_SYS_ERR 27 #define NUM_EVENTS 28 #define PCIE_EVENT_CAUSE(x, s) \ [EVENT_PCIE_ ## x] = { __stringify(x), s } #define SEC_ERROR_CAUSE(x, s) \ [EVENT_SEC_ ## x] = { __stringify(x), s } #define DED_ERROR_CAUSE(x, s) \ [EVENT_DED_ ## x] = { __stringify(x), s } #define LOCAL_EVENT_CAUSE(x, s) \ [EVENT_LOCAL_ ## x] = { __stringify(x), s } #define PCIE_EVENT(x) \ .base = MC_PCIE_CTRL_ADDR, \ .offset = PCIE_EVENT_INT, \ .mask_offset = PCIE_EVENT_INT, \ .mask_high = 1, \ .mask = PCIE_EVENT_INT_ ## x ## _INT, \ .enb_mask = PCIE_EVENT_INT_ENB_MASK #define SEC_EVENT(x) \ .base = MC_PCIE_CTRL_ADDR, \ .offset = SEC_ERROR_INT, \ .mask_offset = SEC_ERROR_INT_MASK, \ .mask = SEC_ERROR_INT_ ## x ## _INT, \ .mask_high = 1, \ .enb_mask = 0 #define DED_EVENT(x) \ .base = MC_PCIE_CTRL_ADDR, \ .offset = DED_ERROR_INT, \ .mask_offset = DED_ERROR_INT_MASK, \ .mask_high = 1, \ .mask = DED_ERROR_INT_ ## x ## _INT, \ .enb_mask = 0 #define LOCAL_EVENT(x) \ .base = MC_PCIE_BRIDGE_ADDR, \ .offset = ISTATUS_LOCAL, \ .mask_offset = IMASK_LOCAL, \ .mask_high = 0, \ .mask = x ## _MASK, \ .enb_mask = 0 #define PCIE_EVENT_TO_EVENT_MAP(x) \ { PCIE_EVENT_INT_ ## x ## _INT, EVENT_PCIE_ ## x } #define SEC_ERROR_TO_EVENT_MAP(x) \ { SEC_ERROR_INT_ ## x ## _INT, EVENT_SEC_ ## x } #define DED_ERROR_TO_EVENT_MAP(x) \ { DED_ERROR_INT_ ## x ## _INT, EVENT_DED_ ## x } #define LOCAL_STATUS_TO_EVENT_MAP(x) \ { x ## _MASK, EVENT_LOCAL_ ## x } struct event_map { u32 reg_mask; u32 event_bit; }; struct mc_msi { struct mutex lock; /* Protect used bitmap */ struct irq_domain *msi_domain; struct irq_domain *dev_domain; u32 num_vectors; u64 vector_phy; DECLARE_BITMAP(used, MC_MAX_NUM_MSI_IRQS); }; struct mc_pcie { void __iomem *axi_base_addr; struct device *dev; struct irq_domain *intx_domain; struct irq_domain *event_domain; raw_spinlock_t lock; struct mc_msi msi; }; struct cause { const char *sym; const char *str; }; static const struct cause event_cause[NUM_EVENTS] = { PCIE_EVENT_CAUSE(L2_EXIT, "L2 exit event"), PCIE_EVENT_CAUSE(HOTRST_EXIT, "Hot reset exit event"), PCIE_EVENT_CAUSE(DLUP_EXIT, "DLUP exit event"), SEC_ERROR_CAUSE(TX_RAM_SEC_ERR, "sec error in tx buffer"), SEC_ERROR_CAUSE(RX_RAM_SEC_ERR, "sec error in rx buffer"), SEC_ERROR_CAUSE(PCIE2AXI_RAM_SEC_ERR, "sec error in pcie2axi buffer"), SEC_ERROR_CAUSE(AXI2PCIE_RAM_SEC_ERR, "sec error in axi2pcie buffer"), DED_ERROR_CAUSE(TX_RAM_DED_ERR, "ded error in tx buffer"), DED_ERROR_CAUSE(RX_RAM_DED_ERR, "ded error in rx buffer"), DED_ERROR_CAUSE(PCIE2AXI_RAM_DED_ERR, "ded error in pcie2axi buffer"), DED_ERROR_CAUSE(AXI2PCIE_RAM_DED_ERR, "ded error in axi2pcie buffer"), LOCAL_EVENT_CAUSE(DMA_ERROR_ENGINE_0, "dma engine 0 error"), LOCAL_EVENT_CAUSE(DMA_ERROR_ENGINE_1, "dma engine 1 error"), LOCAL_EVENT_CAUSE(A_ATR_EVT_POST_ERR, "axi write request error"), LOCAL_EVENT_CAUSE(A_ATR_EVT_FETCH_ERR, "axi read request error"), LOCAL_EVENT_CAUSE(A_ATR_EVT_DISCARD_ERR, "axi read timeout"), LOCAL_EVENT_CAUSE(P_ATR_EVT_POST_ERR, "pcie write request error"), LOCAL_EVENT_CAUSE(P_ATR_EVT_FETCH_ERR, "pcie read request error"), LOCAL_EVENT_CAUSE(P_ATR_EVT_DISCARD_ERR, "pcie read timeout"), LOCAL_EVENT_CAUSE(PM_MSI_INT_AER_EVT, "aer event"), LOCAL_EVENT_CAUSE(PM_MSI_INT_EVENTS, "pm/ltr/hotplug event"), LOCAL_EVENT_CAUSE(PM_MSI_INT_SYS_ERR, "system error"), }; static struct event_map pcie_event_to_event[] = { PCIE_EVENT_TO_EVENT_MAP(L2_EXIT), PCIE_EVENT_TO_EVENT_MAP(HOTRST_EXIT), PCIE_EVENT_TO_EVENT_MAP(DLUP_EXIT), }; static struct event_map sec_error_to_event[] = { SEC_ERROR_TO_EVENT_MAP(TX_RAM_SEC_ERR), SEC_ERROR_TO_EVENT_MAP(RX_RAM_SEC_ERR), SEC_ERROR_TO_EVENT_MAP(PCIE2AXI_RAM_SEC_ERR), SEC_ERROR_TO_EVENT_MAP(AXI2PCIE_RAM_SEC_ERR), }; static struct event_map ded_error_to_event[] = { DED_ERROR_TO_EVENT_MAP(TX_RAM_DED_ERR), DED_ERROR_TO_EVENT_MAP(RX_RAM_DED_ERR), DED_ERROR_TO_EVENT_MAP(PCIE2AXI_RAM_DED_ERR), DED_ERROR_TO_EVENT_MAP(AXI2PCIE_RAM_DED_ERR), }; static struct event_map local_status_to_event[] = { LOCAL_STATUS_TO_EVENT_MAP(DMA_END_ENGINE_0), LOCAL_STATUS_TO_EVENT_MAP(DMA_END_ENGINE_1), LOCAL_STATUS_TO_EVENT_MAP(DMA_ERROR_ENGINE_0), LOCAL_STATUS_TO_EVENT_MAP(DMA_ERROR_ENGINE_1), LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_POST_ERR), LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_FETCH_ERR), LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_DISCARD_ERR), LOCAL_STATUS_TO_EVENT_MAP(A_ATR_EVT_DOORBELL), LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_POST_ERR), LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_FETCH_ERR), LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_DISCARD_ERR), LOCAL_STATUS_TO_EVENT_MAP(P_ATR_EVT_DOORBELL), LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_INTX), LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_MSI), LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_AER_EVT), LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_EVENTS), LOCAL_STATUS_TO_EVENT_MAP(PM_MSI_INT_SYS_ERR), }; static struct { u32 base; u32 offset; u32 mask; u32 shift; u32 enb_mask; u32 mask_high; u32 mask_offset; } event_descs[] = { { PCIE_EVENT(L2_EXIT) }, { PCIE_EVENT(HOTRST_EXIT) }, { PCIE_EVENT(DLUP_EXIT) }, { SEC_EVENT(TX_RAM_SEC_ERR) }, { SEC_EVENT(RX_RAM_SEC_ERR) }, { SEC_EVENT(PCIE2AXI_RAM_SEC_ERR) }, { SEC_EVENT(AXI2PCIE_RAM_SEC_ERR) }, { DED_EVENT(TX_RAM_DED_ERR) }, { DED_EVENT(RX_RAM_DED_ERR) }, { DED_EVENT(PCIE2AXI_RAM_DED_ERR) }, { DED_EVENT(AXI2PCIE_RAM_DED_ERR) }, { LOCAL_EVENT(DMA_END_ENGINE_0) }, { LOCAL_EVENT(DMA_END_ENGINE_1) }, { LOCAL_EVENT(DMA_ERROR_ENGINE_0) }, { LOCAL_EVENT(DMA_ERROR_ENGINE_1) }, { LOCAL_EVENT(A_ATR_EVT_POST_ERR) }, { LOCAL_EVENT(A_ATR_EVT_FETCH_ERR) }, { LOCAL_EVENT(A_ATR_EVT_DISCARD_ERR) }, { LOCAL_EVENT(A_ATR_EVT_DOORBELL) }, { LOCAL_EVENT(P_ATR_EVT_POST_ERR) }, { LOCAL_EVENT(P_ATR_EVT_FETCH_ERR) }, { LOCAL_EVENT(P_ATR_EVT_DISCARD_ERR) }, { LOCAL_EVENT(P_ATR_EVT_DOORBELL) }, { LOCAL_EVENT(PM_MSI_INT_INTX) }, { LOCAL_EVENT(PM_MSI_INT_MSI) }, { LOCAL_EVENT(PM_MSI_INT_AER_EVT) }, { LOCAL_EVENT(PM_MSI_INT_EVENTS) }, { LOCAL_EVENT(PM_MSI_INT_SYS_ERR) }, }; static char poss_clks[][5] = { "fic0", "fic1", "fic2", "fic3" }; static struct mc_pcie *port; static void mc_pcie_enable_msi(struct mc_pcie *port, void __iomem *ecam) { struct mc_msi *msi = &port->msi; u16 reg; u8 queue_size; /* Fixup MSI enable flag */ reg = readw_relaxed(ecam + MC_MSI_CAP_CTRL_OFFSET + PCI_MSI_FLAGS); reg |= PCI_MSI_FLAGS_ENABLE; writew_relaxed(reg, ecam + MC_MSI_CAP_CTRL_OFFSET + PCI_MSI_FLAGS); /* Fixup PCI MSI queue flags */ queue_size = FIELD_GET(PCI_MSI_FLAGS_QMASK, reg); reg |= FIELD_PREP(PCI_MSI_FLAGS_QSIZE, queue_size); writew_relaxed(reg, ecam + MC_MSI_CAP_CTRL_OFFSET + PCI_MSI_FLAGS); /* Fixup MSI addr fields */ writel_relaxed(lower_32_bits(msi->vector_phy), ecam + MC_MSI_CAP_CTRL_OFFSET + PCI_MSI_ADDRESS_LO); writel_relaxed(upper_32_bits(msi->vector_phy), ecam + MC_MSI_CAP_CTRL_OFFSET + PCI_MSI_ADDRESS_HI); } static void mc_handle_msi(struct irq_desc *desc) { struct mc_pcie *port = irq_desc_get_handler_data(desc); struct irq_chip *chip = irq_desc_get_chip(desc); struct device *dev = port->dev; struct mc_msi *msi = &port->msi; void __iomem *bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR; unsigned long status; u32 bit; int ret; chained_irq_enter(chip, desc); status = readl_relaxed(bridge_base_addr + ISTATUS_LOCAL); if (status & PM_MSI_INT_MSI_MASK) { writel_relaxed(status & PM_MSI_INT_MSI_MASK, bridge_base_addr + ISTATUS_LOCAL); status = readl_relaxed(bridge_base_addr + ISTATUS_MSI); for_each_set_bit(bit, &status, msi->num_vectors) { ret = generic_handle_domain_irq(msi->dev_domain, bit); if (ret) dev_err_ratelimited(dev, "bad MSI IRQ %d\n", bit); } } chained_irq_exit(chip, desc); } static void mc_msi_bottom_irq_ack(struct irq_data *data) { struct mc_pcie *port = irq_data_get_irq_chip_data(data); void __iomem *bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR; u32 bitpos = data->hwirq; writel_relaxed(BIT(bitpos), bridge_base_addr + ISTATUS_MSI); } static void mc_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) { struct mc_pcie *port = irq_data_get_irq_chip_data(data); phys_addr_t addr = port->msi.vector_phy; msg->address_lo = lower_32_bits(addr); msg->address_hi = upper_32_bits(addr); msg->data = data->hwirq; dev_dbg(port->dev, "msi#%x address_hi %#x address_lo %#x\n", (int)data->hwirq, msg->address_hi, msg->address_lo); } static int mc_msi_set_affinity(struct irq_data *irq_data, const struct cpumask *mask, bool force) { return -EINVAL; } static struct irq_chip mc_msi_bottom_irq_chip = { .name = "Microchip MSI", .irq_ack = mc_msi_bottom_irq_ack, .irq_compose_msi_msg = mc_compose_msi_msg, .irq_set_affinity = mc_msi_set_affinity, }; static int mc_irq_msi_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *args) { struct mc_pcie *port = domain->host_data; struct mc_msi *msi = &port->msi; unsigned long bit; mutex_lock(&msi->lock); bit = find_first_zero_bit(msi->used, msi->num_vectors); if (bit >= msi->num_vectors) { mutex_unlock(&msi->lock); return -ENOSPC; } set_bit(bit, msi->used); irq_domain_set_info(domain, virq, bit, &mc_msi_bottom_irq_chip, domain->host_data, handle_edge_irq, NULL, NULL); mutex_unlock(&msi->lock); return 0; } static void mc_irq_msi_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *d = irq_domain_get_irq_data(domain, virq); struct mc_pcie *port = irq_data_get_irq_chip_data(d); struct mc_msi *msi = &port->msi; mutex_lock(&msi->lock); if (test_bit(d->hwirq, msi->used)) __clear_bit(d->hwirq, msi->used); else dev_err(port->dev, "trying to free unused MSI%lu\n", d->hwirq); mutex_unlock(&msi->lock); } static const struct irq_domain_ops msi_domain_ops = { .alloc = mc_irq_msi_domain_alloc, .free = mc_irq_msi_domain_free, }; static struct irq_chip mc_msi_irq_chip = { .name = "Microchip PCIe MSI", .irq_ack = irq_chip_ack_parent, .irq_mask = pci_msi_mask_irq, .irq_unmask = pci_msi_unmask_irq, }; static struct msi_domain_info mc_msi_domain_info = { .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_PCI_MSIX), .chip = &mc_msi_irq_chip, }; static int mc_allocate_msi_domains(struct mc_pcie *port) { struct device *dev = port->dev; struct fwnode_handle *fwnode = of_node_to_fwnode(dev->of_node); struct mc_msi *msi = &port->msi; mutex_init(&port->msi.lock); msi->dev_domain = irq_domain_add_linear(NULL, msi->num_vectors, &msi_domain_ops, port); if (!msi->dev_domain) { dev_err(dev, "failed to create IRQ domain\n"); return -ENOMEM; } msi->msi_domain = pci_msi_create_irq_domain(fwnode, &mc_msi_domain_info, msi->dev_domain); if (!msi->msi_domain) { dev_err(dev, "failed to create MSI domain\n"); irq_domain_remove(msi->dev_domain); return -ENOMEM; } return 0; } static void mc_handle_intx(struct irq_desc *desc) { struct mc_pcie *port = irq_desc_get_handler_data(desc); struct irq_chip *chip = irq_desc_get_chip(desc); struct device *dev = port->dev; void __iomem *bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR; unsigned long status; u32 bit; int ret; chained_irq_enter(chip, desc); status = readl_relaxed(bridge_base_addr + ISTATUS_LOCAL); if (status & PM_MSI_INT_INTX_MASK) { status &= PM_MSI_INT_INTX_MASK; status >>= PM_MSI_INT_INTX_SHIFT; for_each_set_bit(bit, &status, PCI_NUM_INTX) { ret = generic_handle_domain_irq(port->intx_domain, bit); if (ret) dev_err_ratelimited(dev, "bad INTx IRQ %d\n", bit); } } chained_irq_exit(chip, desc); } static void mc_ack_intx_irq(struct irq_data *data) { struct mc_pcie *port = irq_data_get_irq_chip_data(data); void __iomem *bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR; u32 mask = BIT(data->hwirq + PM_MSI_INT_INTX_SHIFT); writel_relaxed(mask, bridge_base_addr + ISTATUS_LOCAL); } static void mc_mask_intx_irq(struct irq_data *data) { struct mc_pcie *port = irq_data_get_irq_chip_data(data); void __iomem *bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR; unsigned long flags; u32 mask = BIT(data->hwirq + PM_MSI_INT_INTX_SHIFT); u32 val; raw_spin_lock_irqsave(&port->lock, flags); val = readl_relaxed(bridge_base_addr + IMASK_LOCAL); val &= ~mask; writel_relaxed(val, bridge_base_addr + IMASK_LOCAL); raw_spin_unlock_irqrestore(&port->lock, flags); } static void mc_unmask_intx_irq(struct irq_data *data) { struct mc_pcie *port = irq_data_get_irq_chip_data(data); void __iomem *bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR; unsigned long flags; u32 mask = BIT(data->hwirq + PM_MSI_INT_INTX_SHIFT); u32 val; raw_spin_lock_irqsave(&port->lock, flags); val = readl_relaxed(bridge_base_addr + IMASK_LOCAL); val |= mask; writel_relaxed(val, bridge_base_addr + IMASK_LOCAL); raw_spin_unlock_irqrestore(&port->lock, flags); } static struct irq_chip mc_intx_irq_chip = { .name = "Microchip PCIe INTx", .irq_ack = mc_ack_intx_irq, .irq_mask = mc_mask_intx_irq, .irq_unmask = mc_unmask_intx_irq, }; static int mc_pcie_intx_map(struct irq_domain *domain, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_and_handler(irq, &mc_intx_irq_chip, handle_level_irq); irq_set_chip_data(irq, domain->host_data); return 0; } static const struct irq_domain_ops intx_domain_ops = { .map = mc_pcie_intx_map, }; static inline u32 reg_to_event(u32 reg, struct event_map field) { return (reg & field.reg_mask) ? BIT(field.event_bit) : 0; } static u32 pcie_events(struct mc_pcie *port) { void __iomem *ctrl_base_addr = port->axi_base_addr + MC_PCIE_CTRL_ADDR; u32 reg = readl_relaxed(ctrl_base_addr + PCIE_EVENT_INT); u32 val = 0; int i; for (i = 0; i < ARRAY_SIZE(pcie_event_to_event); i++) val |= reg_to_event(reg, pcie_event_to_event[i]); return val; } static u32 sec_errors(struct mc_pcie *port) { void __iomem *ctrl_base_addr = port->axi_base_addr + MC_PCIE_CTRL_ADDR; u32 reg = readl_relaxed(ctrl_base_addr + SEC_ERROR_INT); u32 val = 0; int i; for (i = 0; i < ARRAY_SIZE(sec_error_to_event); i++) val |= reg_to_event(reg, sec_error_to_event[i]); return val; } static u32 ded_errors(struct mc_pcie *port) { void __iomem *ctrl_base_addr = port->axi_base_addr + MC_PCIE_CTRL_ADDR; u32 reg = readl_relaxed(ctrl_base_addr + DED_ERROR_INT); u32 val = 0; int i; for (i = 0; i < ARRAY_SIZE(ded_error_to_event); i++) val |= reg_to_event(reg, ded_error_to_event[i]); return val; } static u32 local_events(struct mc_pcie *port) { void __iomem *bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR; u32 reg = readl_relaxed(bridge_base_addr + ISTATUS_LOCAL); u32 val = 0; int i; for (i = 0; i < ARRAY_SIZE(local_status_to_event); i++) val |= reg_to_event(reg, local_status_to_event[i]); return val; } static u32 get_events(struct mc_pcie *port) { u32 events = 0; events |= pcie_events(port); events |= sec_errors(port); events |= ded_errors(port); events |= local_events(port); return events; } static irqreturn_t mc_event_handler(int irq, void *dev_id) { struct mc_pcie *port = dev_id; struct device *dev = port->dev; struct irq_data *data; data = irq_domain_get_irq_data(port->event_domain, irq); if (event_cause[data->hwirq].str) dev_err_ratelimited(dev, "%s\n", event_cause[data->hwirq].str); else dev_err_ratelimited(dev, "bad event IRQ %ld\n", data->hwirq); return IRQ_HANDLED; } static void mc_handle_event(struct irq_desc *desc) { struct mc_pcie *port = irq_desc_get_handler_data(desc); unsigned long events; u32 bit; struct irq_chip *chip = irq_desc_get_chip(desc); chained_irq_enter(chip, desc); events = get_events(port); for_each_set_bit(bit, &events, NUM_EVENTS) generic_handle_domain_irq(port->event_domain, bit); chained_irq_exit(chip, desc); } static void mc_ack_event_irq(struct irq_data *data) { struct mc_pcie *port = irq_data_get_irq_chip_data(data); u32 event = data->hwirq; void __iomem *addr; u32 mask; addr = port->axi_base_addr + event_descs[event].base + event_descs[event].offset; mask = event_descs[event].mask; mask |= event_descs[event].enb_mask; writel_relaxed(mask, addr); } static void mc_mask_event_irq(struct irq_data *data) { struct mc_pcie *port = irq_data_get_irq_chip_data(data); u32 event = data->hwirq; void __iomem *addr; u32 mask; u32 val; addr = port->axi_base_addr + event_descs[event].base + event_descs[event].mask_offset; mask = event_descs[event].mask; if (event_descs[event].enb_mask) { mask <<= PCIE_EVENT_INT_ENB_SHIFT; mask &= PCIE_EVENT_INT_ENB_MASK; } if (!event_descs[event].mask_high) mask = ~mask; raw_spin_lock(&port->lock); val = readl_relaxed(addr); if (event_descs[event].mask_high) val |= mask; else val &= mask; writel_relaxed(val, addr); raw_spin_unlock(&port->lock); } static void mc_unmask_event_irq(struct irq_data *data) { struct mc_pcie *port = irq_data_get_irq_chip_data(data); u32 event = data->hwirq; void __iomem *addr; u32 mask; u32 val; addr = port->axi_base_addr + event_descs[event].base + event_descs[event].mask_offset; mask = event_descs[event].mask; if (event_descs[event].enb_mask) mask <<= PCIE_EVENT_INT_ENB_SHIFT; if (event_descs[event].mask_high) mask = ~mask; if (event_descs[event].enb_mask) mask &= PCIE_EVENT_INT_ENB_MASK; raw_spin_lock(&port->lock); val = readl_relaxed(addr); if (event_descs[event].mask_high) val &= mask; else val |= mask; writel_relaxed(val, addr); raw_spin_unlock(&port->lock); } static struct irq_chip mc_event_irq_chip = { .name = "Microchip PCIe EVENT", .irq_ack = mc_ack_event_irq, .irq_mask = mc_mask_event_irq, .irq_unmask = mc_unmask_event_irq, }; static int mc_pcie_event_map(struct irq_domain *domain, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_and_handler(irq, &mc_event_irq_chip, handle_level_irq); irq_set_chip_data(irq, domain->host_data); return 0; } static const struct irq_domain_ops event_domain_ops = { .map = mc_pcie_event_map, }; static inline void mc_pcie_deinit_clk(void *data) { struct clk *clk = data; clk_disable_unprepare(clk); } static inline struct clk *mc_pcie_init_clk(struct device *dev, const char *id) { struct clk *clk; int ret; clk = devm_clk_get_optional(dev, id); if (IS_ERR(clk)) return clk; if (!clk) return clk; ret = clk_prepare_enable(clk); if (ret) return ERR_PTR(ret); devm_add_action_or_reset(dev, mc_pcie_deinit_clk, clk); return clk; } static int mc_pcie_init_clks(struct device *dev) { int i; struct clk *fic; /* * PCIe may be clocked via Fabric Interface using between 1 and 4 * clocks. Scan DT for clocks and enable them if present */ for (i = 0; i < ARRAY_SIZE(poss_clks); i++) { fic = mc_pcie_init_clk(dev, poss_clks[i]); if (IS_ERR(fic)) return PTR_ERR(fic); } return 0; } static int mc_pcie_init_irq_domains(struct mc_pcie *port) { struct device *dev = port->dev; struct device_node *node = dev->of_node; struct device_node *pcie_intc_node; /* Setup INTx */ pcie_intc_node = of_get_next_child(node, NULL); if (!pcie_intc_node) { dev_err(dev, "failed to find PCIe Intc node\n"); return -EINVAL; } port->event_domain = irq_domain_add_linear(pcie_intc_node, NUM_EVENTS, &event_domain_ops, port); if (!port->event_domain) { dev_err(dev, "failed to get event domain\n"); of_node_put(pcie_intc_node); return -ENOMEM; } irq_domain_update_bus_token(port->event_domain, DOMAIN_BUS_NEXUS); port->intx_domain = irq_domain_add_linear(pcie_intc_node, PCI_NUM_INTX, &intx_domain_ops, port); if (!port->intx_domain) { dev_err(dev, "failed to get an INTx IRQ domain\n"); of_node_put(pcie_intc_node); return -ENOMEM; } irq_domain_update_bus_token(port->intx_domain, DOMAIN_BUS_WIRED); of_node_put(pcie_intc_node); raw_spin_lock_init(&port->lock); return mc_allocate_msi_domains(port); } static void mc_pcie_setup_window(void __iomem *bridge_base_addr, u32 index, phys_addr_t axi_addr, phys_addr_t pci_addr, size_t size) { u32 atr_sz = ilog2(size) - 1; u32 val; if (index == 0) val = PCIE_CONFIG_INTERFACE; else val = PCIE_TX_RX_INTERFACE; writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) + ATR0_AXI4_SLV0_TRSL_PARAM); val = lower_32_bits(axi_addr) | (atr_sz << ATR_SIZE_SHIFT) | ATR_IMPL_ENABLE; writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) + ATR0_AXI4_SLV0_SRCADDR_PARAM); val = upper_32_bits(axi_addr); writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) + ATR0_AXI4_SLV0_SRC_ADDR); val = lower_32_bits(pci_addr); writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) + ATR0_AXI4_SLV0_TRSL_ADDR_LSB); val = upper_32_bits(pci_addr); writel(val, bridge_base_addr + (index * ATR_ENTRY_SIZE) + ATR0_AXI4_SLV0_TRSL_ADDR_UDW); val = readl(bridge_base_addr + ATR0_PCIE_WIN0_SRCADDR_PARAM); val |= (ATR0_PCIE_ATR_SIZE << ATR0_PCIE_ATR_SIZE_SHIFT); writel(val, bridge_base_addr + ATR0_PCIE_WIN0_SRCADDR_PARAM); writel(0, bridge_base_addr + ATR0_PCIE_WIN0_SRC_ADDR); } static int mc_pcie_setup_windows(struct platform_device *pdev, struct mc_pcie *port) { void __iomem *bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR; struct pci_host_bridge *bridge = platform_get_drvdata(pdev); struct resource_entry *entry; u64 pci_addr; u32 index = 1; resource_list_for_each_entry(entry, &bridge->windows) { if (resource_type(entry->res) == IORESOURCE_MEM) { pci_addr = entry->res->start - entry->offset; mc_pcie_setup_window(bridge_base_addr, index, entry->res->start, pci_addr, resource_size(entry->res)); index++; } } return 0; } static inline void mc_clear_secs(struct mc_pcie *port) { void __iomem *ctrl_base_addr = port->axi_base_addr + MC_PCIE_CTRL_ADDR; writel_relaxed(SEC_ERROR_INT_ALL_RAM_SEC_ERR_INT, ctrl_base_addr + SEC_ERROR_INT); writel_relaxed(0, ctrl_base_addr + SEC_ERROR_EVENT_CNT); } static inline void mc_clear_deds(struct mc_pcie *port) { void __iomem *ctrl_base_addr = port->axi_base_addr + MC_PCIE_CTRL_ADDR; writel_relaxed(DED_ERROR_INT_ALL_RAM_DED_ERR_INT, ctrl_base_addr + DED_ERROR_INT); writel_relaxed(0, ctrl_base_addr + DED_ERROR_EVENT_CNT); } static void mc_disable_interrupts(struct mc_pcie *port) { void __iomem *bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR; void __iomem *ctrl_base_addr = port->axi_base_addr + MC_PCIE_CTRL_ADDR; u32 val; /* Ensure ECC bypass is enabled */ val = ECC_CONTROL_TX_RAM_ECC_BYPASS | ECC_CONTROL_RX_RAM_ECC_BYPASS | ECC_CONTROL_PCIE2AXI_RAM_ECC_BYPASS | ECC_CONTROL_AXI2PCIE_RAM_ECC_BYPASS; writel_relaxed(val, ctrl_base_addr + ECC_CONTROL); /* Disable SEC errors and clear any outstanding */ writel_relaxed(SEC_ERROR_INT_ALL_RAM_SEC_ERR_INT, ctrl_base_addr + SEC_ERROR_INT_MASK); mc_clear_secs(port); /* Disable DED errors and clear any outstanding */ writel_relaxed(DED_ERROR_INT_ALL_RAM_DED_ERR_INT, ctrl_base_addr + DED_ERROR_INT_MASK); mc_clear_deds(port); /* Disable local interrupts and clear any outstanding */ writel_relaxed(0, bridge_base_addr + IMASK_LOCAL); writel_relaxed(GENMASK(31, 0), bridge_base_addr + ISTATUS_LOCAL); writel_relaxed(GENMASK(31, 0), bridge_base_addr + ISTATUS_MSI); /* Disable PCIe events and clear any outstanding */ val = PCIE_EVENT_INT_L2_EXIT_INT | PCIE_EVENT_INT_HOTRST_EXIT_INT | PCIE_EVENT_INT_DLUP_EXIT_INT | PCIE_EVENT_INT_L2_EXIT_INT_MASK | PCIE_EVENT_INT_HOTRST_EXIT_INT_MASK | PCIE_EVENT_INT_DLUP_EXIT_INT_MASK; writel_relaxed(val, ctrl_base_addr + PCIE_EVENT_INT); /* Disable host interrupts and clear any outstanding */ writel_relaxed(0, bridge_base_addr + IMASK_HOST); writel_relaxed(GENMASK(31, 0), bridge_base_addr + ISTATUS_HOST); } static int mc_init_interrupts(struct platform_device *pdev, struct mc_pcie *port) { struct device *dev = &pdev->dev; int irq; int i, intx_irq, msi_irq, event_irq; int ret; ret = mc_pcie_init_irq_domains(port); if (ret) { dev_err(dev, "failed creating IRQ domains\n"); return ret; } irq = platform_get_irq(pdev, 0); if (irq < 0) return -ENODEV; for (i = 0; i < NUM_EVENTS; i++) { event_irq = irq_create_mapping(port->event_domain, i); if (!event_irq) { dev_err(dev, "failed to map hwirq %d\n", i); return -ENXIO; } ret = devm_request_irq(dev, event_irq, mc_event_handler, 0, event_cause[i].sym, port); if (ret) { dev_err(dev, "failed to request IRQ %d\n", event_irq); return ret; } } intx_irq = irq_create_mapping(port->event_domain, EVENT_LOCAL_PM_MSI_INT_INTX); if (!intx_irq) { dev_err(dev, "failed to map INTx interrupt\n"); return -ENXIO; } /* Plug the INTx chained handler */ irq_set_chained_handler_and_data(intx_irq, mc_handle_intx, port); msi_irq = irq_create_mapping(port->event_domain, EVENT_LOCAL_PM_MSI_INT_MSI); if (!msi_irq) return -ENXIO; /* Plug the MSI chained handler */ irq_set_chained_handler_and_data(msi_irq, mc_handle_msi, port); /* Plug the main event chained handler */ irq_set_chained_handler_and_data(irq, mc_handle_event, port); return 0; } static int mc_platform_init(struct pci_config_window *cfg) { struct device *dev = cfg->parent; struct platform_device *pdev = to_platform_device(dev); void __iomem *bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR; int ret; /* Configure address translation table 0 for PCIe config space */ mc_pcie_setup_window(bridge_base_addr, 0, cfg->res.start, cfg->res.start, resource_size(&cfg->res)); /* Need some fixups in config space */ mc_pcie_enable_msi(port, cfg->win); /* Configure non-config space outbound ranges */ ret = mc_pcie_setup_windows(pdev, port); if (ret) return ret; /* Address translation is up; safe to enable interrupts */ ret = mc_init_interrupts(pdev, port); if (ret) return ret; return 0; } static int mc_host_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; void __iomem *bridge_base_addr; int ret; u32 val; port = devm_kzalloc(dev, sizeof(*port), GFP_KERNEL); if (!port) return -ENOMEM; port->dev = dev; port->axi_base_addr = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(port->axi_base_addr)) return PTR_ERR(port->axi_base_addr); mc_disable_interrupts(port); bridge_base_addr = port->axi_base_addr + MC_PCIE_BRIDGE_ADDR; /* Allow enabling MSI by disabling MSI-X */ val = readl(bridge_base_addr + PCIE_PCI_IRQ_DW0); val &= ~MSIX_CAP_MASK; writel(val, bridge_base_addr + PCIE_PCI_IRQ_DW0); /* Pick num vectors from bitfile programmed onto FPGA fabric */ val = readl(bridge_base_addr + PCIE_PCI_IRQ_DW0); val &= NUM_MSI_MSGS_MASK; val >>= NUM_MSI_MSGS_SHIFT; port->msi.num_vectors = 1 << val; /* Pick vector address from design */ port->msi.vector_phy = readl_relaxed(bridge_base_addr + IMSI_ADDR); ret = mc_pcie_init_clks(dev); if (ret) { dev_err(dev, "failed to get clock resources, error %d\n", ret); return -ENODEV; } return pci_host_common_probe(pdev); } static const struct pci_ecam_ops mc_ecam_ops = { .init = mc_platform_init, .pci_ops = { .map_bus = pci_ecam_map_bus, .read = pci_generic_config_read, .write = pci_generic_config_write, } }; static const struct of_device_id mc_pcie_of_match[] = { { .compatible = "microchip,pcie-host-1.0", .data = &mc_ecam_ops, }, {}, }; MODULE_DEVICE_TABLE(of, mc_pcie_of_match); static struct platform_driver mc_pcie_driver = { .probe = mc_host_probe, .driver = { .name = "microchip-pcie", .of_match_table = mc_pcie_of_match, .suppress_bind_attrs = true, }, }; builtin_platform_driver(mc_pcie_driver); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Microchip PCIe host controller driver"); MODULE_AUTHOR("Daire McNamara <daire.mcnamara@microchip.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1