Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Xu Yang | 3257 | 99.82% | 1 | 25.00% |
Christophe Jaillet | 3 | 0.09% | 1 | 25.00% |
Uwe Kleine-König | 2 | 0.06% | 1 | 25.00% |
Rob Herring | 1 | 0.03% | 1 | 25.00% |
Total | 3263 | 4 |
// SPDX-License-Identifier: GPL-2.0 // Copyright 2023 NXP #include <linux/bitfield.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/perf_event.h> /* Performance monitor configuration */ #define PMCFG1 0x00 #define PMCFG1_RD_TRANS_FILT_EN BIT(31) #define PMCFG1_WR_TRANS_FILT_EN BIT(30) #define PMCFG1_RD_BT_FILT_EN BIT(29) #define PMCFG1_ID_MASK GENMASK(17, 0) #define PMCFG2 0x04 #define PMCFG2_ID GENMASK(17, 0) /* Global control register affects all counters and takes priority over local control registers */ #define PMGC0 0x40 /* Global control register bits */ #define PMGC0_FAC BIT(31) #define PMGC0_PMIE BIT(30) #define PMGC0_FCECE BIT(29) /* * 64bit counter0 exclusively dedicated to counting cycles * 32bit counters monitor counter-specific events in addition to counting reference events */ #define PMLCA(n) (0x40 + 0x10 + (0x10 * n)) #define PMLCB(n) (0x40 + 0x14 + (0x10 * n)) #define PMC(n) (0x40 + 0x18 + (0x10 * n)) /* Local control register bits */ #define PMLCA_FC BIT(31) #define PMLCA_CE BIT(26) #define PMLCA_EVENT GENMASK(22, 16) #define NUM_COUNTERS 11 #define CYCLES_COUNTER 0 #define to_ddr_pmu(p) container_of(p, struct ddr_pmu, pmu) #define DDR_PERF_DEV_NAME "imx9_ddr" #define DDR_CPUHP_CB_NAME DDR_PERF_DEV_NAME "_perf_pmu" static DEFINE_IDA(ddr_ida); struct imx_ddr_devtype_data { const char *identifier; /* system PMU identifier for userspace */ }; struct ddr_pmu { struct pmu pmu; void __iomem *base; unsigned int cpu; struct hlist_node node; struct device *dev; struct perf_event *events[NUM_COUNTERS]; int active_events; enum cpuhp_state cpuhp_state; const struct imx_ddr_devtype_data *devtype_data; int irq; int id; }; static const struct imx_ddr_devtype_data imx93_devtype_data = { .identifier = "imx93", }; static const struct of_device_id imx_ddr_pmu_dt_ids[] = { {.compatible = "fsl,imx93-ddr-pmu", .data = &imx93_devtype_data}, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, imx_ddr_pmu_dt_ids); static ssize_t ddr_perf_identifier_show(struct device *dev, struct device_attribute *attr, char *page) { struct ddr_pmu *pmu = dev_get_drvdata(dev); return sysfs_emit(page, "%s\n", pmu->devtype_data->identifier); } static struct device_attribute ddr_perf_identifier_attr = __ATTR(identifier, 0444, ddr_perf_identifier_show, NULL); static struct attribute *ddr_perf_identifier_attrs[] = { &ddr_perf_identifier_attr.attr, NULL, }; static struct attribute_group ddr_perf_identifier_attr_group = { .attrs = ddr_perf_identifier_attrs, }; static ssize_t ddr_perf_cpumask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ddr_pmu *pmu = dev_get_drvdata(dev); return cpumap_print_to_pagebuf(true, buf, cpumask_of(pmu->cpu)); } static struct device_attribute ddr_perf_cpumask_attr = __ATTR(cpumask, 0444, ddr_perf_cpumask_show, NULL); static struct attribute *ddr_perf_cpumask_attrs[] = { &ddr_perf_cpumask_attr.attr, NULL, }; static const struct attribute_group ddr_perf_cpumask_attr_group = { .attrs = ddr_perf_cpumask_attrs, }; static ssize_t ddr_pmu_event_show(struct device *dev, struct device_attribute *attr, char *page) { struct perf_pmu_events_attr *pmu_attr; pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); return sysfs_emit(page, "event=0x%02llx\n", pmu_attr->id); } #define IMX9_DDR_PMU_EVENT_ATTR(_name, _id) \ (&((struct perf_pmu_events_attr[]) { \ { .attr = __ATTR(_name, 0444, ddr_pmu_event_show, NULL),\ .id = _id, } \ })[0].attr.attr) static struct attribute *ddr_perf_events_attrs[] = { /* counter0 cycles event */ IMX9_DDR_PMU_EVENT_ATTR(cycles, 0), /* reference events for all normal counters, need assert DEBUG19[21] bit */ IMX9_DDR_PMU_EVENT_ATTR(ddrc_ddrc1_rmw_for_ecc, 12), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_rreorder, 13), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_wreorder, 14), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_0, 15), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_1, 16), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_2, 17), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_3, 18), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_4, 19), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_5, 22), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_6, 23), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_7, 24), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_8, 25), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_9, 26), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_10, 27), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_11, 28), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_12, 31), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_13, 59), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_15, 61), IMX9_DDR_PMU_EVENT_ATTR(ddrc_pm_29, 63), /* counter1 specific events */ IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_0, 64), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_1, 65), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_2, 66), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_3, 67), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_4, 68), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_5, 69), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_6, 70), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_riq_7, 71), /* counter2 specific events */ IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_0, 64), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_1, 65), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_2, 66), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_3, 67), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_4, 68), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_5, 69), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_6, 70), IMX9_DDR_PMU_EVENT_ATTR(ddrc_ld_wiq_7, 71), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_empty, 72), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pm_rd_trans_filt, 73), /* counter3 specific events */ IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_0, 64), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_1, 65), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_2, 66), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_3, 67), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_4, 68), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_5, 69), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_6, 70), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_collision_7, 71), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_full, 72), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pm_wr_trans_filt, 73), /* counter4 specific events */ IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_0, 64), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_1, 65), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_2, 66), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_3, 67), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_4, 68), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_5, 69), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_6, 70), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_row_open_7, 71), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_rdq2_rmw, 72), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pm_rd_beat_filt, 73), /* counter5 specific events */ IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_0, 64), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_1, 65), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_2, 66), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_3, 67), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_4, 68), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_5, 69), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_6, 70), IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_start_7, 71), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_rdq1, 72), /* counter6 specific events */ IMX9_DDR_PMU_EVENT_ATTR(ddrc_qx_valid_end_0, 64), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_rdq2, 72), /* counter7 specific events */ IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_1_2_full, 64), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_wrq0, 65), /* counter8 specific events */ IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_bias_switched, 64), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_1_4_full, 65), /* counter9 specific events */ IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_wrq1, 65), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_3_4_full, 66), /* counter10 specific events */ IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_misc_mrk, 65), IMX9_DDR_PMU_EVENT_ATTR(eddrtq_pmon_ld_rdq0, 66), NULL, }; static const struct attribute_group ddr_perf_events_attr_group = { .name = "events", .attrs = ddr_perf_events_attrs, }; PMU_FORMAT_ATTR(event, "config:0-7"); PMU_FORMAT_ATTR(counter, "config:8-15"); PMU_FORMAT_ATTR(axi_id, "config1:0-17"); PMU_FORMAT_ATTR(axi_mask, "config2:0-17"); static struct attribute *ddr_perf_format_attrs[] = { &format_attr_event.attr, &format_attr_counter.attr, &format_attr_axi_id.attr, &format_attr_axi_mask.attr, NULL, }; static const struct attribute_group ddr_perf_format_attr_group = { .name = "format", .attrs = ddr_perf_format_attrs, }; static const struct attribute_group *attr_groups[] = { &ddr_perf_identifier_attr_group, &ddr_perf_cpumask_attr_group, &ddr_perf_events_attr_group, &ddr_perf_format_attr_group, NULL, }; static void ddr_perf_clear_counter(struct ddr_pmu *pmu, int counter) { if (counter == CYCLES_COUNTER) { writel(0, pmu->base + PMC(counter) + 0x4); writel(0, pmu->base + PMC(counter)); } else { writel(0, pmu->base + PMC(counter)); } } static u64 ddr_perf_read_counter(struct ddr_pmu *pmu, int counter) { u32 val_lower, val_upper; u64 val; if (counter != CYCLES_COUNTER) { val = readl_relaxed(pmu->base + PMC(counter)); goto out; } /* special handling for reading 64bit cycle counter */ do { val_upper = readl_relaxed(pmu->base + PMC(counter) + 0x4); val_lower = readl_relaxed(pmu->base + PMC(counter)); } while (val_upper != readl_relaxed(pmu->base + PMC(counter) + 0x4)); val = val_upper; val = (val << 32); val |= val_lower; out: return val; } static void ddr_perf_counter_global_config(struct ddr_pmu *pmu, bool enable) { u32 ctrl; ctrl = readl_relaxed(pmu->base + PMGC0); if (enable) { /* * The performance monitor must be reset before event counting * sequences. The performance monitor can be reset by first freezing * one or more counters and then clearing the freeze condition to * allow the counters to count according to the settings in the * performance monitor registers. Counters can be frozen individually * by setting PMLCAn[FC] bits, or simultaneously by setting PMGC0[FAC]. * Simply clearing these freeze bits will then allow the performance * monitor to begin counting based on the register settings. */ ctrl |= PMGC0_FAC; writel(ctrl, pmu->base + PMGC0); /* * Freeze all counters disabled, interrupt enabled, and freeze * counters on condition enabled. */ ctrl &= ~PMGC0_FAC; ctrl |= PMGC0_PMIE | PMGC0_FCECE; writel(ctrl, pmu->base + PMGC0); } else { ctrl |= PMGC0_FAC; ctrl &= ~(PMGC0_PMIE | PMGC0_FCECE); writel(ctrl, pmu->base + PMGC0); } } static void ddr_perf_counter_local_config(struct ddr_pmu *pmu, int config, int counter, bool enable) { u32 ctrl_a; ctrl_a = readl_relaxed(pmu->base + PMLCA(counter)); if (enable) { ctrl_a |= PMLCA_FC; writel(ctrl_a, pmu->base + PMLCA(counter)); ddr_perf_clear_counter(pmu, counter); /* Freeze counter disabled, condition enabled, and program event.*/ ctrl_a &= ~PMLCA_FC; ctrl_a |= PMLCA_CE; ctrl_a &= ~FIELD_PREP(PMLCA_EVENT, 0x7F); ctrl_a |= FIELD_PREP(PMLCA_EVENT, (config & 0x000000FF)); writel(ctrl_a, pmu->base + PMLCA(counter)); } else { /* Freeze counter. */ ctrl_a |= PMLCA_FC; writel(ctrl_a, pmu->base + PMLCA(counter)); } } static void ddr_perf_monitor_config(struct ddr_pmu *pmu, int cfg, int cfg1, int cfg2) { u32 pmcfg1, pmcfg2; int event, counter; event = cfg & 0x000000FF; counter = (cfg & 0x0000FF00) >> 8; pmcfg1 = readl_relaxed(pmu->base + PMCFG1); if (counter == 2 && event == 73) pmcfg1 |= PMCFG1_RD_TRANS_FILT_EN; else if (counter == 2 && event != 73) pmcfg1 &= ~PMCFG1_RD_TRANS_FILT_EN; if (counter == 3 && event == 73) pmcfg1 |= PMCFG1_WR_TRANS_FILT_EN; else if (counter == 3 && event != 73) pmcfg1 &= ~PMCFG1_WR_TRANS_FILT_EN; if (counter == 4 && event == 73) pmcfg1 |= PMCFG1_RD_BT_FILT_EN; else if (counter == 4 && event != 73) pmcfg1 &= ~PMCFG1_RD_BT_FILT_EN; pmcfg1 &= ~FIELD_PREP(PMCFG1_ID_MASK, 0x3FFFF); pmcfg1 |= FIELD_PREP(PMCFG1_ID_MASK, cfg2); writel(pmcfg1, pmu->base + PMCFG1); pmcfg2 = readl_relaxed(pmu->base + PMCFG2); pmcfg2 &= ~FIELD_PREP(PMCFG2_ID, 0x3FFFF); pmcfg2 |= FIELD_PREP(PMCFG2_ID, cfg1); writel(pmcfg2, pmu->base + PMCFG2); } static void ddr_perf_event_update(struct perf_event *event) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int counter = hwc->idx; u64 new_raw_count; new_raw_count = ddr_perf_read_counter(pmu, counter); local64_add(new_raw_count, &event->count); /* clear counter's value every time */ ddr_perf_clear_counter(pmu, counter); } static int ddr_perf_event_init(struct perf_event *event) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; struct perf_event *sibling; if (event->attr.type != event->pmu->type) return -ENOENT; if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) return -EOPNOTSUPP; if (event->cpu < 0) { dev_warn(pmu->dev, "Can't provide per-task data!\n"); return -EOPNOTSUPP; } /* * We must NOT create groups containing mixed PMUs, although software * events are acceptable (for example to create a CCN group * periodically read when a hrtimer aka cpu-clock leader triggers). */ if (event->group_leader->pmu != event->pmu && !is_software_event(event->group_leader)) return -EINVAL; for_each_sibling_event(sibling, event->group_leader) { if (sibling->pmu != event->pmu && !is_software_event(sibling)) return -EINVAL; } event->cpu = pmu->cpu; hwc->idx = -1; return 0; } static void ddr_perf_event_start(struct perf_event *event, int flags) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int counter = hwc->idx; local64_set(&hwc->prev_count, 0); ddr_perf_counter_local_config(pmu, event->attr.config, counter, true); hwc->state = 0; } static int ddr_perf_event_add(struct perf_event *event, int flags) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int cfg = event->attr.config; int cfg1 = event->attr.config1; int cfg2 = event->attr.config2; int counter; counter = (cfg & 0x0000FF00) >> 8; pmu->events[counter] = event; pmu->active_events++; hwc->idx = counter; hwc->state |= PERF_HES_STOPPED; if (flags & PERF_EF_START) ddr_perf_event_start(event, flags); /* read trans, write trans, read beat */ ddr_perf_monitor_config(pmu, cfg, cfg1, cfg2); return 0; } static void ddr_perf_event_stop(struct perf_event *event, int flags) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int counter = hwc->idx; ddr_perf_counter_local_config(pmu, event->attr.config, counter, false); ddr_perf_event_update(event); hwc->state |= PERF_HES_STOPPED; } static void ddr_perf_event_del(struct perf_event *event, int flags) { struct ddr_pmu *pmu = to_ddr_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; ddr_perf_event_stop(event, PERF_EF_UPDATE); pmu->active_events--; hwc->idx = -1; } static void ddr_perf_pmu_enable(struct pmu *pmu) { struct ddr_pmu *ddr_pmu = to_ddr_pmu(pmu); ddr_perf_counter_global_config(ddr_pmu, true); } static void ddr_perf_pmu_disable(struct pmu *pmu) { struct ddr_pmu *ddr_pmu = to_ddr_pmu(pmu); ddr_perf_counter_global_config(ddr_pmu, false); } static void ddr_perf_init(struct ddr_pmu *pmu, void __iomem *base, struct device *dev) { *pmu = (struct ddr_pmu) { .pmu = (struct pmu) { .module = THIS_MODULE, .capabilities = PERF_PMU_CAP_NO_EXCLUDE, .task_ctx_nr = perf_invalid_context, .attr_groups = attr_groups, .event_init = ddr_perf_event_init, .add = ddr_perf_event_add, .del = ddr_perf_event_del, .start = ddr_perf_event_start, .stop = ddr_perf_event_stop, .read = ddr_perf_event_update, .pmu_enable = ddr_perf_pmu_enable, .pmu_disable = ddr_perf_pmu_disable, }, .base = base, .dev = dev, }; } static irqreturn_t ddr_perf_irq_handler(int irq, void *p) { struct ddr_pmu *pmu = (struct ddr_pmu *)p; struct perf_event *event; int i; /* * Counters can generate an interrupt on an overflow when msb of a * counter changes from 0 to 1. For the interrupt to be signalled, * below condition mush be satisfied: * PMGC0[PMIE] = 1, PMGC0[FCECE] = 1, PMLCAn[CE] = 1 * When an interrupt is signalled, PMGC0[FAC] is set by hardware and * all of the registers are frozen. * Software can clear the interrupt condition by resetting the performance * monitor and clearing the most significant bit of the counter that * generate the overflow. */ for (i = 0; i < NUM_COUNTERS; i++) { if (!pmu->events[i]) continue; event = pmu->events[i]; ddr_perf_event_update(event); } ddr_perf_counter_global_config(pmu, true); return IRQ_HANDLED; } static int ddr_perf_offline_cpu(unsigned int cpu, struct hlist_node *node) { struct ddr_pmu *pmu = hlist_entry_safe(node, struct ddr_pmu, node); int target; if (cpu != pmu->cpu) return 0; target = cpumask_any_but(cpu_online_mask, cpu); if (target >= nr_cpu_ids) return 0; perf_pmu_migrate_context(&pmu->pmu, cpu, target); pmu->cpu = target; WARN_ON(irq_set_affinity(pmu->irq, cpumask_of(pmu->cpu))); return 0; } static int ddr_perf_probe(struct platform_device *pdev) { struct ddr_pmu *pmu; void __iomem *base; int ret, irq; char *name; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL); if (!pmu) return -ENOMEM; ddr_perf_init(pmu, base, &pdev->dev); pmu->devtype_data = of_device_get_match_data(&pdev->dev); platform_set_drvdata(pdev, pmu); pmu->id = ida_alloc(&ddr_ida, GFP_KERNEL); name = devm_kasprintf(&pdev->dev, GFP_KERNEL, DDR_PERF_DEV_NAME "%d", pmu->id); if (!name) { ret = -ENOMEM; goto format_string_err; } pmu->cpu = raw_smp_processor_id(); ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DDR_CPUHP_CB_NAME, NULL, ddr_perf_offline_cpu); if (ret < 0) { dev_err(&pdev->dev, "Failed to add callbacks for multi state\n"); goto cpuhp_state_err; } pmu->cpuhp_state = ret; /* Register the pmu instance for cpu hotplug */ ret = cpuhp_state_add_instance_nocalls(pmu->cpuhp_state, &pmu->node); if (ret) { dev_err(&pdev->dev, "Error %d registering hotplug\n", ret); goto cpuhp_instance_err; } /* Request irq */ irq = platform_get_irq(pdev, 0); if (irq < 0) { ret = irq; goto ddr_perf_err; } ret = devm_request_irq(&pdev->dev, irq, ddr_perf_irq_handler, IRQF_NOBALANCING | IRQF_NO_THREAD, DDR_CPUHP_CB_NAME, pmu); if (ret < 0) { dev_err(&pdev->dev, "Request irq failed: %d", ret); goto ddr_perf_err; } pmu->irq = irq; ret = irq_set_affinity(pmu->irq, cpumask_of(pmu->cpu)); if (ret) { dev_err(pmu->dev, "Failed to set interrupt affinity\n"); goto ddr_perf_err; } ret = perf_pmu_register(&pmu->pmu, name, -1); if (ret) goto ddr_perf_err; return 0; ddr_perf_err: cpuhp_state_remove_instance_nocalls(pmu->cpuhp_state, &pmu->node); cpuhp_instance_err: cpuhp_remove_multi_state(pmu->cpuhp_state); cpuhp_state_err: format_string_err: ida_free(&ddr_ida, pmu->id); dev_warn(&pdev->dev, "i.MX9 DDR Perf PMU failed (%d), disabled\n", ret); return ret; } static void ddr_perf_remove(struct platform_device *pdev) { struct ddr_pmu *pmu = platform_get_drvdata(pdev); cpuhp_state_remove_instance_nocalls(pmu->cpuhp_state, &pmu->node); cpuhp_remove_multi_state(pmu->cpuhp_state); perf_pmu_unregister(&pmu->pmu); ida_free(&ddr_ida, pmu->id); } static struct platform_driver imx_ddr_pmu_driver = { .driver = { .name = "imx9-ddr-pmu", .of_match_table = imx_ddr_pmu_dt_ids, .suppress_bind_attrs = true, }, .probe = ddr_perf_probe, .remove_new = ddr_perf_remove, }; module_platform_driver(imx_ddr_pmu_driver); MODULE_AUTHOR("Xu Yang <xu.yang_2@nxp.com>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("DDRC PerfMon for i.MX9 SoCs");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1