Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Loc Ho | 8892 | 99.76% | 1 | 10.00% |
Axel Lin | 6 | 0.07% | 1 | 10.00% |
Kishon Vijay Abraham I | 4 | 0.04% | 2 | 20.00% |
Thierry Reding | 3 | 0.03% | 1 | 10.00% |
Colin Ian King | 2 | 0.02% | 1 | 10.00% |
Thomas Gleixner | 2 | 0.02% | 1 | 10.00% |
Chunfeng Yun | 2 | 0.02% | 1 | 10.00% |
Krzysztof Kozlowski | 1 | 0.01% | 1 | 10.00% |
Shubhankar Kuranagatti | 1 | 0.01% | 1 | 10.00% |
Total | 8913 | 10 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * AppliedMicro X-Gene Multi-purpose PHY driver * * Copyright (c) 2014, Applied Micro Circuits Corporation * Author: Loc Ho <lho@apm.com> * Tuan Phan <tphan@apm.com> * Suman Tripathi <stripathi@apm.com> * * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes. * The first PLL clock macro is used for internal reference clock. The second * PLL clock macro is used to generate the clock for the PHY. This driver * configures the first PLL CMU, the second PLL CMU, and programs the PHY to * operate according to the mode of operation. The first PLL CMU is only * required if internal clock is enabled. * * Logical Layer Out Of HW module units: * * ----------------- * | Internal | |------| * | Ref PLL CMU |----| | ------------- --------- * ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes| * | | | | --------- * External Clock ------| | ------------- * |------| * * The Ref PLL CMU CSR (Configuration System Registers) is accessed * indirectly from the SDS offset at 0x2000. It is only required for * internal reference clock. * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000. * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400. * * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP, * it is located outside the PHY IP. This is the case for the PHY located * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required * to located the SDS/Ref PLL CMU module and its clock for that IP enabled. * * Currently, this driver only supports Gen3 SATA mode with external clock. */ #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/delay.h> #include <linux/phy/phy.h> #include <linux/clk.h> /* Max 2 lanes per a PHY unit */ #define MAX_LANE 2 /* Register offset inside the PHY */ #define SERDES_PLL_INDIRECT_OFFSET 0x0000 #define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000 #define SERDES_INDIRECT_OFFSET 0x0400 #define SERDES_LANE_STRIDE 0x0200 /* Some default Serdes parameters */ #define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e } #define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 } #define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa } #define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 } #define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 } #define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 } #define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 } #define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa } #define SATA_SPD_SEL_GEN3 0x7 #define SATA_SPD_SEL_GEN2 0x3 #define SATA_SPD_SEL_GEN1 0x1 #define SSC_DISABLE 0 #define SSC_ENABLE 1 #define FBDIV_VAL_50M 0x77 #define REFDIV_VAL_50M 0x1 #define FBDIV_VAL_100M 0x3B #define REFDIV_VAL_100M 0x0 /* SATA Clock/Reset CSR */ #define SATACLKENREG 0x00000000 #define SATA0_CORE_CLKEN 0x00000002 #define SATA1_CORE_CLKEN 0x00000004 #define SATASRESETREG 0x00000004 #define SATA_MEM_RESET_MASK 0x00000020 #define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5) #define SATA_SDS_RESET_MASK 0x00000004 #define SATA_CSR_RESET_MASK 0x00000001 #define SATA_CORE_RESET_MASK 0x00000002 #define SATA_PMCLK_RESET_MASK 0x00000010 #define SATA_PCLK_RESET_MASK 0x00000008 /* SDS CSR used for PHY Indirect access */ #define SATA_ENET_SDS_PCS_CTL0 0x00000000 #define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \ (((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000)) #define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \ (((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000)) #define SATA_ENET_SDS_CTL0 0x0000000c #define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \ (((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff)) #define SATA_ENET_SDS_CTL1 0x00000010 #define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \ (((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f)) #define SATA_ENET_SDS_RST_CTL 0x00000024 #define SATA_ENET_SDS_IND_CMD_REG 0x0000003c #define CFG_IND_WR_CMD_MASK 0x00000001 #define CFG_IND_RD_CMD_MASK 0x00000002 #define CFG_IND_CMD_DONE_MASK 0x00000004 #define CFG_IND_ADDR_SET(dst, src) \ (((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0)) #define SATA_ENET_SDS_IND_RDATA_REG 0x00000040 #define SATA_ENET_SDS_IND_WDATA_REG 0x00000044 #define SATA_ENET_CLK_MACRO_REG 0x0000004c #define I_RESET_B_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001)) #define I_PLL_FBDIV_SET(dst, src) \ (((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000)) #define I_CUSTOMEROV_SET(dst, src) \ (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80)) #define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30) #define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31) /* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */ #define CMU_REG0 0x00000 #define CMU_REG0_PLL_REF_SEL_MASK 0x00002000 #define CMU_REG0_PLL_REF_SEL_SET(dst, src) \ (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000)) #define CMU_REG0_PDOWN_MASK 0x00004000 #define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \ (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0)) #define CMU_REG1 0x00002 #define CMU_REG1_PLL_CP_SET(dst, src) \ (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00)) #define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define CMU_REG1_PLL_CP_SEL_SET(dst, src) \ (((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0)) #define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001 #define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) #define CMU_REG2 0x00004 #define CMU_REG2_PLL_REFDIV_SET(dst, src) \ (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) #define CMU_REG2_PLL_LFRES_SET(dst, src) \ (((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e)) #define CMU_REG2_PLL_FBDIV_SET(dst, src) \ (((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0)) #define CMU_REG3 0x00006 #define CMU_REG3_VCOVARSEL_SET(dst, src) \ (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f)) #define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \ (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) #define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \ (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) #define CMU_REG4 0x00008 #define CMU_REG5 0x0000a #define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \ (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) #define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \ (((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e)) #define CMU_REG5_PLL_LFCAP_SET(dst, src) \ (((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000)) #define CMU_REG5_PLL_RESETB_MASK 0x00000001 #define CMU_REG6 0x0000c #define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \ (((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600)) #define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \ (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) #define CMU_REG7 0x0000e #define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14) #define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10) #define CMU_REG8 0x00010 #define CMU_REG9 0x00012 #define CMU_REG9_WORD_LEN_8BIT 0x000 #define CMU_REG9_WORD_LEN_10BIT 0x001 #define CMU_REG9_WORD_LEN_16BIT 0x002 #define CMU_REG9_WORD_LEN_20BIT 0x003 #define CMU_REG9_WORD_LEN_32BIT 0x004 #define CMU_REG9_WORD_LEN_40BIT 0x005 #define CMU_REG9_WORD_LEN_64BIT 0x006 #define CMU_REG9_WORD_LEN_66BIT 0x007 #define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \ (((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380)) #define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \ (((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070)) #define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define CMU_REG9_VBG_BYPASSB_SET(dst, src) \ (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) #define CMU_REG9_IGEN_BYPASS_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define CMU_REG10 0x00014 #define CMU_REG10_VREG_REFSEL_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) #define CMU_REG11 0x00016 #define CMU_REG12 0x00018 #define CMU_REG12_STATE_DELAY9_SET(dst, src) \ (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) #define CMU_REG13 0x0001a #define CMU_REG14 0x0001c #define CMU_REG15 0x0001e #define CMU_REG16 0x00020 #define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001 #define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002 #define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \ (((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c)) #define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \ (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) #define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \ (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) #define CMU_REG17 0x00022 #define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \ (((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00)) #define CMU_REG17_RESERVED_7_SET(dst, src) \ (((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0)) #define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000 #define CMU_REG18 0x00024 #define CMU_REG19 0x00026 #define CMU_REG20 0x00028 #define CMU_REG21 0x0002a #define CMU_REG22 0x0002c #define CMU_REG23 0x0002e #define CMU_REG24 0x00030 #define CMU_REG25 0x00032 #define CMU_REG26 0x00034 #define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) #define CMU_REG27 0x00036 #define CMU_REG28 0x00038 #define CMU_REG29 0x0003a #define CMU_REG30 0x0003c #define CMU_REG30_LOCK_COUNT_SET(dst, src) \ (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) #define CMU_REG30_PCIE_MODE_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define CMU_REG31 0x0003e #define CMU_REG32 0x00040 #define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000 #define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \ (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) #define CMU_REG32_IREF_ADJ_SET(dst, src) \ (((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180)) #define CMU_REG33 0x00042 #define CMU_REG34 0x00044 #define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \ (((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f)) #define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \ (((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00)) #define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \ (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) #define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \ (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000)) #define CMU_REG35 0x00046 #define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \ (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00)) #define CMU_REG36 0x00048 #define CMU_REG36_PLL_SSC_EN_SET(dst, src) \ (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010)) #define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \ (((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0)) #define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \ (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) #define CMU_REG37 0x0004a #define CMU_REG38 0x0004c #define CMU_REG39 0x0004e /* PHY lane CSR accessing from SDS indirectly */ #define RXTX_REG0 0x000 #define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \ (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) #define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \ (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) #define RXTX_REG1 0x002 #define RXTX_REG1_RXACVCM_SET(dst, src) \ (((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000)) #define RXTX_REG1_CTLE_EQ_SET(dst, src) \ (((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80)) #define RXTX_REG1_RXVREG1_SET(dst, src) \ (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060)) #define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \ (((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006)) #define RXTX_REG2 0x004 #define RXTX_REG2_VTT_ENA_SET(dst, src) \ (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) #define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \ (((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020)) #define RXTX_REG2_VTT_SEL_SET(dst, src) \ (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0)) #define RXTX_REG4 0x008 #define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040 #define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \ (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) #define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \ (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) #define RXTX_REG5 0x00a #define RXTX_REG5_TX_CN1_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG5_TX_CP1_SET(dst, src) \ (((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0)) #define RXTX_REG5_TX_CN2_SET(dst, src) \ (((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f)) #define RXTX_REG6 0x00c #define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \ (((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780)) #define RXTX_REG6_TXAMP_ENA_SET(dst, src) \ (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) #define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) #define RXTX_REG6_TX_IDLE_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define RXTX_REG7 0x00e #define RXTX_REG7_RESETB_RXD_MASK 0x00000100 #define RXTX_REG7_RESETB_RXA_MASK 0x00000080 #define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \ (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) #define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \ (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) #define RXTX_REG8 0x010 #define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \ (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000)) #define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \ (((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800)) #define RXTX_REG8_SSC_ENABLE_SET(dst, src) \ (((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200)) #define RXTX_REG8_SD_VREF_SET(dst, src) \ (((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0)) #define RXTX_REG8_SD_DISABLE_SET(dst, src) \ (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) #define RXTX_REG7 0x00e #define RXTX_REG7_RESETB_RXD_SET(dst, src) \ (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) #define RXTX_REG7_RESETB_RXA_SET(dst, src) \ (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080)) #define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000 #define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \ (((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000)) #define RXTX_REG11 0x016 #define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG12 0x018 #define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \ (((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000)) #define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \ (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) #define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002 #define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define RXTX_REG13 0x01a #define RXTX_REG14 0x01c #define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \ (((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f)) #define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \ (((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040)) #define RXTX_REG26 0x034 #define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \ (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) #define RXTX_REG26_BLWC_ENA_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define RXTX_REG21 0x02a #define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) #define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) #define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src))) #define RXTX_REG22 0x02c #define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) #define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) #define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src))) #define RXTX_REG23 0x02e #define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) #define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) #define RXTX_REG24 0x030 #define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10) #define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4) #define RXTX_REG27 0x036 #define RXTX_REG28 0x038 #define RXTX_REG31 0x03e #define RXTX_REG38 0x04c #define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \ (((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe)) #define RXTX_REG39 0x04e #define RXTX_REG40 0x050 #define RXTX_REG41 0x052 #define RXTX_REG42 0x054 #define RXTX_REG43 0x056 #define RXTX_REG44 0x058 #define RXTX_REG45 0x05a #define RXTX_REG46 0x05c #define RXTX_REG47 0x05e #define RXTX_REG48 0x060 #define RXTX_REG49 0x062 #define RXTX_REG50 0x064 #define RXTX_REG51 0x066 #define RXTX_REG52 0x068 #define RXTX_REG53 0x06a #define RXTX_REG54 0x06c #define RXTX_REG55 0x06e #define RXTX_REG61 0x07a #define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \ (((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010)) #define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \ (((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0)) #define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \ (((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00)) #define RXTX_REG62 0x07c #define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \ (((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800)) #define RXTX_REG81 0x0a2 #define RXTX_REG89_MU_TH7_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG89_MU_TH8_SET(dst, src) \ (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) #define RXTX_REG89_MU_TH9_SET(dst, src) \ (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) #define RXTX_REG96 0x0c0 #define RXTX_REG96_MU_FREQ1_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG96_MU_FREQ2_SET(dst, src) \ (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) #define RXTX_REG96_MU_FREQ3_SET(dst, src) \ (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) #define RXTX_REG99 0x0c6 #define RXTX_REG99_MU_PHASE1_SET(dst, src) \ (((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800)) #define RXTX_REG99_MU_PHASE2_SET(dst, src) \ (((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0)) #define RXTX_REG99_MU_PHASE3_SET(dst, src) \ (((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e)) #define RXTX_REG102 0x0cc #define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \ (((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060)) #define RXTX_REG114 0x0e4 #define RXTX_REG121 0x0f2 #define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1) #define RXTX_REG125 0x0fa #define RXTX_REG125_PQ_REG_SET(dst, src) \ (((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00)) #define RXTX_REG125_SIGN_PQ_SET(dst, src) \ (((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100)) #define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \ (((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080)) #define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \ (((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c)) #define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define RXTX_REG127 0x0fe #define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002 #define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004 #define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \ (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) #define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \ (((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008)) #define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) #define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) #define RXTX_REG128 0x100 #define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \ (((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c)) #define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) #define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) #define RXTX_REG129 0x102 #define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) #define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) #define RXTX_REG130 0x104 #define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00)) #define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \ (((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0)) #define RXTX_REG145 0x122 #define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \ (((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001)) #define RXTX_REG145_RXES_ENA_SET(dst, src) \ (((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002)) #define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \ (((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000)) #define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \ (((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004)) #define RXTX_REG147 0x126 #define RXTX_REG148 0x128 /* Clock macro type */ enum cmu_type_t { REF_CMU = 0, /* Clock macro is the internal reference clock */ PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */ }; enum mux_type_t { MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */ MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */ }; enum clk_type_t { CLK_EXT_DIFF = 0, /* External differential */ CLK_INT_DIFF = 1, /* Internal differential */ CLK_INT_SING = 2, /* Internal single ended */ }; enum xgene_phy_mode { MODE_SATA = 0, /* List them for simple reference */ MODE_SGMII = 1, MODE_PCIE = 2, MODE_USB = 3, MODE_XFI = 4, MODE_MAX }; struct xgene_sata_override_param { u32 speed[MAX_LANE]; /* Index for override parameter per lane */ u32 txspeed[3]; /* Tx speed */ u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */ u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */ u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */ u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */ u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */ u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */ u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */ }; struct xgene_phy_ctx { struct device *dev; struct phy *phy; enum xgene_phy_mode mode; /* Mode of operation */ enum clk_type_t clk_type; /* Input clock selection */ void __iomem *sds_base; /* PHY CSR base addr */ struct clk *clk; /* Optional clock */ /* Override Serdes parameters */ struct xgene_sata_override_param sata_param; }; /* * For chip earlier than A3 version, enable this flag. * To enable, pass boot argument phy_xgene.preA3Chip=1 */ static int preA3Chip; MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)"); module_param_named(preA3Chip, preA3Chip, int, 0444); static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg, u32 indirect_data_reg, u32 addr, u32 data) { unsigned long deadline = jiffies + HZ; u32 val; u32 cmd; cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK; cmd = CFG_IND_ADDR_SET(cmd, addr); writel(data, csr_base + indirect_data_reg); readl(csr_base + indirect_data_reg); /* Force a barrier */ writel(cmd, csr_base + indirect_cmd_reg); readl(csr_base + indirect_cmd_reg); /* Force a barrier */ do { val = readl(csr_base + indirect_cmd_reg); } while (!(val & CFG_IND_CMD_DONE_MASK) && time_before(jiffies, deadline)); if (!(val & CFG_IND_CMD_DONE_MASK)) pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n", csr_base + indirect_cmd_reg, addr, data); } static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg, u32 indirect_data_reg, u32 addr, u32 *data) { unsigned long deadline = jiffies + HZ; u32 val; u32 cmd; cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK; cmd = CFG_IND_ADDR_SET(cmd, addr); writel(cmd, csr_base + indirect_cmd_reg); readl(csr_base + indirect_cmd_reg); /* Force a barrier */ do { val = readl(csr_base + indirect_cmd_reg); } while (!(val & CFG_IND_CMD_DONE_MASK) && time_before(jiffies, deadline)); *data = readl(csr_base + indirect_data_reg); if (!(val & CFG_IND_CMD_DONE_MASK)) pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n", csr_base + indirect_cmd_reg, addr, *data); } static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 data) { void __iomem *sds_base = ctx->sds_base; u32 val; if (cmu_type == REF_CMU) reg += SERDES_PLL_REF_INDIRECT_OFFSET; else reg += SERDES_PLL_INDIRECT_OFFSET; sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_WDATA_REG, reg, data); sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, &val); pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val); } static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 *data) { void __iomem *sds_base = ctx->sds_base; if (cmu_type == REF_CMU) reg += SERDES_PLL_REF_INDIRECT_OFFSET; else reg += SERDES_PLL_INDIRECT_OFFSET; sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, data); pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data); } static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 bits) { u32 val; cmu_rd(ctx, cmu_type, reg, &val); val |= bits; cmu_wr(ctx, cmu_type, reg, val); cmu_rd(ctx, cmu_type, reg, &val); val &= ~bits; cmu_wr(ctx, cmu_type, reg, val); } static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 bits) { u32 val; cmu_rd(ctx, cmu_type, reg, &val); val &= ~bits; cmu_wr(ctx, cmu_type, reg, val); } static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, u32 reg, u32 bits) { u32 val; cmu_rd(ctx, cmu_type, reg, &val); val |= bits; cmu_wr(ctx, cmu_type, reg, val); } static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data) { void __iomem *sds_base = ctx->sds_base; u32 val; reg += SERDES_INDIRECT_OFFSET; reg += lane * SERDES_LANE_STRIDE; sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_WDATA_REG, reg, data); sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, &val); pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val); } static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data) { void __iomem *sds_base = ctx->sds_base; reg += SERDES_INDIRECT_OFFSET; reg += lane * SERDES_LANE_STRIDE; sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG, SATA_ENET_SDS_IND_RDATA_REG, reg, data); pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data); } static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 bits) { u32 val; serdes_rd(ctx, lane, reg, &val); val &= ~bits; serdes_wr(ctx, lane, reg, val); } static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 bits) { u32 val; serdes_rd(ctx, lane, reg, &val); val |= bits; serdes_wr(ctx, lane, reg, val); } static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { u32 val; /* Set the reset sequence delay for TX ready assertion */ cmu_rd(ctx, cmu_type, CMU_REG12, &val); val = CMU_REG12_STATE_DELAY9_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG12, val); /* Set the programmable stage delays between various enable stages */ cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222); cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225); /* Configure clock type */ if (clk_type == CLK_EXT_DIFF) { /* Select external clock mux */ cmu_rd(ctx, cmu_type, CMU_REG0, &val); val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG0, val); /* Select CMOS as reference clock */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG1, val); dev_dbg(ctx->dev, "Set external reference clock\n"); } else if (clk_type == CLK_INT_DIFF) { /* Select internal clock mux */ cmu_rd(ctx, cmu_type, CMU_REG0, &val); val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG0, val); /* Select CMOS as reference clock */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG1, val); dev_dbg(ctx->dev, "Set internal reference clock\n"); } else if (clk_type == CLK_INT_SING) { /* * NOTE: This clock type is NOT support for controller * whose internal clock shared in the PCIe controller * * Select internal clock mux */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG1, val); /* Select CML as reference clock */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG1, val); dev_dbg(ctx->dev, "Set internal single ended reference clock\n"); } } static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { u32 val; int ref_100MHz; if (cmu_type == REF_CMU) { /* Set VCO calibration voltage threshold */ cmu_rd(ctx, cmu_type, CMU_REG34, &val); val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7); val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc); val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3); val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8); cmu_wr(ctx, cmu_type, CMU_REG34, val); } /* Set the VCO calibration counter */ cmu_rd(ctx, cmu_type, CMU_REG0, &val); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4); else val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7); cmu_wr(ctx, cmu_type, CMU_REG0, val); /* Configure PLL for calibration */ cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_PLL_CP_SET(val, 0x1); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5); else val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3); if (cmu_type == REF_CMU) val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); else val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG1, val); if (cmu_type != REF_CMU) cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); /* Configure the PLL for either 100MHz or 50MHz */ cmu_rd(ctx, cmu_type, CMU_REG2, &val); if (cmu_type == REF_CMU) { val = CMU_REG2_PLL_LFRES_SET(val, 0xa); ref_100MHz = 1; } else { val = CMU_REG2_PLL_LFRES_SET(val, 0x3); if (clk_type == CLK_EXT_DIFF) ref_100MHz = 0; else ref_100MHz = 1; } if (ref_100MHz) { val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M); val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M); } else { val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M); val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M); } cmu_wr(ctx, cmu_type, CMU_REG2, val); /* Configure the VCO */ cmu_rd(ctx, cmu_type, CMU_REG3, &val); if (cmu_type == REF_CMU) { val = CMU_REG3_VCOVARSEL_SET(val, 0x3); val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10); } else { val = CMU_REG3_VCOVARSEL_SET(val, 0xF); if (preA3Chip) val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15); else val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a); val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15); } cmu_wr(ctx, cmu_type, CMU_REG3, val); /* Disable force PLL lock */ cmu_rd(ctx, cmu_type, CMU_REG26, &val); val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG26, val); /* Setup PLL loop filter */ cmu_rd(ctx, cmu_type, CMU_REG5, &val); val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3); val = CMU_REG5_PLL_LFCAP_SET(val, 0x3); if (cmu_type == REF_CMU || !preA3Chip) val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7); else val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4); cmu_wr(ctx, cmu_type, CMU_REG5, val); /* Enable or disable manual calibration */ cmu_rd(ctx, cmu_type, CMU_REG6, &val); val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2); val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0); cmu_wr(ctx, cmu_type, CMU_REG6, val); /* Configure lane for 20-bits */ if (cmu_type == PHY_CMU) { cmu_rd(ctx, cmu_type, CMU_REG9, &val); val = CMU_REG9_TX_WORD_MODE_CH1_SET(val, CMU_REG9_WORD_LEN_20BIT); val = CMU_REG9_TX_WORD_MODE_CH0_SET(val, CMU_REG9_WORD_LEN_20BIT); val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1); if (!preA3Chip) { val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0); val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0); } cmu_wr(ctx, cmu_type, CMU_REG9, val); if (!preA3Chip) { cmu_rd(ctx, cmu_type, CMU_REG10, &val); val = CMU_REG10_VREG_REFSEL_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG10, val); } } cmu_rd(ctx, cmu_type, CMU_REG16, &val); val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1); val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4); else val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); cmu_wr(ctx, cmu_type, CMU_REG16, val); /* Configure for SATA */ cmu_rd(ctx, cmu_type, CMU_REG30, &val); val = CMU_REG30_PCIE_MODE_SET(val, 0x0); val = CMU_REG30_LOCK_COUNT_SET(val, 0x3); cmu_wr(ctx, cmu_type, CMU_REG30, val); /* Disable state machine bypass */ cmu_wr(ctx, cmu_type, CMU_REG31, 0xF); cmu_rd(ctx, cmu_type, CMU_REG32, &val); val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3); if (cmu_type == REF_CMU || preA3Chip) val = CMU_REG32_IREF_ADJ_SET(val, 0x3); else val = CMU_REG32_IREF_ADJ_SET(val, 0x1); cmu_wr(ctx, cmu_type, CMU_REG32, val); /* Set VCO calibration threshold */ if (cmu_type != REF_CMU && preA3Chip) cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27); else cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c); /* Set CTLE Override and override waiting from state machine */ cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F); } static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type) { u32 val; /* Set SSC modulation value */ cmu_rd(ctx, cmu_type, CMU_REG35, &val); val = CMU_REG35_PLL_SSC_MOD_SET(val, 98); cmu_wr(ctx, cmu_type, CMU_REG35, val); /* Enable SSC, set vertical step and DSM value */ cmu_rd(ctx, cmu_type, CMU_REG36, &val); val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30); val = CMU_REG36_PLL_SSC_EN_SET(val, 1); val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1); cmu_wr(ctx, cmu_type, CMU_REG36, val); /* Reset the PLL */ cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); /* Force VCO calibration to restart */ cmu_toggle1to0(ctx, cmu_type, CMU_REG32, CMU_REG32_FORCE_VCOCAL_START_MASK); } static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx) { u32 val; u32 reg; int i; int lane; for (lane = 0; lane < MAX_LANE; lane++) { serdes_wr(ctx, lane, RXTX_REG147, 0x6); /* Set boost control for quarter, half, and full rate */ serdes_rd(ctx, lane, RXTX_REG0, &val); val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10); val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10); val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10); serdes_wr(ctx, lane, RXTX_REG0, val); /* Set boost control value */ serdes_rd(ctx, lane, RXTX_REG1, &val); val = RXTX_REG1_RXACVCM_SET(val, 0x7); val = RXTX_REG1_CTLE_EQ_SET(val, ctx->sata_param.txboostgain[lane * 3 + ctx->sata_param.speed[lane]]); serdes_wr(ctx, lane, RXTX_REG1, val); /* Latch VTT value based on the termination to ground and * enable TX FIFO */ serdes_rd(ctx, lane, RXTX_REG2, &val); val = RXTX_REG2_VTT_ENA_SET(val, 0x1); val = RXTX_REG2_VTT_SEL_SET(val, 0x1); val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG2, val); /* Configure Tx for 20-bits */ serdes_rd(ctx, lane, RXTX_REG4, &val); val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); serdes_wr(ctx, lane, RXTX_REG4, val); if (!preA3Chip) { serdes_rd(ctx, lane, RXTX_REG1, &val); val = RXTX_REG1_RXVREG1_SET(val, 0x2); val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2); serdes_wr(ctx, lane, RXTX_REG1, val); } /* Set pre-emphasis first 1 and 2, and post-emphasis values */ serdes_rd(ctx, lane, RXTX_REG5, &val); val = RXTX_REG5_TX_CN1_SET(val, ctx->sata_param.txprecursor_cn1[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG5_TX_CP1_SET(val, ctx->sata_param.txpostcursor_cp1[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG5_TX_CN2_SET(val, ctx->sata_param.txprecursor_cn2[lane * 3 + ctx->sata_param.speed[lane]]); serdes_wr(ctx, lane, RXTX_REG5, val); /* Set TX amplitude value */ serdes_rd(ctx, lane, RXTX_REG6, &val); val = RXTX_REG6_TXAMP_CNTL_SET(val, ctx->sata_param.txamplitude[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1); val = RXTX_REG6_TX_IDLE_SET(val, 0x0); val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0); val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG6, val); /* Configure Rx for 20-bits */ serdes_rd(ctx, lane, RXTX_REG7, &val); val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0); val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT); serdes_wr(ctx, lane, RXTX_REG7, val); /* Set CDR and LOS values and enable Rx SSC */ serdes_rd(ctx, lane, RXTX_REG8, &val); val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1); val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0); val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1); val = RXTX_REG8_SD_DISABLE_SET(val, 0x0); val = RXTX_REG8_SD_VREF_SET(val, 0x4); serdes_wr(ctx, lane, RXTX_REG8, val); /* Set phase adjust upper/lower limits */ serdes_rd(ctx, lane, RXTX_REG11, &val); val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG11, val); /* Enable Latch Off; disable SUMOS and Tx termination */ serdes_rd(ctx, lane, RXTX_REG12, &val); val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1); val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0); val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG12, val); /* Set period error latch to 512T and enable BWL */ serdes_rd(ctx, lane, RXTX_REG26, &val); val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0); val = RXTX_REG26_BLWC_ENA_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG26, val); serdes_wr(ctx, lane, RXTX_REG28, 0x0); /* Set DFE loop preset value */ serdes_wr(ctx, lane, RXTX_REG31, 0x0); /* Set Eye Monitor counter width to 12-bit */ serdes_rd(ctx, lane, RXTX_REG61, &val); val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1); val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0); val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG61, val); serdes_rd(ctx, lane, RXTX_REG62, &val); val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG62, val); /* Set BW select tap X for DFE loop */ for (i = 0; i < 9; i++) { reg = RXTX_REG81 + i * 2; serdes_rd(ctx, lane, reg, &val); val = RXTX_REG89_MU_TH7_SET(val, 0xe); val = RXTX_REG89_MU_TH8_SET(val, 0xe); val = RXTX_REG89_MU_TH9_SET(val, 0xe); serdes_wr(ctx, lane, reg, val); } /* Set BW select tap X for frequency adjust loop */ for (i = 0; i < 3; i++) { reg = RXTX_REG96 + i * 2; serdes_rd(ctx, lane, reg, &val); val = RXTX_REG96_MU_FREQ1_SET(val, 0x10); val = RXTX_REG96_MU_FREQ2_SET(val, 0x10); val = RXTX_REG96_MU_FREQ3_SET(val, 0x10); serdes_wr(ctx, lane, reg, val); } /* Set BW select tap X for phase adjust loop */ for (i = 0; i < 3; i++) { reg = RXTX_REG99 + i * 2; serdes_rd(ctx, lane, reg, &val); val = RXTX_REG99_MU_PHASE1_SET(val, 0x7); val = RXTX_REG99_MU_PHASE2_SET(val, 0x7); val = RXTX_REG99_MU_PHASE3_SET(val, 0x7); serdes_wr(ctx, lane, reg, val); } serdes_rd(ctx, lane, RXTX_REG102, &val); val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG102, val); serdes_wr(ctx, lane, RXTX_REG114, 0xffe0); serdes_rd(ctx, lane, RXTX_REG125, &val); val = RXTX_REG125_SIGN_PQ_SET(val, ctx->sata_param.txeyedirection[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG125_PQ_REG_SET(val, ctx->sata_param.txeyetuning[lane * 3 + ctx->sata_param.speed[lane]]); val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG125, val); serdes_rd(ctx, lane, RXTX_REG127, &val); val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0); serdes_wr(ctx, lane, RXTX_REG127, val); serdes_rd(ctx, lane, RXTX_REG128, &val); val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3); serdes_wr(ctx, lane, RXTX_REG128, val); serdes_rd(ctx, lane, RXTX_REG145, &val); val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3); val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0); if (preA3Chip) { val = RXTX_REG145_RXES_ENA_SET(val, 0x1); val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1); } else { val = RXTX_REG145_RXES_ENA_SET(val, 0x0); val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0); } serdes_wr(ctx, lane, RXTX_REG145, val); /* * Set Rx LOS filter clock rate, sample rate, and threshold * windows */ for (i = 0; i < 4; i++) { reg = RXTX_REG148 + i * 2; serdes_wr(ctx, lane, reg, 0xFFFF); } } } static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { void __iomem *csr_serdes = ctx->sds_base; int loop; u32 val; /* Release PHY main reset */ writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL); readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ if (cmu_type != REF_CMU) { cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK); /* * As per PHY design spec, the PLL reset requires a minimum * of 800us. */ usleep_range(800, 1000); cmu_rd(ctx, cmu_type, CMU_REG1, &val); val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG1, val); /* * As per PHY design spec, the PLL auto calibration requires * a minimum of 800us. */ usleep_range(800, 1000); cmu_toggle1to0(ctx, cmu_type, CMU_REG32, CMU_REG32_FORCE_VCOCAL_START_MASK); /* * As per PHY design spec, the PLL requires a minimum of * 800us to settle. */ usleep_range(800, 1000); } if (!preA3Chip) goto skip_manual_cal; /* * Configure the termination resister calibration * The serial receive pins, RXP/RXN, have TERMination resistor * that is required to be calibrated. */ cmu_rd(ctx, cmu_type, CMU_REG17, &val); val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12); val = CMU_REG17_RESERVED_7_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG17, val); cmu_toggle1to0(ctx, cmu_type, CMU_REG17, CMU_REG17_PVT_TERM_MAN_ENA_MASK); /* * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN * resistors that are required to the calibrated. * Configure the pull DOWN calibration */ cmu_rd(ctx, cmu_type, CMU_REG17, &val); val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29); val = CMU_REG17_RESERVED_7_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG17, val); cmu_toggle1to0(ctx, cmu_type, CMU_REG16, CMU_REG16_PVT_DN_MAN_ENA_MASK); /* Configure the pull UP calibration */ cmu_rd(ctx, cmu_type, CMU_REG17, &val); val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28); val = CMU_REG17_RESERVED_7_SET(val, 0x0); cmu_wr(ctx, cmu_type, CMU_REG17, val); cmu_toggle1to0(ctx, cmu_type, CMU_REG16, CMU_REG16_PVT_UP_MAN_ENA_MASK); skip_manual_cal: /* Poll the PLL calibration completion status for at least 1 ms */ loop = 100; do { cmu_rd(ctx, cmu_type, CMU_REG7, &val); if (CMU_REG7_PLL_CALIB_DONE_RD(val)) break; /* * As per PHY design spec, PLL calibration status requires * a minimum of 10us to be updated. */ usleep_range(10, 100); } while (--loop > 0); cmu_rd(ctx, cmu_type, CMU_REG7, &val); dev_dbg(ctx->dev, "PLL calibration %s\n", CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed"); if (CMU_REG7_VCO_CAL_FAIL_RD(val)) { dev_err(ctx->dev, "PLL calibration failed due to VCO failure\n"); return -1; } dev_dbg(ctx->dev, "PLL calibration successful\n"); cmu_rd(ctx, cmu_type, CMU_REG15, &val); dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not "); return 0; } static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type, enum clk_type_t clk_type) { u32 val; dev_dbg(ctx->dev, "Reset VCO and re-start again\n"); if (cmu_type == PHY_CMU) { cmu_rd(ctx, cmu_type, CMU_REG16, &val); val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7); cmu_wr(ctx, cmu_type, CMU_REG16, val); } cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK); cmu_toggle1to0(ctx, cmu_type, CMU_REG32, CMU_REG32_FORCE_VCOCAL_START_MASK); } static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx, enum clk_type_t clk_type, int ssc_enable) { void __iomem *sds_base = ctx->sds_base; u32 val; int i; /* Configure the PHY for operation */ dev_dbg(ctx->dev, "Reset PHY\n"); /* Place PHY into reset */ writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL); val = readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ /* Release PHY lane from reset (active high) */ writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL); readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ /* Release all PHY module out of reset except PHY main reset */ writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL); readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */ /* Set the operation speed */ val = readl(sds_base + SATA_ENET_SDS_CTL1); val = CFG_I_SPD_SEL_CDR_OVR1_SET(val, ctx->sata_param.txspeed[ctx->sata_param.speed[0]]); writel(val, sds_base + SATA_ENET_SDS_CTL1); dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n"); val = readl(sds_base + SATA_ENET_SDS_CTL0); val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421); writel(val, sds_base + SATA_ENET_SDS_CTL0); /* Configure the clock macro unit (CMU) clock type */ xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type); /* Configure the clock macro */ xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type); /* Enable SSC if enabled */ if (ssc_enable) xgene_phy_ssc_enable(ctx, PHY_CMU); /* Configure PHY lanes */ xgene_phy_sata_cfg_lanes(ctx); /* Set Rx/Tx 20-bit */ val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0); val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3); val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3); writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0); /* Start PLL calibration and try for three times */ i = 10; do { if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type)) break; /* If failed, toggle the VCO power signal and start again */ xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type); } while (--i > 0); /* Even on failure, allow to continue any way */ if (i <= 0) dev_err(ctx->dev, "PLL calibration failed\n"); return 0; } static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx, enum clk_type_t clk_type, int ssc_enable) { int rc; dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type); if (ctx->mode == MODE_SATA) { rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable); if (rc) return rc; } else { dev_err(ctx->dev, "Un-supported customer pin mode %d\n", ctx->mode); return -ENODEV; } return 0; } /* * Receiver Offset Calibration: * * Calibrate the receiver signal path offset in two steps - summar and * latch calibrations */ static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane) { int i; static const struct { u32 reg; u32 val; } serdes_reg[] = { {RXTX_REG38, 0x0}, {RXTX_REG39, 0xff00}, {RXTX_REG40, 0xffff}, {RXTX_REG41, 0xffff}, {RXTX_REG42, 0xffff}, {RXTX_REG43, 0xffff}, {RXTX_REG44, 0xffff}, {RXTX_REG45, 0xffff}, {RXTX_REG46, 0xffff}, {RXTX_REG47, 0xfffc}, {RXTX_REG48, 0x0}, {RXTX_REG49, 0x0}, {RXTX_REG50, 0x0}, {RXTX_REG51, 0x0}, {RXTX_REG52, 0x0}, {RXTX_REG53, 0x0}, {RXTX_REG54, 0x0}, {RXTX_REG55, 0x0}, }; /* Start SUMMER calibration */ serdes_setbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_SUM_CAL_START_MASK); /* * As per PHY design spec, the Summer calibration requires a minimum * of 100us to complete. */ usleep_range(100, 500); serdes_clrbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_SUM_CAL_START_MASK); /* * As per PHY design spec, the auto calibration requires a minimum * of 100us to complete. */ usleep_range(100, 500); /* Start latch calibration */ serdes_setbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_LAT_CAL_START_MASK); /* * As per PHY design spec, the latch calibration requires a minimum * of 100us to complete. */ usleep_range(100, 500); serdes_clrbits(ctx, lane, RXTX_REG127, RXTX_REG127_FORCE_LAT_CAL_START_MASK); /* Configure the PHY lane for calibration */ serdes_wr(ctx, lane, RXTX_REG28, 0x7); serdes_wr(ctx, lane, RXTX_REG31, 0x7e00); serdes_clrbits(ctx, lane, RXTX_REG4, RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK); serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK); for (i = 0; i < ARRAY_SIZE(serdes_reg); i++) serdes_wr(ctx, lane, serdes_reg[i].reg, serdes_reg[i].val); } static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane) { /* Reset digital Rx */ serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); /* As per PHY design spec, the reset requires a minimum of 100us. */ usleep_range(100, 150); serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK); } static int xgene_phy_get_avg(int accum, int samples) { return (accum + (samples / 2)) / samples; } static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane) { int max_loop = 10; int avg_loop = 0; int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0; int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0; int sum_cal = 0; int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr; int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr; int sum_cal_itr; int fail_even; int fail_odd; u32 val; dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n", lane); /* Enable RX Hi-Z termination */ serdes_setbits(ctx, lane, RXTX_REG12, RXTX_REG12_RX_DET_TERM_ENABLE_MASK); /* Turn off DFE */ serdes_wr(ctx, lane, RXTX_REG28, 0x0000); /* DFE Presets to zero */ serdes_wr(ctx, lane, RXTX_REG31, 0x0000); /* * Receiver Offset Calibration: * Calibrate the receiver signal path offset in two steps - summar * and latch calibration. * Runs the "Receiver Offset Calibration multiple times to determine * the average value to use. */ while (avg_loop < max_loop) { /* Start the calibration */ xgene_phy_force_lat_summer_cal(ctx, lane); serdes_rd(ctx, lane, RXTX_REG21, &val); lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val); lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val); fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val); serdes_rd(ctx, lane, RXTX_REG22, &val); lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val); lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val); fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val); serdes_rd(ctx, lane, RXTX_REG23, &val); lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val); lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val); serdes_rd(ctx, lane, RXTX_REG24, &val); lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val); lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val); serdes_rd(ctx, lane, RXTX_REG121, &val); sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val); /* Check for failure. If passed, sum them for averaging */ if ((fail_even == 0 || fail_even == 1) && (fail_odd == 0 || fail_odd == 1)) { lat_do += lat_do_itr; lat_xo += lat_xo_itr; lat_eo += lat_eo_itr; lat_so += lat_so_itr; lat_de += lat_de_itr; lat_xe += lat_xe_itr; lat_ee += lat_ee_itr; lat_se += lat_se_itr; sum_cal += sum_cal_itr; dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop); dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n", lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr); dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n", lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr); dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr); ++avg_loop; } else { dev_err(ctx->dev, "Receiver calibration failed at %d loop\n", avg_loop); } xgene_phy_reset_rxd(ctx, lane); } /* Update latch manual calibration with average value */ serdes_rd(ctx, lane, RXTX_REG127, &val); val = RXTX_REG127_DO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_do, max_loop)); val = RXTX_REG127_XO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_xo, max_loop)); serdes_wr(ctx, lane, RXTX_REG127, val); serdes_rd(ctx, lane, RXTX_REG128, &val); val = RXTX_REG128_EO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_eo, max_loop)); val = RXTX_REG128_SO_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_so, max_loop)); serdes_wr(ctx, lane, RXTX_REG128, val); serdes_rd(ctx, lane, RXTX_REG129, &val); val = RXTX_REG129_DE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_de, max_loop)); val = RXTX_REG129_XE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_xe, max_loop)); serdes_wr(ctx, lane, RXTX_REG129, val); serdes_rd(ctx, lane, RXTX_REG130, &val); val = RXTX_REG130_EE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_ee, max_loop)); val = RXTX_REG130_SE_LATCH_MANCAL_SET(val, xgene_phy_get_avg(lat_se, max_loop)); serdes_wr(ctx, lane, RXTX_REG130, val); /* Update SUMMER calibration with average value */ serdes_rd(ctx, lane, RXTX_REG14, &val); val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val, xgene_phy_get_avg(sum_cal, max_loop)); serdes_wr(ctx, lane, RXTX_REG14, val); dev_dbg(ctx->dev, "Average Value:\n"); dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n", xgene_phy_get_avg(lat_do, max_loop), xgene_phy_get_avg(lat_xo, max_loop), xgene_phy_get_avg(lat_eo, max_loop), xgene_phy_get_avg(lat_so, max_loop)); dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n", xgene_phy_get_avg(lat_de, max_loop), xgene_phy_get_avg(lat_xe, max_loop), xgene_phy_get_avg(lat_ee, max_loop), xgene_phy_get_avg(lat_se, max_loop)); dev_dbg(ctx->dev, "SUM 0x%x\n", xgene_phy_get_avg(sum_cal, max_loop)); serdes_rd(ctx, lane, RXTX_REG14, &val); val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1); serdes_wr(ctx, lane, RXTX_REG14, val); dev_dbg(ctx->dev, "Enable Manual Summer calibration\n"); serdes_rd(ctx, lane, RXTX_REG127, &val); val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1); dev_dbg(ctx->dev, "Enable Manual Latch calibration\n"); serdes_wr(ctx, lane, RXTX_REG127, val); /* Disable RX Hi-Z termination */ serdes_rd(ctx, lane, RXTX_REG12, &val); val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0); serdes_wr(ctx, lane, RXTX_REG12, val); /* Turn on DFE */ serdes_wr(ctx, lane, RXTX_REG28, 0x0007); /* Set DFE preset */ serdes_wr(ctx, lane, RXTX_REG31, 0x7e00); } static int xgene_phy_hw_init(struct phy *phy) { struct xgene_phy_ctx *ctx = phy_get_drvdata(phy); int rc; int i; rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE); if (rc) { dev_err(ctx->dev, "PHY initialize failed %d\n", rc); return rc; } /* Setup clock properly after PHY configuration */ if (!IS_ERR(ctx->clk)) { /* HW requires an toggle of the clock */ clk_prepare_enable(ctx->clk); clk_disable_unprepare(ctx->clk); clk_prepare_enable(ctx->clk); } /* Compute average value */ for (i = 0; i < MAX_LANE; i++) xgene_phy_gen_avg_val(ctx, i); dev_dbg(ctx->dev, "PHY initialized\n"); return 0; } static const struct phy_ops xgene_phy_ops = { .init = xgene_phy_hw_init, .owner = THIS_MODULE, }; static struct phy *xgene_phy_xlate(struct device *dev, const struct of_phandle_args *args) { struct xgene_phy_ctx *ctx = dev_get_drvdata(dev); if (args->args_count <= 0) return ERR_PTR(-EINVAL); if (args->args[0] >= MODE_MAX) return ERR_PTR(-EINVAL); ctx->mode = args->args[0]; return ctx->phy; } static void xgene_phy_get_param(struct platform_device *pdev, const char *name, u32 *buffer, int count, u32 *default_val, u32 conv_factor) { int i; if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer, count)) { for (i = 0; i < count; i++) buffer[i] /= conv_factor; return; } /* Does not exist, load default */ for (i = 0; i < count; i++) buffer[i] = default_val[i % 3]; } static int xgene_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct xgene_phy_ctx *ctx; u32 default_spd[] = DEFAULT_SATA_SPD_SEL; u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN; u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION; u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING; u32 default_txamp[] = DEFAULT_SATA_TXAMP; u32 default_txcn1[] = DEFAULT_SATA_TXCN1; u32 default_txcn2[] = DEFAULT_SATA_TXCN2; u32 default_txcp1[] = DEFAULT_SATA_TXCP1; int i; ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->dev = &pdev->dev; ctx->sds_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ctx->sds_base)) return PTR_ERR(ctx->sds_base); /* Retrieve optional clock */ ctx->clk = clk_get(&pdev->dev, NULL); /* Load override paramaters */ xgene_phy_get_param(pdev, "apm,tx-eye-tuning", ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1); xgene_phy_get_param(pdev, "apm,tx-eye-direction", ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1); xgene_phy_get_param(pdev, "apm,tx-boost-gain", ctx->sata_param.txboostgain, 6, default_txboost_gain, 1); xgene_phy_get_param(pdev, "apm,tx-amplitude", ctx->sata_param.txamplitude, 6, default_txamp, 13300); xgene_phy_get_param(pdev, "apm,tx-pre-cursor1", ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200); xgene_phy_get_param(pdev, "apm,tx-pre-cursor2", ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200); xgene_phy_get_param(pdev, "apm,tx-post-cursor", ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200); xgene_phy_get_param(pdev, "apm,tx-speed", ctx->sata_param.txspeed, 3, default_spd, 1); for (i = 0; i < MAX_LANE; i++) ctx->sata_param.speed[i] = 2; /* Default to Gen3 */ platform_set_drvdata(pdev, ctx); ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops); if (IS_ERR(ctx->phy)) { dev_dbg(&pdev->dev, "Failed to create PHY\n"); return PTR_ERR(ctx->phy); } phy_set_drvdata(ctx->phy, ctx); phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate); return PTR_ERR_OR_ZERO(phy_provider); } static const struct of_device_id xgene_phy_of_match[] = { {.compatible = "apm,xgene-phy",}, {}, }; MODULE_DEVICE_TABLE(of, xgene_phy_of_match); static struct platform_driver xgene_phy_driver = { .probe = xgene_phy_probe, .driver = { .name = "xgene-phy", .of_match_table = xgene_phy_of_match, }, }; module_platform_driver(xgene_phy_driver); MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver"); MODULE_AUTHOR("Loc Ho <lho@apm.com>"); MODULE_LICENSE("GPL v2"); MODULE_VERSION("0.1");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1