Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Cristian Ciocaltea | 6690 | 100.00% | 1 | 100.00% |
Total | 6690 | 1 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (c) 2021-2022 Rockchip Electronics Co., Ltd. * Copyright (c) 2024 Collabora Ltd. * * Author: Algea Cao <algea.cao@rock-chips.com> * Author: Cristian Ciocaltea <cristian.ciocaltea@collabora.com> */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/rational.h> #include <linux/regmap.h> #include <linux/reset.h> #define GRF_HDPTX_CON0 0x00 #define HDPTX_I_PLL_EN BIT(7) #define HDPTX_I_BIAS_EN BIT(6) #define HDPTX_I_BGR_EN BIT(5) #define GRF_HDPTX_STATUS 0x80 #define HDPTX_O_PLL_LOCK_DONE BIT(3) #define HDPTX_O_PHY_CLK_RDY BIT(2) #define HDPTX_O_PHY_RDY BIT(1) #define HDPTX_O_SB_RDY BIT(0) #define HDTPX_REG(_n, _min, _max) \ ( \ BUILD_BUG_ON_ZERO((0x##_n) < (0x##_min)) + \ BUILD_BUG_ON_ZERO((0x##_n) > (0x##_max)) + \ ((0x##_n) * 4) \ ) #define CMN_REG(n) HDTPX_REG(n, 0000, 00a7) #define SB_REG(n) HDTPX_REG(n, 0100, 0129) #define LNTOP_REG(n) HDTPX_REG(n, 0200, 0229) #define LANE_REG(n) HDTPX_REG(n, 0300, 062d) /* CMN_REG(0008) */ #define LCPLL_EN_MASK BIT(6) #define LCPLL_LCVCO_MODE_EN_MASK BIT(4) /* CMN_REG(001e) */ #define LCPLL_PI_EN_MASK BIT(5) #define LCPLL_100M_CLK_EN_MASK BIT(0) /* CMN_REG(0025) */ #define LCPLL_PMS_IQDIV_RSTN BIT(4) /* CMN_REG(0028) */ #define LCPLL_SDC_FRAC_EN BIT(2) #define LCPLL_SDC_FRAC_RSTN BIT(0) /* CMN_REG(002d) */ #define LCPLL_SDC_N_MASK GENMASK(3, 1) /* CMN_REG(002e) */ #define LCPLL_SDC_NUMBERATOR_MASK GENMASK(5, 0) /* CMN_REG(002f) */ #define LCPLL_SDC_DENOMINATOR_MASK GENMASK(7, 2) #define LCPLL_SDC_NDIV_RSTN BIT(0) /* CMN_REG(003d) */ #define ROPLL_LCVCO_EN BIT(4) /* CMN_REG(004e) */ #define ROPLL_PI_EN BIT(5) /* CMN_REG(005c) */ #define ROPLL_PMS_IQDIV_RSTN BIT(5) /* CMN_REG(005e) */ #define ROPLL_SDM_EN_MASK BIT(6) #define ROPLL_SDM_FRAC_EN_RBR BIT(3) #define ROPLL_SDM_FRAC_EN_HBR BIT(2) #define ROPLL_SDM_FRAC_EN_HBR2 BIT(1) #define ROPLL_SDM_FRAC_EN_HBR3 BIT(0) /* CMN_REG(0064) */ #define ROPLL_SDM_NUM_SIGN_RBR_MASK BIT(3) /* CMN_REG(0069) */ #define ROPLL_SDC_N_RBR_MASK GENMASK(2, 0) /* CMN_REG(0074) */ #define ROPLL_SDC_NDIV_RSTN BIT(2) #define ROPLL_SSC_EN BIT(0) /* CMN_REG(0081) */ #define OVRD_PLL_CD_CLK_EN BIT(8) #define PLL_CD_HSCLK_EAST_EN BIT(0) /* CMN_REG(0086) */ #define PLL_PCG_POSTDIV_SEL_MASK GENMASK(7, 4) #define PLL_PCG_CLK_SEL_MASK GENMASK(3, 1) #define PLL_PCG_CLK_EN BIT(0) /* CMN_REG(0087) */ #define PLL_FRL_MODE_EN BIT(3) #define PLL_TX_HS_CLK_EN BIT(2) /* CMN_REG(0089) */ #define LCPLL_ALONE_MODE BIT(1) /* CMN_REG(0097) */ #define DIG_CLK_SEL BIT(1) #define ROPLL_REF BIT(1) #define LCPLL_REF 0 /* CMN_REG(0099) */ #define CMN_ROPLL_ALONE_MODE BIT(2) #define ROPLL_ALONE_MODE BIT(2) /* CMN_REG(009a) */ #define HS_SPEED_SEL BIT(0) #define DIV_10_CLOCK BIT(0) /* CMN_REG(009b) */ #define IS_SPEED_SEL BIT(4) #define LINK_SYMBOL_CLOCK BIT(4) #define LINK_SYMBOL_CLOCK1_2 0 /* SB_REG(0102) */ #define OVRD_SB_RXTERM_EN_MASK BIT(5) #define SB_RXTERM_EN_MASK BIT(4) #define ANA_SB_RXTERM_OFFSP_MASK GENMASK(3, 0) /* SB_REG(0103) */ #define ANA_SB_RXTERM_OFFSN_MASK GENMASK(6, 3) #define OVRD_SB_RX_RESCAL_DONE_MASK BIT(1) #define SB_RX_RESCAL_DONE_MASK BIT(0) /* SB_REG(0104) */ #define OVRD_SB_EN_MASK BIT(5) #define SB_EN_MASK BIT(4) /* SB_REG(0105) */ #define OVRD_SB_EARC_CMDC_EN_MASK BIT(6) #define SB_EARC_CMDC_EN_MASK BIT(5) #define ANA_SB_TX_HLVL_PROG_MASK GENMASK(2, 0) /* SB_REG(0106) */ #define ANA_SB_TX_LLVL_PROG_MASK GENMASK(6, 4) /* SB_REG(0109) */ #define ANA_SB_DMRX_AFC_DIV_RATIO_MASK GENMASK(2, 0) /* SB_REG(010f) */ #define OVRD_SB_VREG_EN_MASK BIT(7) #define SB_VREG_EN_MASK BIT(6) #define OVRD_SB_VREG_LPF_BYPASS_MASK BIT(5) #define SB_VREG_LPF_BYPASS_MASK BIT(4) #define ANA_SB_VREG_GAIN_CTRL_MASK GENMASK(3, 0) /* SB_REG(0110) */ #define ANA_SB_VREG_REF_SEL_MASK BIT(0) /* SB_REG(0113) */ #define SB_RX_RCAL_OPT_CODE_MASK GENMASK(5, 4) #define SB_RX_RTERM_CTRL_MASK GENMASK(3, 0) /* SB_REG(0114) */ #define SB_TG_SB_EN_DELAY_TIME_MASK GENMASK(5, 3) #define SB_TG_RXTERM_EN_DELAY_TIME_MASK GENMASK(2, 0) /* SB_REG(0115) */ #define SB_READY_DELAY_TIME_MASK GENMASK(5, 3) #define SB_TG_OSC_EN_DELAY_TIME_MASK GENMASK(2, 0) /* SB_REG(0116) */ #define AFC_RSTN_DELAY_TIME_MASK GENMASK(6, 4) /* SB_REG(0117) */ #define FAST_PULSE_TIME_MASK GENMASK(3, 0) /* SB_REG(011b) */ #define SB_EARC_SIG_DET_BYPASS_MASK BIT(4) #define SB_AFC_TOL_MASK GENMASK(3, 0) /* SB_REG(011f) */ #define SB_PWM_AFC_CTRL_MASK GENMASK(7, 2) #define SB_RCAL_RSTN_MASK BIT(1) /* SB_REG(0120) */ #define SB_EARC_EN_MASK BIT(1) #define SB_EARC_AFC_EN_MASK BIT(2) /* SB_REG(0123) */ #define OVRD_SB_READY_MASK BIT(5) #define SB_READY_MASK BIT(4) /* LNTOP_REG(0200) */ #define PROTOCOL_SEL BIT(2) #define HDMI_MODE BIT(2) #define HDMI_TMDS_FRL_SEL BIT(1) /* LNTOP_REG(0206) */ #define DATA_BUS_SEL BIT(0) #define DATA_BUS_36_40 BIT(0) /* LNTOP_REG(0207) */ #define LANE_EN 0xf #define ALL_LANE_EN 0xf /* LANE_REG(0312) */ #define LN0_TX_SER_RATE_SEL_RBR BIT(5) #define LN0_TX_SER_RATE_SEL_HBR BIT(4) #define LN0_TX_SER_RATE_SEL_HBR2 BIT(3) #define LN0_TX_SER_RATE_SEL_HBR3 BIT(2) /* LANE_REG(0412) */ #define LN1_TX_SER_RATE_SEL_RBR BIT(5) #define LN1_TX_SER_RATE_SEL_HBR BIT(4) #define LN1_TX_SER_RATE_SEL_HBR2 BIT(3) #define LN1_TX_SER_RATE_SEL_HBR3 BIT(2) /* LANE_REG(0512) */ #define LN2_TX_SER_RATE_SEL_RBR BIT(5) #define LN2_TX_SER_RATE_SEL_HBR BIT(4) #define LN2_TX_SER_RATE_SEL_HBR2 BIT(3) #define LN2_TX_SER_RATE_SEL_HBR3 BIT(2) /* LANE_REG(0612) */ #define LN3_TX_SER_RATE_SEL_RBR BIT(5) #define LN3_TX_SER_RATE_SEL_HBR BIT(4) #define LN3_TX_SER_RATE_SEL_HBR2 BIT(3) #define LN3_TX_SER_RATE_SEL_HBR3 BIT(2) struct lcpll_config { u32 bit_rate; u8 lcvco_mode_en; u8 pi_en; u8 clk_en_100m; u8 pms_mdiv; u8 pms_mdiv_afc; u8 pms_pdiv; u8 pms_refdiv; u8 pms_sdiv; u8 pi_cdiv_rstn; u8 pi_cdiv_sel; u8 sdm_en; u8 sdm_rstn; u8 sdc_frac_en; u8 sdc_rstn; u8 sdm_deno; u8 sdm_num_sign; u8 sdm_num; u8 sdc_n; u8 sdc_n2; u8 sdc_num; u8 sdc_deno; u8 sdc_ndiv_rstn; u8 ssc_en; u8 ssc_fm_dev; u8 ssc_fm_freq; u8 ssc_clk_div_sel; u8 cd_tx_ser_rate_sel; }; struct ropll_config { u32 bit_rate; u8 pms_mdiv; u8 pms_mdiv_afc; u8 pms_pdiv; u8 pms_refdiv; u8 pms_sdiv; u8 pms_iqdiv_rstn; u8 ref_clk_sel; u8 sdm_en; u8 sdm_rstn; u8 sdc_frac_en; u8 sdc_rstn; u8 sdm_clk_div; u8 sdm_deno; u8 sdm_num_sign; u8 sdm_num; u8 sdc_n; u8 sdc_num; u8 sdc_deno; u8 sdc_ndiv_rstn; u8 ssc_en; u8 ssc_fm_dev; u8 ssc_fm_freq; u8 ssc_clk_div_sel; u8 ana_cpp_ctrl; u8 ana_lpf_c_sel; u8 cd_tx_ser_rate_sel; }; enum rk_hdptx_reset { RST_PHY = 0, RST_APB, RST_INIT, RST_CMN, RST_LANE, RST_ROPLL, RST_LCPLL, RST_MAX }; struct rk_hdptx_phy { struct device *dev; struct regmap *regmap; struct regmap *grf; struct phy *phy; struct phy_config *phy_cfg; struct clk_bulk_data *clks; int nr_clks; struct reset_control_bulk_data rsts[RST_MAX]; }; static const struct ropll_config ropll_tmds_cfg[] = { { 5940000, 124, 124, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 62, 1, 16, 5, 0, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 3712500, 155, 155, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 62, 1, 16, 5, 0, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 2970000, 124, 124, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 62, 1, 16, 5, 0, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 1620000, 135, 135, 1, 1, 3, 1, 1, 0, 1, 1, 1, 1, 4, 0, 3, 5, 5, 0x10, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 1856250, 155, 155, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 62, 1, 16, 5, 0, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 1540000, 193, 193, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 193, 1, 32, 2, 1, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 1485000, 0x7b, 0x7b, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 0, 3, 5, 5, 0x10, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 1462500, 122, 122, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 244, 1, 16, 2, 1, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 1190000, 149, 149, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 149, 1, 16, 2, 1, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 1065000, 89, 89, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 89, 1, 16, 1, 0, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 1080000, 135, 135, 1, 1, 5, 1, 1, 0, 1, 0, 1, 1, 0x9, 0, 0x05, 0, 0x14, 0x18, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 855000, 214, 214, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 214, 1, 16, 2, 1, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 835000, 105, 105, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 42, 1, 16, 1, 0, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 928125, 155, 155, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 62, 1, 16, 5, 0, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 742500, 124, 124, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 62, 1, 16, 5, 0, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 650000, 162, 162, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 54, 0, 16, 4, 1, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 337500, 0x70, 0x70, 1, 1, 0xf, 1, 1, 1, 1, 1, 1, 1, 0x2, 0, 0x01, 5, 1, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 400000, 100, 100, 1, 1, 11, 1, 1, 0, 1, 0, 1, 1, 0x9, 0, 0x05, 0, 0x14, 0x18, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 270000, 0x5a, 0x5a, 1, 1, 0xf, 1, 1, 0, 1, 0, 1, 1, 0x9, 0, 0x05, 0, 0x14, 0x18, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, { 251750, 84, 84, 1, 1, 0xf, 1, 1, 1, 1, 1, 1, 1, 168, 1, 16, 4, 1, 1, 1, 0, 0x20, 0x0c, 1, 0x0e, 0, 0, }, }; static const struct reg_sequence rk_hdtpx_common_cmn_init_seq[] = { REG_SEQ0(CMN_REG(0009), 0x0c), REG_SEQ0(CMN_REG(000a), 0x83), REG_SEQ0(CMN_REG(000b), 0x06), REG_SEQ0(CMN_REG(000c), 0x20), REG_SEQ0(CMN_REG(000d), 0xb8), REG_SEQ0(CMN_REG(000e), 0x0f), REG_SEQ0(CMN_REG(000f), 0x0f), REG_SEQ0(CMN_REG(0010), 0x04), REG_SEQ0(CMN_REG(0011), 0x00), REG_SEQ0(CMN_REG(0012), 0x26), REG_SEQ0(CMN_REG(0013), 0x22), REG_SEQ0(CMN_REG(0014), 0x24), REG_SEQ0(CMN_REG(0015), 0x77), REG_SEQ0(CMN_REG(0016), 0x08), REG_SEQ0(CMN_REG(0017), 0x00), REG_SEQ0(CMN_REG(0018), 0x04), REG_SEQ0(CMN_REG(0019), 0x48), REG_SEQ0(CMN_REG(001a), 0x01), REG_SEQ0(CMN_REG(001b), 0x00), REG_SEQ0(CMN_REG(001c), 0x01), REG_SEQ0(CMN_REG(001d), 0x64), REG_SEQ0(CMN_REG(001f), 0x00), REG_SEQ0(CMN_REG(0026), 0x53), REG_SEQ0(CMN_REG(0029), 0x01), REG_SEQ0(CMN_REG(0030), 0x00), REG_SEQ0(CMN_REG(0031), 0x20), REG_SEQ0(CMN_REG(0032), 0x30), REG_SEQ0(CMN_REG(0033), 0x0b), REG_SEQ0(CMN_REG(0034), 0x23), REG_SEQ0(CMN_REG(0035), 0x00), REG_SEQ0(CMN_REG(0038), 0x00), REG_SEQ0(CMN_REG(0039), 0x00), REG_SEQ0(CMN_REG(003a), 0x00), REG_SEQ0(CMN_REG(003b), 0x00), REG_SEQ0(CMN_REG(003c), 0x80), REG_SEQ0(CMN_REG(003e), 0x0c), REG_SEQ0(CMN_REG(003f), 0x83), REG_SEQ0(CMN_REG(0040), 0x06), REG_SEQ0(CMN_REG(0041), 0x20), REG_SEQ0(CMN_REG(0042), 0xb8), REG_SEQ0(CMN_REG(0043), 0x00), REG_SEQ0(CMN_REG(0044), 0x46), REG_SEQ0(CMN_REG(0045), 0x24), REG_SEQ0(CMN_REG(0046), 0xff), REG_SEQ0(CMN_REG(0047), 0x00), REG_SEQ0(CMN_REG(0048), 0x44), REG_SEQ0(CMN_REG(0049), 0xfa), REG_SEQ0(CMN_REG(004a), 0x08), REG_SEQ0(CMN_REG(004b), 0x00), REG_SEQ0(CMN_REG(004c), 0x01), REG_SEQ0(CMN_REG(004d), 0x64), REG_SEQ0(CMN_REG(004e), 0x14), REG_SEQ0(CMN_REG(004f), 0x00), REG_SEQ0(CMN_REG(0050), 0x00), REG_SEQ0(CMN_REG(005d), 0x0c), REG_SEQ0(CMN_REG(005f), 0x01), REG_SEQ0(CMN_REG(006b), 0x04), REG_SEQ0(CMN_REG(0073), 0x30), REG_SEQ0(CMN_REG(0074), 0x00), REG_SEQ0(CMN_REG(0075), 0x20), REG_SEQ0(CMN_REG(0076), 0x30), REG_SEQ0(CMN_REG(0077), 0x08), REG_SEQ0(CMN_REG(0078), 0x0c), REG_SEQ0(CMN_REG(0079), 0x00), REG_SEQ0(CMN_REG(007b), 0x00), REG_SEQ0(CMN_REG(007c), 0x00), REG_SEQ0(CMN_REG(007d), 0x00), REG_SEQ0(CMN_REG(007e), 0x00), REG_SEQ0(CMN_REG(007f), 0x00), REG_SEQ0(CMN_REG(0080), 0x00), REG_SEQ0(CMN_REG(0081), 0x09), REG_SEQ0(CMN_REG(0082), 0x04), REG_SEQ0(CMN_REG(0083), 0x24), REG_SEQ0(CMN_REG(0084), 0x20), REG_SEQ0(CMN_REG(0085), 0x03), REG_SEQ0(CMN_REG(0086), 0x01), REG_SEQ0(CMN_REG(0087), 0x0c), REG_SEQ0(CMN_REG(008a), 0x55), REG_SEQ0(CMN_REG(008b), 0x25), REG_SEQ0(CMN_REG(008c), 0x2c), REG_SEQ0(CMN_REG(008d), 0x22), REG_SEQ0(CMN_REG(008e), 0x14), REG_SEQ0(CMN_REG(008f), 0x20), REG_SEQ0(CMN_REG(0090), 0x00), REG_SEQ0(CMN_REG(0091), 0x00), REG_SEQ0(CMN_REG(0092), 0x00), REG_SEQ0(CMN_REG(0093), 0x00), REG_SEQ0(CMN_REG(009a), 0x11), REG_SEQ0(CMN_REG(009b), 0x10), }; static const struct reg_sequence rk_hdtpx_tmds_cmn_init_seq[] = { REG_SEQ0(CMN_REG(0008), 0x00), REG_SEQ0(CMN_REG(0011), 0x01), REG_SEQ0(CMN_REG(0017), 0x20), REG_SEQ0(CMN_REG(001e), 0x14), REG_SEQ0(CMN_REG(0020), 0x00), REG_SEQ0(CMN_REG(0021), 0x00), REG_SEQ0(CMN_REG(0022), 0x11), REG_SEQ0(CMN_REG(0023), 0x00), REG_SEQ0(CMN_REG(0024), 0x00), REG_SEQ0(CMN_REG(0025), 0x53), REG_SEQ0(CMN_REG(0026), 0x00), REG_SEQ0(CMN_REG(0027), 0x00), REG_SEQ0(CMN_REG(0028), 0x01), REG_SEQ0(CMN_REG(002a), 0x00), REG_SEQ0(CMN_REG(002b), 0x00), REG_SEQ0(CMN_REG(002c), 0x00), REG_SEQ0(CMN_REG(002d), 0x00), REG_SEQ0(CMN_REG(002e), 0x04), REG_SEQ0(CMN_REG(002f), 0x00), REG_SEQ0(CMN_REG(0030), 0x20), REG_SEQ0(CMN_REG(0031), 0x30), REG_SEQ0(CMN_REG(0032), 0x0b), REG_SEQ0(CMN_REG(0033), 0x23), REG_SEQ0(CMN_REG(0034), 0x00), REG_SEQ0(CMN_REG(003d), 0x40), REG_SEQ0(CMN_REG(0042), 0x78), REG_SEQ0(CMN_REG(004e), 0x34), REG_SEQ0(CMN_REG(005c), 0x25), REG_SEQ0(CMN_REG(005e), 0x4f), REG_SEQ0(CMN_REG(0074), 0x04), REG_SEQ0(CMN_REG(0081), 0x01), REG_SEQ0(CMN_REG(0087), 0x04), REG_SEQ0(CMN_REG(0089), 0x00), REG_SEQ0(CMN_REG(0095), 0x00), REG_SEQ0(CMN_REG(0097), 0x02), REG_SEQ0(CMN_REG(0099), 0x04), REG_SEQ0(CMN_REG(009b), 0x00), }; static const struct reg_sequence rk_hdtpx_common_sb_init_seq[] = { REG_SEQ0(SB_REG(0114), 0x00), REG_SEQ0(SB_REG(0115), 0x00), REG_SEQ0(SB_REG(0116), 0x00), REG_SEQ0(SB_REG(0117), 0x00), }; static const struct reg_sequence rk_hdtpx_tmds_lntop_highbr_seq[] = { REG_SEQ0(LNTOP_REG(0201), 0x00), REG_SEQ0(LNTOP_REG(0202), 0x00), REG_SEQ0(LNTOP_REG(0203), 0x0f), REG_SEQ0(LNTOP_REG(0204), 0xff), REG_SEQ0(LNTOP_REG(0205), 0xff), }; static const struct reg_sequence rk_hdtpx_tmds_lntop_lowbr_seq[] = { REG_SEQ0(LNTOP_REG(0201), 0x07), REG_SEQ0(LNTOP_REG(0202), 0xc1), REG_SEQ0(LNTOP_REG(0203), 0xf0), REG_SEQ0(LNTOP_REG(0204), 0x7c), REG_SEQ0(LNTOP_REG(0205), 0x1f), }; static const struct reg_sequence rk_hdtpx_common_lane_init_seq[] = { REG_SEQ0(LANE_REG(0303), 0x0c), REG_SEQ0(LANE_REG(0307), 0x20), REG_SEQ0(LANE_REG(030a), 0x17), REG_SEQ0(LANE_REG(030b), 0x77), REG_SEQ0(LANE_REG(030c), 0x77), REG_SEQ0(LANE_REG(030d), 0x77), REG_SEQ0(LANE_REG(030e), 0x38), REG_SEQ0(LANE_REG(0310), 0x03), REG_SEQ0(LANE_REG(0311), 0x0f), REG_SEQ0(LANE_REG(0316), 0x02), REG_SEQ0(LANE_REG(031b), 0x01), REG_SEQ0(LANE_REG(031f), 0x15), REG_SEQ0(LANE_REG(0320), 0xa0), REG_SEQ0(LANE_REG(0403), 0x0c), REG_SEQ0(LANE_REG(0407), 0x20), REG_SEQ0(LANE_REG(040a), 0x17), REG_SEQ0(LANE_REG(040b), 0x77), REG_SEQ0(LANE_REG(040c), 0x77), REG_SEQ0(LANE_REG(040d), 0x77), REG_SEQ0(LANE_REG(040e), 0x38), REG_SEQ0(LANE_REG(0410), 0x03), REG_SEQ0(LANE_REG(0411), 0x0f), REG_SEQ0(LANE_REG(0416), 0x02), REG_SEQ0(LANE_REG(041b), 0x01), REG_SEQ0(LANE_REG(041f), 0x15), REG_SEQ0(LANE_REG(0420), 0xa0), REG_SEQ0(LANE_REG(0503), 0x0c), REG_SEQ0(LANE_REG(0507), 0x20), REG_SEQ0(LANE_REG(050a), 0x17), REG_SEQ0(LANE_REG(050b), 0x77), REG_SEQ0(LANE_REG(050c), 0x77), REG_SEQ0(LANE_REG(050d), 0x77), REG_SEQ0(LANE_REG(050e), 0x38), REG_SEQ0(LANE_REG(0510), 0x03), REG_SEQ0(LANE_REG(0511), 0x0f), REG_SEQ0(LANE_REG(0516), 0x02), REG_SEQ0(LANE_REG(051b), 0x01), REG_SEQ0(LANE_REG(051f), 0x15), REG_SEQ0(LANE_REG(0520), 0xa0), REG_SEQ0(LANE_REG(0603), 0x0c), REG_SEQ0(LANE_REG(0607), 0x20), REG_SEQ0(LANE_REG(060a), 0x17), REG_SEQ0(LANE_REG(060b), 0x77), REG_SEQ0(LANE_REG(060c), 0x77), REG_SEQ0(LANE_REG(060d), 0x77), REG_SEQ0(LANE_REG(060e), 0x38), REG_SEQ0(LANE_REG(0610), 0x03), REG_SEQ0(LANE_REG(0611), 0x0f), REG_SEQ0(LANE_REG(0616), 0x02), REG_SEQ0(LANE_REG(061b), 0x01), REG_SEQ0(LANE_REG(061f), 0x15), REG_SEQ0(LANE_REG(0620), 0xa0), }; static const struct reg_sequence rk_hdtpx_tmds_lane_init_seq[] = { REG_SEQ0(LANE_REG(0312), 0x00), REG_SEQ0(LANE_REG(031e), 0x00), REG_SEQ0(LANE_REG(0412), 0x00), REG_SEQ0(LANE_REG(041e), 0x00), REG_SEQ0(LANE_REG(0512), 0x00), REG_SEQ0(LANE_REG(051e), 0x00), REG_SEQ0(LANE_REG(0612), 0x00), REG_SEQ0(LANE_REG(061e), 0x08), REG_SEQ0(LANE_REG(0303), 0x2f), REG_SEQ0(LANE_REG(0403), 0x2f), REG_SEQ0(LANE_REG(0503), 0x2f), REG_SEQ0(LANE_REG(0603), 0x2f), REG_SEQ0(LANE_REG(0305), 0x03), REG_SEQ0(LANE_REG(0405), 0x03), REG_SEQ0(LANE_REG(0505), 0x03), REG_SEQ0(LANE_REG(0605), 0x03), REG_SEQ0(LANE_REG(0306), 0x1c), REG_SEQ0(LANE_REG(0406), 0x1c), REG_SEQ0(LANE_REG(0506), 0x1c), REG_SEQ0(LANE_REG(0606), 0x1c), }; static bool rk_hdptx_phy_is_rw_reg(struct device *dev, unsigned int reg) { switch (reg) { case 0x0000 ... 0x029c: case 0x0400 ... 0x04a4: case 0x0800 ... 0x08a4: case 0x0c00 ... 0x0cb4: case 0x1000 ... 0x10b4: case 0x1400 ... 0x14b4: case 0x1800 ... 0x18b4: return true; } return false; } static const struct regmap_config rk_hdptx_phy_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .writeable_reg = rk_hdptx_phy_is_rw_reg, .readable_reg = rk_hdptx_phy_is_rw_reg, .fast_io = true, .max_register = 0x18b4, }; #define rk_hdptx_multi_reg_write(hdptx, seq) \ regmap_multi_reg_write((hdptx)->regmap, seq, ARRAY_SIZE(seq)) static void rk_hdptx_pre_power_up(struct rk_hdptx_phy *hdptx) { u32 val; reset_control_assert(hdptx->rsts[RST_APB].rstc); usleep_range(20, 25); reset_control_deassert(hdptx->rsts[RST_APB].rstc); reset_control_assert(hdptx->rsts[RST_LANE].rstc); reset_control_assert(hdptx->rsts[RST_CMN].rstc); reset_control_assert(hdptx->rsts[RST_INIT].rstc); val = (HDPTX_I_PLL_EN | HDPTX_I_BIAS_EN | HDPTX_I_BGR_EN) << 16; regmap_write(hdptx->grf, GRF_HDPTX_CON0, val); } static int rk_hdptx_post_enable_lane(struct rk_hdptx_phy *hdptx) { u32 val; int ret; reset_control_deassert(hdptx->rsts[RST_LANE].rstc); val = (HDPTX_I_BIAS_EN | HDPTX_I_BGR_EN) << 16 | HDPTX_I_BIAS_EN | HDPTX_I_BGR_EN; regmap_write(hdptx->grf, GRF_HDPTX_CON0, val); ret = regmap_read_poll_timeout(hdptx->grf, GRF_HDPTX_STATUS, val, (val & HDPTX_O_PHY_RDY) && (val & HDPTX_O_PLL_LOCK_DONE), 100, 5000); if (ret) { dev_err(hdptx->dev, "Failed to get PHY lane lock: %d\n", ret); return ret; } dev_dbg(hdptx->dev, "PHY lane locked\n"); return 0; } static int rk_hdptx_post_enable_pll(struct rk_hdptx_phy *hdptx) { u32 val; int ret; val = (HDPTX_I_BIAS_EN | HDPTX_I_BGR_EN) << 16 | HDPTX_I_BIAS_EN | HDPTX_I_BGR_EN; regmap_write(hdptx->grf, GRF_HDPTX_CON0, val); usleep_range(10, 15); reset_control_deassert(hdptx->rsts[RST_INIT].rstc); usleep_range(10, 15); val = HDPTX_I_PLL_EN << 16 | HDPTX_I_PLL_EN; regmap_write(hdptx->grf, GRF_HDPTX_CON0, val); usleep_range(10, 15); reset_control_deassert(hdptx->rsts[RST_CMN].rstc); ret = regmap_read_poll_timeout(hdptx->grf, GRF_HDPTX_STATUS, val, val & HDPTX_O_PHY_CLK_RDY, 20, 400); if (ret) { dev_err(hdptx->dev, "Failed to get PHY clk ready: %d\n", ret); return ret; } dev_dbg(hdptx->dev, "PHY clk ready\n"); return 0; } static void rk_hdptx_phy_disable(struct rk_hdptx_phy *hdptx) { u32 val; /* reset phy and apb, or phy locked flag may keep 1 */ reset_control_assert(hdptx->rsts[RST_PHY].rstc); usleep_range(20, 30); reset_control_deassert(hdptx->rsts[RST_PHY].rstc); reset_control_assert(hdptx->rsts[RST_APB].rstc); usleep_range(20, 30); reset_control_deassert(hdptx->rsts[RST_APB].rstc); regmap_write(hdptx->regmap, LANE_REG(0300), 0x82); regmap_write(hdptx->regmap, SB_REG(010f), 0xc1); regmap_write(hdptx->regmap, SB_REG(0110), 0x1); regmap_write(hdptx->regmap, LANE_REG(0301), 0x80); regmap_write(hdptx->regmap, LANE_REG(0401), 0x80); regmap_write(hdptx->regmap, LANE_REG(0501), 0x80); regmap_write(hdptx->regmap, LANE_REG(0601), 0x80); reset_control_assert(hdptx->rsts[RST_LANE].rstc); reset_control_assert(hdptx->rsts[RST_CMN].rstc); reset_control_assert(hdptx->rsts[RST_INIT].rstc); val = (HDPTX_I_PLL_EN | HDPTX_I_BIAS_EN | HDPTX_I_BGR_EN) << 16; regmap_write(hdptx->grf, GRF_HDPTX_CON0, val); } static bool rk_hdptx_phy_clk_pll_calc(unsigned int data_rate, struct ropll_config *cfg) { const unsigned int fout = data_rate / 2, fref = 24000; unsigned long k = 0, lc, k_sub, lc_sub; unsigned int fvco, sdc; u32 mdiv, sdiv, n = 8; if (fout > 0xfffffff) return false; for (sdiv = 16; sdiv >= 1; sdiv--) { if (sdiv % 2 && sdiv != 1) continue; fvco = fout * sdiv; if (fvco < 2000000 || fvco > 4000000) continue; mdiv = DIV_ROUND_UP(fvco, fref); if (mdiv < 20 || mdiv > 255) continue; if (fref * mdiv - fvco) { for (sdc = 264000; sdc <= 750000; sdc += fref) if (sdc * n > fref * mdiv) break; if (sdc > 750000) continue; rational_best_approximation(fref * mdiv - fvco, sdc / 16, GENMASK(6, 0), GENMASK(7, 0), &k, &lc); rational_best_approximation(sdc * n - fref * mdiv, sdc, GENMASK(6, 0), GENMASK(7, 0), &k_sub, &lc_sub); } break; } if (sdiv < 1) return false; if (cfg) { cfg->pms_mdiv = mdiv; cfg->pms_mdiv_afc = mdiv; cfg->pms_pdiv = 1; cfg->pms_refdiv = 1; cfg->pms_sdiv = sdiv - 1; cfg->sdm_en = k > 0 ? 1 : 0; if (cfg->sdm_en) { cfg->sdm_deno = lc; cfg->sdm_num_sign = 1; cfg->sdm_num = k; cfg->sdc_n = n - 3; cfg->sdc_num = k_sub; cfg->sdc_deno = lc_sub; } } return true; } static int rk_hdptx_ropll_tmds_cmn_config(struct rk_hdptx_phy *hdptx, unsigned int rate) { const struct ropll_config *cfg = NULL; struct ropll_config rc = {0}; int i; for (i = 0; i < ARRAY_SIZE(ropll_tmds_cfg); i++) if (rate == ropll_tmds_cfg[i].bit_rate) { cfg = &ropll_tmds_cfg[i]; break; } if (!cfg) { if (rk_hdptx_phy_clk_pll_calc(rate, &rc)) { cfg = &rc; } else { dev_err(hdptx->dev, "%s cannot find pll cfg\n", __func__); return -EINVAL; } } dev_dbg(hdptx->dev, "mdiv=%u, sdiv=%u, sdm_en=%u, k_sign=%u, k=%u, lc=%u\n", cfg->pms_mdiv, cfg->pms_sdiv + 1, cfg->sdm_en, cfg->sdm_num_sign, cfg->sdm_num, cfg->sdm_deno); rk_hdptx_pre_power_up(hdptx); reset_control_assert(hdptx->rsts[RST_ROPLL].rstc); usleep_range(20, 30); reset_control_deassert(hdptx->rsts[RST_ROPLL].rstc); rk_hdptx_multi_reg_write(hdptx, rk_hdtpx_common_cmn_init_seq); rk_hdptx_multi_reg_write(hdptx, rk_hdtpx_tmds_cmn_init_seq); regmap_write(hdptx->regmap, CMN_REG(0051), cfg->pms_mdiv); regmap_write(hdptx->regmap, CMN_REG(0055), cfg->pms_mdiv_afc); regmap_write(hdptx->regmap, CMN_REG(0059), (cfg->pms_pdiv << 4) | cfg->pms_refdiv); regmap_write(hdptx->regmap, CMN_REG(005a), cfg->pms_sdiv << 4); regmap_update_bits(hdptx->regmap, CMN_REG(005e), ROPLL_SDM_EN_MASK, FIELD_PREP(ROPLL_SDM_EN_MASK, cfg->sdm_en)); if (!cfg->sdm_en) regmap_update_bits(hdptx->regmap, CMN_REG(005e), 0xf, 0); regmap_update_bits(hdptx->regmap, CMN_REG(0064), ROPLL_SDM_NUM_SIGN_RBR_MASK, FIELD_PREP(ROPLL_SDM_NUM_SIGN_RBR_MASK, cfg->sdm_num_sign)); regmap_write(hdptx->regmap, CMN_REG(0060), cfg->sdm_deno); regmap_write(hdptx->regmap, CMN_REG(0065), cfg->sdm_num); regmap_update_bits(hdptx->regmap, CMN_REG(0069), ROPLL_SDC_N_RBR_MASK, FIELD_PREP(ROPLL_SDC_N_RBR_MASK, cfg->sdc_n)); regmap_write(hdptx->regmap, CMN_REG(006c), cfg->sdc_num); regmap_write(hdptx->regmap, CMN_REG(0070), cfg->sdc_deno); regmap_update_bits(hdptx->regmap, CMN_REG(0086), PLL_PCG_POSTDIV_SEL_MASK, FIELD_PREP(PLL_PCG_POSTDIV_SEL_MASK, cfg->pms_sdiv)); regmap_update_bits(hdptx->regmap, CMN_REG(0086), PLL_PCG_CLK_EN, PLL_PCG_CLK_EN); return rk_hdptx_post_enable_pll(hdptx); } static int rk_hdptx_ropll_tmds_mode_config(struct rk_hdptx_phy *hdptx, unsigned int rate) { u32 val; int ret; ret = regmap_read(hdptx->grf, GRF_HDPTX_STATUS, &val); if (ret) return ret; if (!(val & HDPTX_O_PLL_LOCK_DONE)) { ret = rk_hdptx_ropll_tmds_cmn_config(hdptx, rate); if (ret) return ret; } rk_hdptx_multi_reg_write(hdptx, rk_hdtpx_common_sb_init_seq); regmap_write(hdptx->regmap, LNTOP_REG(0200), 0x06); if (rate >= 3400000) { /* For 1/40 bitrate clk */ rk_hdptx_multi_reg_write(hdptx, rk_hdtpx_tmds_lntop_highbr_seq); } else { /* For 1/10 bitrate clk */ rk_hdptx_multi_reg_write(hdptx, rk_hdtpx_tmds_lntop_lowbr_seq); } regmap_write(hdptx->regmap, LNTOP_REG(0206), 0x07); regmap_write(hdptx->regmap, LNTOP_REG(0207), 0x0f); rk_hdptx_multi_reg_write(hdptx, rk_hdtpx_common_lane_init_seq); rk_hdptx_multi_reg_write(hdptx, rk_hdtpx_tmds_lane_init_seq); return rk_hdptx_post_enable_lane(hdptx); } static int rk_hdptx_phy_power_on(struct phy *phy) { struct rk_hdptx_phy *hdptx = phy_get_drvdata(phy); int ret, bus_width = phy_get_bus_width(hdptx->phy); /* * FIXME: Temporary workaround to pass pixel_clk_rate * from the HDMI bridge driver until phy_configure_opts_hdmi * becomes available in the PHY API. */ unsigned int rate = bus_width & 0xfffffff; dev_dbg(hdptx->dev, "%s bus_width=%x rate=%u\n", __func__, bus_width, rate); ret = pm_runtime_resume_and_get(hdptx->dev); if (ret) { dev_err(hdptx->dev, "Failed to resume phy: %d\n", ret); return ret; } ret = rk_hdptx_ropll_tmds_mode_config(hdptx, rate); if (ret) pm_runtime_put(hdptx->dev); return ret; } static int rk_hdptx_phy_power_off(struct phy *phy) { struct rk_hdptx_phy *hdptx = phy_get_drvdata(phy); u32 val; int ret; ret = regmap_read(hdptx->grf, GRF_HDPTX_STATUS, &val); if (ret == 0 && (val & HDPTX_O_PLL_LOCK_DONE)) rk_hdptx_phy_disable(hdptx); pm_runtime_put(hdptx->dev); return ret; } static const struct phy_ops rk_hdptx_phy_ops = { .power_on = rk_hdptx_phy_power_on, .power_off = rk_hdptx_phy_power_off, .owner = THIS_MODULE, }; static int rk_hdptx_phy_runtime_suspend(struct device *dev) { struct rk_hdptx_phy *hdptx = dev_get_drvdata(dev); clk_bulk_disable_unprepare(hdptx->nr_clks, hdptx->clks); return 0; } static int rk_hdptx_phy_runtime_resume(struct device *dev) { struct rk_hdptx_phy *hdptx = dev_get_drvdata(dev); int ret; ret = clk_bulk_prepare_enable(hdptx->nr_clks, hdptx->clks); if (ret) dev_err(hdptx->dev, "Failed to enable clocks: %d\n", ret); return ret; } static int rk_hdptx_phy_probe(struct platform_device *pdev) { struct phy_provider *phy_provider; struct device *dev = &pdev->dev; struct rk_hdptx_phy *hdptx; void __iomem *regs; int ret; hdptx = devm_kzalloc(dev, sizeof(*hdptx), GFP_KERNEL); if (!hdptx) return -ENOMEM; hdptx->dev = dev; regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(regs)) return dev_err_probe(dev, PTR_ERR(regs), "Failed to ioremap resource\n"); ret = devm_clk_bulk_get_all(dev, &hdptx->clks); if (ret < 0) return dev_err_probe(dev, ret, "Failed to get clocks\n"); if (ret == 0) return dev_err_probe(dev, -EINVAL, "Missing clocks\n"); hdptx->nr_clks = ret; hdptx->regmap = devm_regmap_init_mmio(dev, regs, &rk_hdptx_phy_regmap_config); if (IS_ERR(hdptx->regmap)) return dev_err_probe(dev, PTR_ERR(hdptx->regmap), "Failed to init regmap\n"); hdptx->rsts[RST_PHY].id = "phy"; hdptx->rsts[RST_APB].id = "apb"; hdptx->rsts[RST_INIT].id = "init"; hdptx->rsts[RST_CMN].id = "cmn"; hdptx->rsts[RST_LANE].id = "lane"; hdptx->rsts[RST_ROPLL].id = "ropll"; hdptx->rsts[RST_LCPLL].id = "lcpll"; ret = devm_reset_control_bulk_get_exclusive(dev, RST_MAX, hdptx->rsts); if (ret) return dev_err_probe(dev, ret, "Failed to get resets\n"); hdptx->grf = syscon_regmap_lookup_by_phandle(dev->of_node, "rockchip,grf"); if (IS_ERR(hdptx->grf)) return dev_err_probe(dev, PTR_ERR(hdptx->grf), "Could not get GRF syscon\n"); hdptx->phy = devm_phy_create(dev, NULL, &rk_hdptx_phy_ops); if (IS_ERR(hdptx->phy)) return dev_err_probe(dev, PTR_ERR(hdptx->phy), "Failed to create HDMI PHY\n"); platform_set_drvdata(pdev, hdptx); phy_set_drvdata(hdptx->phy, hdptx); phy_set_bus_width(hdptx->phy, 8); ret = devm_pm_runtime_enable(dev); if (ret) return dev_err_probe(dev, ret, "Failed to enable runtime PM\n"); phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); if (IS_ERR(phy_provider)) return dev_err_probe(dev, PTR_ERR(phy_provider), "Failed to register PHY provider\n"); reset_control_deassert(hdptx->rsts[RST_APB].rstc); reset_control_deassert(hdptx->rsts[RST_CMN].rstc); reset_control_deassert(hdptx->rsts[RST_INIT].rstc); return 0; } static const struct dev_pm_ops rk_hdptx_phy_pm_ops = { RUNTIME_PM_OPS(rk_hdptx_phy_runtime_suspend, rk_hdptx_phy_runtime_resume, NULL) }; static const struct of_device_id rk_hdptx_phy_of_match[] = { { .compatible = "rockchip,rk3588-hdptx-phy", }, {} }; MODULE_DEVICE_TABLE(of, rk_hdptx_phy_of_match); static struct platform_driver rk_hdptx_phy_driver = { .probe = rk_hdptx_phy_probe, .driver = { .name = "rockchip-hdptx-phy", .pm = &rk_hdptx_phy_pm_ops, .of_match_table = rk_hdptx_phy_of_match, }, }; module_platform_driver(rk_hdptx_phy_driver); MODULE_AUTHOR("Algea Cao <algea.cao@rock-chips.com>"); MODULE_AUTHOR("Cristian Ciocaltea <cristian.ciocaltea@collabora.com>"); MODULE_DESCRIPTION("Samsung HDMI/eDP Transmitter Combo PHY Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1