Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sreedhara DS | 1015 | 40.41% | 3 | 7.14% |
Mika Westerberg | 981 | 39.05% | 9 | 21.43% |
Andy Shevchenko | 230 | 9.16% | 11 | 26.19% |
Stephen Boyd | 145 | 5.77% | 3 | 7.14% |
Kuppuswamy Sathyanarayanan | 94 | 3.74% | 4 | 9.52% |
Arjan van de Ven | 14 | 0.56% | 2 | 4.76% |
Alan Cox | 13 | 0.52% | 3 | 7.14% |
Hong Liu | 12 | 0.48% | 2 | 4.76% |
Axel Lin | 4 | 0.16% | 1 | 2.38% |
Prashant Malani | 2 | 0.08% | 2 | 4.76% |
Paul Gortmaker | 1 | 0.04% | 1 | 2.38% |
Feng Tang | 1 | 0.04% | 1 | 2.38% |
Total | 2512 | 42 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for the Intel SCU IPC mechanism * * (C) Copyright 2008-2010,2015 Intel Corporation * Author: Sreedhara DS (sreedhara.ds@intel.com) * * SCU running in ARC processor communicates with other entity running in IA * core through IPC mechanism which in turn messaging between IA core ad SCU. * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC) * along with other APIs. */ #include <linux/delay.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/slab.h> #include <asm/intel_scu_ipc.h> /* IPC defines the following message types */ #define IPCMSG_PCNTRL 0xff /* Power controller unit read/write */ /* Command id associated with message IPCMSG_PCNTRL */ #define IPC_CMD_PCNTRL_W 0 /* Register write */ #define IPC_CMD_PCNTRL_R 1 /* Register read */ #define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */ /* * IPC register summary * * IPC register blocks are memory mapped at fixed address of PCI BAR 0. * To read or write information to the SCU, driver writes to IPC-1 memory * mapped registers. The following is the IPC mechanism * * 1. IA core cDMI interface claims this transaction and converts it to a * Transaction Layer Packet (TLP) message which is sent across the cDMI. * * 2. South Complex cDMI block receives this message and writes it to * the IPC-1 register block, causing an interrupt to the SCU * * 3. SCU firmware decodes this interrupt and IPC message and the appropriate * message handler is called within firmware. */ #define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */ #define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */ #define IPC_IOC 0x100 /* IPC command register IOC bit */ struct intel_scu_ipc_dev { struct device dev; struct resource mem; struct module *owner; int irq; void __iomem *ipc_base; struct completion cmd_complete; }; #define IPC_STATUS 0x04 #define IPC_STATUS_IRQ BIT(2) #define IPC_STATUS_ERR BIT(1) #define IPC_STATUS_BUSY BIT(0) /* * IPC Write/Read Buffers: * 16 byte buffer for sending and receiving data to and from SCU. */ #define IPC_WRITE_BUFFER 0x80 #define IPC_READ_BUFFER 0x90 /* Timeout in jiffies */ #define IPC_TIMEOUT (10 * HZ) static struct intel_scu_ipc_dev *ipcdev; /* Only one for now */ static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */ static struct class intel_scu_ipc_class = { .name = "intel_scu_ipc", }; /** * intel_scu_ipc_dev_get() - Get SCU IPC instance * * The recommended new API takes SCU IPC instance as parameter and this * function can be called by driver to get the instance. This also makes * sure the driver providing the IPC functionality cannot be unloaded * while the caller has the instance. * * Call intel_scu_ipc_dev_put() to release the instance. * * Returns %NULL if SCU IPC is not currently available. */ struct intel_scu_ipc_dev *intel_scu_ipc_dev_get(void) { struct intel_scu_ipc_dev *scu = NULL; mutex_lock(&ipclock); if (ipcdev) { get_device(&ipcdev->dev); /* * Prevent the IPC provider from being unloaded while it * is being used. */ if (!try_module_get(ipcdev->owner)) put_device(&ipcdev->dev); else scu = ipcdev; } mutex_unlock(&ipclock); return scu; } EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_get); /** * intel_scu_ipc_dev_put() - Put SCU IPC instance * @scu: SCU IPC instance * * This function releases the SCU IPC instance retrieved from * intel_scu_ipc_dev_get() and allows the driver providing IPC to be * unloaded. */ void intel_scu_ipc_dev_put(struct intel_scu_ipc_dev *scu) { if (scu) { module_put(scu->owner); put_device(&scu->dev); } } EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_put); struct intel_scu_ipc_devres { struct intel_scu_ipc_dev *scu; }; static void devm_intel_scu_ipc_dev_release(struct device *dev, void *res) { struct intel_scu_ipc_devres *dr = res; struct intel_scu_ipc_dev *scu = dr->scu; intel_scu_ipc_dev_put(scu); } /** * devm_intel_scu_ipc_dev_get() - Allocate managed SCU IPC device * @dev: Device requesting the SCU IPC device * * The recommended new API takes SCU IPC instance as parameter and this * function can be called by driver to get the instance. This also makes * sure the driver providing the IPC functionality cannot be unloaded * while the caller has the instance. * * Returns %NULL if SCU IPC is not currently available. */ struct intel_scu_ipc_dev *devm_intel_scu_ipc_dev_get(struct device *dev) { struct intel_scu_ipc_devres *dr; struct intel_scu_ipc_dev *scu; dr = devres_alloc(devm_intel_scu_ipc_dev_release, sizeof(*dr), GFP_KERNEL); if (!dr) return NULL; scu = intel_scu_ipc_dev_get(); if (!scu) { devres_free(dr); return NULL; } dr->scu = scu; devres_add(dev, dr); return scu; } EXPORT_SYMBOL_GPL(devm_intel_scu_ipc_dev_get); /* * Send ipc command * Command Register (Write Only): * A write to this register results in an interrupt to the SCU core processor * Format: * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)| */ static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd) { reinit_completion(&scu->cmd_complete); writel(cmd | IPC_IOC, scu->ipc_base); } /* * Write ipc data * IPC Write Buffer (Write Only): * 16-byte buffer for sending data associated with IPC command to * SCU. Size of the data is specified in the IPC_COMMAND_REG register */ static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset) { writel(data, scu->ipc_base + IPC_WRITE_BUFFER + offset); } /* * Status Register (Read Only): * Driver will read this register to get the ready/busy status of the IPC * block and error status of the IPC command that was just processed by SCU * Format: * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)| */ static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu) { return __raw_readl(scu->ipc_base + IPC_STATUS); } /* Read ipc byte data */ static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset) { return readb(scu->ipc_base + IPC_READ_BUFFER + offset); } /* Read ipc u32 data */ static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset) { return readl(scu->ipc_base + IPC_READ_BUFFER + offset); } /* Wait till scu status is busy */ static inline int busy_loop(struct intel_scu_ipc_dev *scu) { u8 status; int err; err = readx_poll_timeout(ipc_read_status, scu, status, !(status & IPC_STATUS_BUSY), 100, jiffies_to_usecs(IPC_TIMEOUT)); if (err) return err; return (status & IPC_STATUS_ERR) ? -EIO : 0; } /* Wait till ipc ioc interrupt is received or timeout in 10 HZ */ static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu) { int status; wait_for_completion_timeout(&scu->cmd_complete, IPC_TIMEOUT); status = ipc_read_status(scu); if (status & IPC_STATUS_BUSY) return -ETIMEDOUT; if (status & IPC_STATUS_ERR) return -EIO; return 0; } static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu) { return scu->irq > 0 ? ipc_wait_for_interrupt(scu) : busy_loop(scu); } static struct intel_scu_ipc_dev *intel_scu_ipc_get(struct intel_scu_ipc_dev *scu) { u8 status; if (!scu) scu = ipcdev; if (!scu) return ERR_PTR(-ENODEV); status = ipc_read_status(scu); if (status & IPC_STATUS_BUSY) { dev_dbg(&scu->dev, "device is busy\n"); return ERR_PTR(-EBUSY); } return scu; } /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */ static int pwr_reg_rdwr(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data, u32 count, u32 op, u32 id) { int nc; u32 offset = 0; int err; u8 cbuf[IPC_WWBUF_SIZE]; u32 *wbuf = (u32 *)&cbuf; memset(cbuf, 0, sizeof(cbuf)); mutex_lock(&ipclock); scu = intel_scu_ipc_get(scu); if (IS_ERR(scu)) { mutex_unlock(&ipclock); return PTR_ERR(scu); } for (nc = 0; nc < count; nc++, offset += 2) { cbuf[offset] = addr[nc]; cbuf[offset + 1] = addr[nc] >> 8; } if (id == IPC_CMD_PCNTRL_R) { for (nc = 0, offset = 0; nc < count; nc++, offset += 4) ipc_data_writel(scu, wbuf[nc], offset); ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op); } else if (id == IPC_CMD_PCNTRL_W) { for (nc = 0; nc < count; nc++, offset += 1) cbuf[offset] = data[nc]; for (nc = 0, offset = 0; nc < count; nc++, offset += 4) ipc_data_writel(scu, wbuf[nc], offset); ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op); } else if (id == IPC_CMD_PCNTRL_M) { cbuf[offset] = data[0]; cbuf[offset + 1] = data[1]; ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */ ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op); } err = intel_scu_ipc_check_status(scu); if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */ /* Workaround: values are read as 0 without memcpy_fromio */ memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16); for (nc = 0; nc < count; nc++) data[nc] = ipc_data_readb(scu, nc); } mutex_unlock(&ipclock); return err; } /** * intel_scu_ipc_dev_ioread8() - Read a byte via the SCU * @scu: Optional SCU IPC instance * @addr: Register on SCU * @data: Return pointer for read byte * * Read a single register. Returns %0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_dev_ioread8(struct intel_scu_ipc_dev *scu, u16 addr, u8 *data) { return pwr_reg_rdwr(scu, &addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_dev_ioread8); /** * intel_scu_ipc_dev_iowrite8() - Write a byte via the SCU * @scu: Optional SCU IPC instance * @addr: Register on SCU * @data: Byte to write * * Write a single register. Returns %0 on success or an error code. All * locking between SCU accesses is handled for the caller. * * This function may sleep. */ int intel_scu_ipc_dev_iowrite8(struct intel_scu_ipc_dev *scu, u16 addr, u8 data) { return pwr_reg_rdwr(scu, &addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_dev_iowrite8); /** * intel_scu_ipc_dev_readv() - Read a set of registers * @scu: Optional SCU IPC instance * @addr: Register list * @data: Bytes to return * @len: Length of array * * Read registers. Returns %0 on success or an error code. All locking * between SCU accesses is handled for the caller. * * The largest array length permitted by the hardware is 5 items. * * This function may sleep. */ int intel_scu_ipc_dev_readv(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data, size_t len) { return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R); } EXPORT_SYMBOL(intel_scu_ipc_dev_readv); /** * intel_scu_ipc_dev_writev() - Write a set of registers * @scu: Optional SCU IPC instance * @addr: Register list * @data: Bytes to write * @len: Length of array * * Write registers. Returns %0 on success or an error code. All locking * between SCU accesses is handled for the caller. * * The largest array length permitted by the hardware is 5 items. * * This function may sleep. */ int intel_scu_ipc_dev_writev(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data, size_t len) { return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W); } EXPORT_SYMBOL(intel_scu_ipc_dev_writev); /** * intel_scu_ipc_dev_update() - Update a register * @scu: Optional SCU IPC instance * @addr: Register address * @data: Bits to update * @mask: Mask of bits to update * * Read-modify-write power control unit register. The first data argument * must be register value and second is mask value mask is a bitmap that * indicates which bits to update. %0 = masked. Don't modify this bit, %1 = * modify this bit. returns %0 on success or an error code. * * This function may sleep. Locking between SCU accesses is handled * for the caller. */ int intel_scu_ipc_dev_update(struct intel_scu_ipc_dev *scu, u16 addr, u8 data, u8 mask) { u8 tmp[2] = { data, mask }; return pwr_reg_rdwr(scu, &addr, tmp, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M); } EXPORT_SYMBOL(intel_scu_ipc_dev_update); /** * intel_scu_ipc_dev_simple_command() - Send a simple command * @scu: Optional SCU IPC instance * @cmd: Command * @sub: Sub type * * Issue a simple command to the SCU. Do not use this interface if you must * then access data as any data values may be overwritten by another SCU * access by the time this function returns. * * This function may sleep. Locking for SCU accesses is handled for the * caller. */ int intel_scu_ipc_dev_simple_command(struct intel_scu_ipc_dev *scu, int cmd, int sub) { u32 cmdval; int err; mutex_lock(&ipclock); scu = intel_scu_ipc_get(scu); if (IS_ERR(scu)) { mutex_unlock(&ipclock); return PTR_ERR(scu); } cmdval = sub << 12 | cmd; ipc_command(scu, cmdval); err = intel_scu_ipc_check_status(scu); mutex_unlock(&ipclock); if (err) dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err); return err; } EXPORT_SYMBOL(intel_scu_ipc_dev_simple_command); /** * intel_scu_ipc_dev_command_with_size() - Command with data * @scu: Optional SCU IPC instance * @cmd: Command * @sub: Sub type * @in: Input data * @inlen: Input length in bytes * @size: Input size written to the IPC command register in whatever * units (dword, byte) the particular firmware requires. Normally * should be the same as @inlen. * @out: Output data * @outlen: Output length in bytes * * Issue a command to the SCU which involves data transfers. Do the * data copies under the lock but leave it for the caller to interpret. */ int intel_scu_ipc_dev_command_with_size(struct intel_scu_ipc_dev *scu, int cmd, int sub, const void *in, size_t inlen, size_t size, void *out, size_t outlen) { size_t outbuflen = DIV_ROUND_UP(outlen, sizeof(u32)); size_t inbuflen = DIV_ROUND_UP(inlen, sizeof(u32)); u32 cmdval, inbuf[4] = {}; int i, err; if (inbuflen > 4 || outbuflen > 4) return -EINVAL; mutex_lock(&ipclock); scu = intel_scu_ipc_get(scu); if (IS_ERR(scu)) { mutex_unlock(&ipclock); return PTR_ERR(scu); } memcpy(inbuf, in, inlen); for (i = 0; i < inbuflen; i++) ipc_data_writel(scu, inbuf[i], 4 * i); cmdval = (size << 16) | (sub << 12) | cmd; ipc_command(scu, cmdval); err = intel_scu_ipc_check_status(scu); if (!err) { u32 outbuf[4] = {}; for (i = 0; i < outbuflen; i++) outbuf[i] = ipc_data_readl(scu, 4 * i); memcpy(out, outbuf, outlen); } mutex_unlock(&ipclock); if (err) dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err); return err; } EXPORT_SYMBOL(intel_scu_ipc_dev_command_with_size); /* * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1 * When ioc bit is set to 1, caller api must wait for interrupt handler called * which in turn unlocks the caller api. Currently this is not used * * This is edge triggered so we need take no action to clear anything */ static irqreturn_t ioc(int irq, void *dev_id) { struct intel_scu_ipc_dev *scu = dev_id; int status = ipc_read_status(scu); writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS); complete(&scu->cmd_complete); return IRQ_HANDLED; } static void intel_scu_ipc_release(struct device *dev) { struct intel_scu_ipc_dev *scu; scu = container_of(dev, struct intel_scu_ipc_dev, dev); if (scu->irq > 0) free_irq(scu->irq, scu); iounmap(scu->ipc_base); release_mem_region(scu->mem.start, resource_size(&scu->mem)); kfree(scu); } /** * __intel_scu_ipc_register() - Register SCU IPC device * @parent: Parent device * @scu_data: Data used to configure SCU IPC * @owner: Module registering the SCU IPC device * * Call this function to register SCU IPC mechanism under @parent. * Returns pointer to the new SCU IPC device or ERR_PTR() in case of * failure. The caller may use the returned instance if it needs to do * SCU IPC calls itself. */ struct intel_scu_ipc_dev * __intel_scu_ipc_register(struct device *parent, const struct intel_scu_ipc_data *scu_data, struct module *owner) { int err; struct intel_scu_ipc_dev *scu; void __iomem *ipc_base; mutex_lock(&ipclock); /* We support only one IPC */ if (ipcdev) { err = -EBUSY; goto err_unlock; } scu = kzalloc(sizeof(*scu), GFP_KERNEL); if (!scu) { err = -ENOMEM; goto err_unlock; } scu->owner = owner; scu->dev.parent = parent; scu->dev.class = &intel_scu_ipc_class; scu->dev.release = intel_scu_ipc_release; if (!request_mem_region(scu_data->mem.start, resource_size(&scu_data->mem), "intel_scu_ipc")) { err = -EBUSY; goto err_free; } ipc_base = ioremap(scu_data->mem.start, resource_size(&scu_data->mem)); if (!ipc_base) { err = -ENOMEM; goto err_release; } scu->ipc_base = ipc_base; scu->mem = scu_data->mem; scu->irq = scu_data->irq; init_completion(&scu->cmd_complete); if (scu->irq > 0) { err = request_irq(scu->irq, ioc, 0, "intel_scu_ipc", scu); if (err) goto err_unmap; } /* * After this point intel_scu_ipc_release() takes care of * releasing the SCU IPC resources once refcount drops to zero. */ dev_set_name(&scu->dev, "intel_scu_ipc"); err = device_register(&scu->dev); if (err) { put_device(&scu->dev); goto err_unlock; } /* Assign device at last */ ipcdev = scu; mutex_unlock(&ipclock); return scu; err_unmap: iounmap(ipc_base); err_release: release_mem_region(scu_data->mem.start, resource_size(&scu_data->mem)); err_free: kfree(scu); err_unlock: mutex_unlock(&ipclock); return ERR_PTR(err); } EXPORT_SYMBOL_GPL(__intel_scu_ipc_register); /** * intel_scu_ipc_unregister() - Unregister SCU IPC * @scu: SCU IPC handle * * This unregisters the SCU IPC device and releases the acquired * resources once the refcount goes to zero. */ void intel_scu_ipc_unregister(struct intel_scu_ipc_dev *scu) { mutex_lock(&ipclock); if (!WARN_ON(!ipcdev)) { ipcdev = NULL; device_unregister(&scu->dev); } mutex_unlock(&ipclock); } EXPORT_SYMBOL_GPL(intel_scu_ipc_unregister); static void devm_intel_scu_ipc_unregister(struct device *dev, void *res) { struct intel_scu_ipc_devres *dr = res; struct intel_scu_ipc_dev *scu = dr->scu; intel_scu_ipc_unregister(scu); } /** * __devm_intel_scu_ipc_register() - Register managed SCU IPC device * @parent: Parent device * @scu_data: Data used to configure SCU IPC * @owner: Module registering the SCU IPC device * * Call this function to register managed SCU IPC mechanism under * @parent. Returns pointer to the new SCU IPC device or ERR_PTR() in * case of failure. The caller may use the returned instance if it needs * to do SCU IPC calls itself. */ struct intel_scu_ipc_dev * __devm_intel_scu_ipc_register(struct device *parent, const struct intel_scu_ipc_data *scu_data, struct module *owner) { struct intel_scu_ipc_devres *dr; struct intel_scu_ipc_dev *scu; dr = devres_alloc(devm_intel_scu_ipc_unregister, sizeof(*dr), GFP_KERNEL); if (!dr) return NULL; scu = __intel_scu_ipc_register(parent, scu_data, owner); if (IS_ERR(scu)) { devres_free(dr); return scu; } dr->scu = scu; devres_add(parent, dr); return scu; } EXPORT_SYMBOL_GPL(__devm_intel_scu_ipc_register); static int __init intel_scu_ipc_init(void) { return class_register(&intel_scu_ipc_class); } subsys_initcall(intel_scu_ipc_init); static void __exit intel_scu_ipc_exit(void) { class_unregister(&intel_scu_ipc_class); } module_exit(intel_scu_ipc_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1