Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rafael J. Wysocki | 627 | 46.69% | 16 | 47.06% |
Ulf Hansson | 324 | 24.13% | 8 | 23.53% |
Lina Iyer | 240 | 17.87% | 1 | 2.94% |
Axel Haslam | 108 | 8.04% | 1 | 2.94% |
Viresh Kumar | 12 | 0.89% | 3 | 8.82% |
Kees Cook | 9 | 0.67% | 1 | 2.94% |
Maulik Shah | 9 | 0.67% | 1 | 2.94% |
Mark Brown | 9 | 0.67% | 1 | 2.94% |
Randy Dunlap | 3 | 0.22% | 1 | 2.94% |
Greg Kroah-Hartman | 2 | 0.15% | 1 | 2.94% |
Total | 1343 | 34 |
// SPDX-License-Identifier: GPL-2.0 /* * drivers/base/power/domain_governor.c - Governors for device PM domains. * * Copyright (C) 2011 Rafael J. Wysocki <rjw@sisk.pl>, Renesas Electronics Corp. */ #include <linux/kernel.h> #include <linux/pm_domain.h> #include <linux/pm_qos.h> #include <linux/hrtimer.h> #include <linux/cpuidle.h> #include <linux/cpumask.h> #include <linux/ktime.h> static int dev_update_qos_constraint(struct device *dev, void *data) { s64 *constraint_ns_p = data; s64 constraint_ns; if (dev->power.subsys_data && dev->power.subsys_data->domain_data) { struct gpd_timing_data *td = dev_gpd_data(dev)->td; /* * Only take suspend-time QoS constraints of devices into * account, because constraints updated after the device has * been suspended are not guaranteed to be taken into account * anyway. In order for them to take effect, the device has to * be resumed and suspended again. */ constraint_ns = td ? td->effective_constraint_ns : PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS; } else { /* * The child is not in a domain and there's no info on its * suspend/resume latencies, so assume them to be negligible and * take its current PM QoS constraint (that's the only thing * known at this point anyway). */ constraint_ns = dev_pm_qos_read_value(dev, DEV_PM_QOS_RESUME_LATENCY); constraint_ns *= NSEC_PER_USEC; } if (constraint_ns < *constraint_ns_p) *constraint_ns_p = constraint_ns; return 0; } /** * default_suspend_ok - Default PM domain governor routine to suspend devices. * @dev: Device to check. * * Returns: true if OK to suspend, false if not OK to suspend */ static bool default_suspend_ok(struct device *dev) { struct gpd_timing_data *td = dev_gpd_data(dev)->td; unsigned long flags; s64 constraint_ns; dev_dbg(dev, "%s()\n", __func__); spin_lock_irqsave(&dev->power.lock, flags); if (!td->constraint_changed) { bool ret = td->cached_suspend_ok; spin_unlock_irqrestore(&dev->power.lock, flags); return ret; } td->constraint_changed = false; td->cached_suspend_ok = false; td->effective_constraint_ns = 0; constraint_ns = __dev_pm_qos_resume_latency(dev); spin_unlock_irqrestore(&dev->power.lock, flags); if (constraint_ns == 0) return false; constraint_ns *= NSEC_PER_USEC; /* * We can walk the children without any additional locking, because * they all have been suspended at this point and their * effective_constraint_ns fields won't be modified in parallel with us. */ if (!dev->power.ignore_children) device_for_each_child(dev, &constraint_ns, dev_update_qos_constraint); if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS) { /* "No restriction", so the device is allowed to suspend. */ td->effective_constraint_ns = PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS; td->cached_suspend_ok = true; } else if (constraint_ns == 0) { /* * This triggers if one of the children that don't belong to a * domain has a zero PM QoS constraint and it's better not to * suspend then. effective_constraint_ns is zero already and * cached_suspend_ok is false, so bail out. */ return false; } else { constraint_ns -= td->suspend_latency_ns + td->resume_latency_ns; /* * effective_constraint_ns is zero already and cached_suspend_ok * is false, so if the computed value is not positive, return * right away. */ if (constraint_ns <= 0) return false; td->effective_constraint_ns = constraint_ns; td->cached_suspend_ok = true; } /* * The children have been suspended already, so we don't need to take * their suspend latencies into account here. */ return td->cached_suspend_ok; } static void update_domain_next_wakeup(struct generic_pm_domain *genpd, ktime_t now) { ktime_t domain_wakeup = KTIME_MAX; ktime_t next_wakeup; struct pm_domain_data *pdd; struct gpd_link *link; if (!(genpd->flags & GENPD_FLAG_MIN_RESIDENCY)) return; /* * Devices that have a predictable wakeup pattern, may specify * their next wakeup. Let's find the next wakeup from all the * devices attached to this domain and from all the sub-domains. * It is possible that component's a next wakeup may have become * stale when we read that here. We will ignore to ensure the domain * is able to enter its optimal idle state. */ list_for_each_entry(pdd, &genpd->dev_list, list_node) { next_wakeup = to_gpd_data(pdd)->td->next_wakeup; if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now)) if (ktime_before(next_wakeup, domain_wakeup)) domain_wakeup = next_wakeup; } list_for_each_entry(link, &genpd->parent_links, parent_node) { struct genpd_governor_data *cgd = link->child->gd; next_wakeup = cgd ? cgd->next_wakeup : KTIME_MAX; if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now)) if (ktime_before(next_wakeup, domain_wakeup)) domain_wakeup = next_wakeup; } genpd->gd->next_wakeup = domain_wakeup; } static bool next_wakeup_allows_state(struct generic_pm_domain *genpd, unsigned int state, ktime_t now) { ktime_t domain_wakeup = genpd->gd->next_wakeup; s64 idle_time_ns, min_sleep_ns; min_sleep_ns = genpd->states[state].power_off_latency_ns + genpd->states[state].residency_ns; idle_time_ns = ktime_to_ns(ktime_sub(domain_wakeup, now)); return idle_time_ns >= min_sleep_ns; } static bool __default_power_down_ok(struct dev_pm_domain *pd, unsigned int state) { struct generic_pm_domain *genpd = pd_to_genpd(pd); struct gpd_link *link; struct pm_domain_data *pdd; s64 min_off_time_ns; s64 off_on_time_ns; off_on_time_ns = genpd->states[state].power_off_latency_ns + genpd->states[state].power_on_latency_ns; min_off_time_ns = -1; /* * Check if subdomains can be off for enough time. * * All subdomains have been powered off already at this point. */ list_for_each_entry(link, &genpd->parent_links, parent_node) { struct genpd_governor_data *cgd = link->child->gd; s64 sd_max_off_ns = cgd ? cgd->max_off_time_ns : -1; if (sd_max_off_ns < 0) continue; /* * Check if the subdomain is allowed to be off long enough for * the current domain to turn off and on (that's how much time * it will have to wait worst case). */ if (sd_max_off_ns <= off_on_time_ns) return false; if (min_off_time_ns > sd_max_off_ns || min_off_time_ns < 0) min_off_time_ns = sd_max_off_ns; } /* * Check if the devices in the domain can be off enough time. */ list_for_each_entry(pdd, &genpd->dev_list, list_node) { struct gpd_timing_data *td; s64 constraint_ns; /* * Check if the device is allowed to be off long enough for the * domain to turn off and on (that's how much time it will * have to wait worst case). */ td = to_gpd_data(pdd)->td; constraint_ns = td->effective_constraint_ns; /* * Zero means "no suspend at all" and this runs only when all * devices in the domain are suspended, so it must be positive. */ if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS) continue; if (constraint_ns <= off_on_time_ns) return false; if (min_off_time_ns > constraint_ns || min_off_time_ns < 0) min_off_time_ns = constraint_ns; } /* * If the computed minimum device off time is negative, there are no * latency constraints, so the domain can spend arbitrary time in the * "off" state. */ if (min_off_time_ns < 0) return true; /* * The difference between the computed minimum subdomain or device off * time and the time needed to turn the domain on is the maximum * theoretical time this domain can spend in the "off" state. */ genpd->gd->max_off_time_ns = min_off_time_ns - genpd->states[state].power_on_latency_ns; return true; } /** * _default_power_down_ok - Default generic PM domain power off governor routine. * @pd: PM domain to check. * @now: current ktime. * * This routine must be executed under the PM domain's lock. * * Returns: true if OK to power down, false if not OK to power down */ static bool _default_power_down_ok(struct dev_pm_domain *pd, ktime_t now) { struct generic_pm_domain *genpd = pd_to_genpd(pd); struct genpd_governor_data *gd = genpd->gd; int state_idx = genpd->state_count - 1; struct gpd_link *link; /* * Find the next wakeup from devices that can determine their own wakeup * to find when the domain would wakeup and do it for every device down * the hierarchy. It is not worth while to sleep if the state's residency * cannot be met. */ update_domain_next_wakeup(genpd, now); if ((genpd->flags & GENPD_FLAG_MIN_RESIDENCY) && (gd->next_wakeup != KTIME_MAX)) { /* Let's find out the deepest domain idle state, the devices prefer */ while (state_idx >= 0) { if (next_wakeup_allows_state(genpd, state_idx, now)) { gd->max_off_time_changed = true; break; } state_idx--; } if (state_idx < 0) { state_idx = 0; gd->cached_power_down_ok = false; goto done; } } if (!gd->max_off_time_changed) { genpd->state_idx = gd->cached_power_down_state_idx; return gd->cached_power_down_ok; } /* * We have to invalidate the cached results for the parents, so * use the observation that default_power_down_ok() is not * going to be called for any parent until this instance * returns. */ list_for_each_entry(link, &genpd->child_links, child_node) { struct genpd_governor_data *pgd = link->parent->gd; if (pgd) pgd->max_off_time_changed = true; } gd->max_off_time_ns = -1; gd->max_off_time_changed = false; gd->cached_power_down_ok = true; /* * Find a state to power down to, starting from the state * determined by the next wakeup. */ while (!__default_power_down_ok(pd, state_idx)) { if (state_idx == 0) { gd->cached_power_down_ok = false; break; } state_idx--; } done: genpd->state_idx = state_idx; gd->cached_power_down_state_idx = genpd->state_idx; return gd->cached_power_down_ok; } static bool default_power_down_ok(struct dev_pm_domain *pd) { return _default_power_down_ok(pd, ktime_get()); } #ifdef CONFIG_CPU_IDLE static bool cpu_power_down_ok(struct dev_pm_domain *pd) { struct generic_pm_domain *genpd = pd_to_genpd(pd); struct cpuidle_device *dev; ktime_t domain_wakeup, next_hrtimer; ktime_t now = ktime_get(); s64 idle_duration_ns; int cpu, i; /* Validate dev PM QoS constraints. */ if (!_default_power_down_ok(pd, now)) return false; if (!(genpd->flags & GENPD_FLAG_CPU_DOMAIN)) return true; /* * Find the next wakeup for any of the online CPUs within the PM domain * and its subdomains. Note, we only need the genpd->cpus, as it already * contains a mask of all CPUs from subdomains. */ domain_wakeup = ktime_set(KTIME_SEC_MAX, 0); for_each_cpu_and(cpu, genpd->cpus, cpu_online_mask) { dev = per_cpu(cpuidle_devices, cpu); if (dev) { next_hrtimer = READ_ONCE(dev->next_hrtimer); if (ktime_before(next_hrtimer, domain_wakeup)) domain_wakeup = next_hrtimer; } } /* The minimum idle duration is from now - until the next wakeup. */ idle_duration_ns = ktime_to_ns(ktime_sub(domain_wakeup, now)); if (idle_duration_ns <= 0) return false; /* Store the next domain_wakeup to allow consumers to use it. */ genpd->gd->next_hrtimer = domain_wakeup; /* * Find the deepest idle state that has its residency value satisfied * and by also taking into account the power off latency for the state. * Start at the state picked by the dev PM QoS constraint validation. */ i = genpd->state_idx; do { if (idle_duration_ns >= (genpd->states[i].residency_ns + genpd->states[i].power_off_latency_ns)) { genpd->state_idx = i; return true; } } while (--i >= 0); return false; } struct dev_power_governor pm_domain_cpu_gov = { .suspend_ok = default_suspend_ok, .power_down_ok = cpu_power_down_ok, }; #endif struct dev_power_governor simple_qos_governor = { .suspend_ok = default_suspend_ok, .power_down_ok = default_power_down_ok, }; /* * pm_domain_always_on_gov - A governor implementing an always-on policy */ struct dev_power_governor pm_domain_always_on_gov = { .suspend_ok = default_suspend_ok, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1