Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Arun Murthy | 8053 | 65.81% | 3 | 3.30% |
Lee Jones | 1674 | 13.68% | 4 | 4.40% |
Linus Walleij | 792 | 6.47% | 27 | 29.67% |
Marcus Cooper | 723 | 5.91% | 2 | 2.20% |
Krzysztof Kozlowski | 150 | 1.23% | 5 | 5.49% |
Rajanikanth H.V | 127 | 1.04% | 1 | 1.10% |
Johan Bjornstedt | 124 | 1.01% | 1 | 1.10% |
Kevin Wells | 112 | 0.92% | 1 | 1.10% |
Hakan Berg | 105 | 0.86% | 3 | 3.30% |
Ding Xiang | 51 | 0.42% | 1 | 1.10% |
pender01 | 38 | 0.31% | 1 | 1.10% |
Rabin Vincent | 34 | 0.28% | 1 | 1.10% |
Andy Shevchenko | 29 | 0.24% | 1 | 1.10% |
Mattias Wallin | 24 | 0.20% | 1 | 1.10% |
Jonas Aaberg | 24 | 0.20% | 2 | 2.20% |
Valentin Rothberg | 24 | 0.20% | 1 | 1.10% |
Paer-Olof Haakansson | 19 | 0.16% | 1 | 1.10% |
Arnd Bergmann | 14 | 0.11% | 1 | 1.10% |
ye xingchen | 11 | 0.09% | 2 | 2.20% |
Nicholas Mc Guire | 10 | 0.08% | 2 | 2.20% |
Dan Carpenter | 10 | 0.08% | 1 | 1.10% |
Miaoqian Lin | 10 | 0.08% | 1 | 1.10% |
Kalle Komierowski | 7 | 0.06% | 1 | 1.10% |
Zou Wei | 7 | 0.06% | 1 | 1.10% |
Greg Kroah-Hartman | 7 | 0.06% | 1 | 1.10% |
Gustavo A. R. Silva | 6 | 0.05% | 2 | 2.20% |
Dariusz Szymczak | 6 | 0.05% | 1 | 1.10% |
Julia Lawall | 6 | 0.05% | 2 | 2.20% |
Guenter Roeck | 5 | 0.04% | 1 | 1.10% |
Tejun Heo | 4 | 0.03% | 1 | 1.10% |
Wolfram Sang | 4 | 0.03% | 1 | 1.10% |
Ebru Akagunduz | 4 | 0.03% | 1 | 1.10% |
Rajkumar Kasirajan | 2 | 0.02% | 1 | 1.10% |
Uwe Kleine-König | 2 | 0.02% | 1 | 1.10% |
Wang Qing | 2 | 0.02% | 1 | 1.10% |
gaochao | 2 | 0.02% | 1 | 1.10% |
Jingoo Han | 2 | 0.02% | 1 | 1.10% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.10% |
Colin Ian King | 1 | 0.01% | 1 | 1.10% |
Masahiro Yamada | 1 | 0.01% | 1 | 1.10% |
xinjian | 1 | 0.01% | 1 | 1.10% |
Sebastian Reichel | 1 | 0.01% | 1 | 1.10% |
Martin Bergström | 1 | 0.01% | 1 | 1.10% |
Jiang Jian | 1 | 0.01% | 1 | 1.10% |
Jason Yan | 1 | 0.01% | 1 | 1.10% |
lme00437 | 1 | 0.01% | 1 | 1.10% |
Hans de Goede | 1 | 0.01% | 1 | 1.10% |
Anton Vorontsov | 1 | 0.01% | 1 | 1.10% |
Total | 12236 | 91 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson AB 2012 * * Main and Back-up battery management driver. * * Note: Backup battery management is required in case of Li-Ion battery and not * for capacitive battery. HREF boards have capacitive battery and hence backup * battery management is not used and the supported code is available in this * driver. * * Author: * Johan Palsson <johan.palsson@stericsson.com> * Karl Komierowski <karl.komierowski@stericsson.com> * Arun R Murthy <arun.murthy@stericsson.com> */ #include <linux/init.h> #include <linux/module.h> #include <linux/component.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/kobject.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/time.h> #include <linux/time64.h> #include <linux/of.h> #include <linux/completion.h> #include <linux/mfd/core.h> #include <linux/mfd/abx500.h> #include <linux/mfd/abx500/ab8500.h> #include <linux/iio/consumer.h> #include <linux/kernel.h> #include <linux/fixp-arith.h> #include "ab8500-bm.h" #define FG_LSB_IN_MA 1627 #define QLSB_NANO_AMP_HOURS_X10 1071 #define INS_CURR_TIMEOUT (3 * HZ) #define SEC_TO_SAMPLE(S) (S * 4) #define NBR_AVG_SAMPLES 20 #define WAIT_FOR_INST_CURRENT_MAX 70 /* Currents higher than -500mA (dissipating) will make compensation unstable */ #define IGNORE_VBAT_HIGHCUR -500000 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */ #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */ #define BATT_OK_MIN 2360 /* mV */ #define BATT_OK_INCREMENT 50 /* mV */ #define BATT_OK_MAX_NR_INCREMENTS 0xE /* FG constants */ #define BATT_OVV 0x01 /** * struct ab8500_fg_interrupts - ab8500 fg interrupts * @name: name of the interrupt * @isr function pointer to the isr */ struct ab8500_fg_interrupts { char *name; irqreturn_t (*isr)(int irq, void *data); }; enum ab8500_fg_discharge_state { AB8500_FG_DISCHARGE_INIT, AB8500_FG_DISCHARGE_INITMEASURING, AB8500_FG_DISCHARGE_INIT_RECOVERY, AB8500_FG_DISCHARGE_RECOVERY, AB8500_FG_DISCHARGE_READOUT_INIT, AB8500_FG_DISCHARGE_READOUT, AB8500_FG_DISCHARGE_WAKEUP, }; static char *discharge_state[] = { "DISCHARGE_INIT", "DISCHARGE_INITMEASURING", "DISCHARGE_INIT_RECOVERY", "DISCHARGE_RECOVERY", "DISCHARGE_READOUT_INIT", "DISCHARGE_READOUT", "DISCHARGE_WAKEUP", }; enum ab8500_fg_charge_state { AB8500_FG_CHARGE_INIT, AB8500_FG_CHARGE_READOUT, }; static char *charge_state[] = { "CHARGE_INIT", "CHARGE_READOUT", }; enum ab8500_fg_calibration_state { AB8500_FG_CALIB_INIT, AB8500_FG_CALIB_WAIT, AB8500_FG_CALIB_END, }; struct ab8500_fg_avg_cap { int avg; int samples[NBR_AVG_SAMPLES]; time64_t time_stamps[NBR_AVG_SAMPLES]; int pos; int nbr_samples; int sum; }; struct ab8500_fg_cap_scaling { bool enable; int cap_to_scale[2]; int disable_cap_level; int scaled_cap; }; struct ab8500_fg_battery_capacity { int max_mah_design; int max_mah; int mah; int permille; int level; int prev_mah; int prev_percent; int prev_level; int user_mah; struct ab8500_fg_cap_scaling cap_scale; }; struct ab8500_fg_flags { bool fg_enabled; bool conv_done; bool charging; bool fully_charged; bool force_full; bool low_bat_delay; bool low_bat; bool bat_ovv; bool batt_unknown; bool calibrate; bool user_cap; bool batt_id_received; }; struct inst_curr_result_list { struct list_head list; int *result; }; /** * struct ab8500_fg - ab8500 FG device information * @dev: Pointer to the structure device * @node: a list of AB8500 FGs, hence prepared for reentrance * @irq holds the CCEOC interrupt number * @vbat_uv: Battery voltage in uV * @vbat_nom_uv: Nominal battery voltage in uV * @inst_curr_ua: Instantenous battery current in uA * @avg_curr_ua: Average battery current in uA * @bat_temp battery temperature * @fg_samples: Number of samples used in the FG accumulation * @accu_charge: Accumulated charge from the last conversion * @recovery_cnt: Counter for recovery mode * @high_curr_cnt: Counter for high current mode * @init_cnt: Counter for init mode * @low_bat_cnt Counter for number of consecutive low battery measures * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled * @recovery_needed: Indicate if recovery is needed * @high_curr_mode: Indicate if we're in high current mode * @init_capacity: Indicate if initial capacity measuring should be done * @turn_off_fg: True if fg was off before current measurement * @calib_state State during offset calibration * @discharge_state: Current discharge state * @charge_state: Current charge state * @ab8500_fg_started Completion struct used for the instant current start * @ab8500_fg_complete Completion struct used for the instant current reading * @flags: Structure for information about events triggered * @bat_cap: Structure for battery capacity specific parameters * @avg_cap: Average capacity filter * @parent: Pointer to the struct ab8500 * @main_bat_v: ADC channel for the main battery voltage * @bm: Platform specific battery management information * @fg_psy: Structure that holds the FG specific battery properties * @fg_wq: Work queue for running the FG algorithm * @fg_periodic_work: Work to run the FG algorithm periodically * @fg_low_bat_work: Work to check low bat condition * @fg_reinit_work Work used to reset and reinitialise the FG algorithm * @fg_work: Work to run the FG algorithm instantly * @fg_acc_cur_work: Work to read the FG accumulator * @fg_check_hw_failure_work: Work for checking HW state * @cc_lock: Mutex for locking the CC * @fg_kobject: Structure of type kobject */ struct ab8500_fg { struct device *dev; struct list_head node; int irq; int vbat_uv; int vbat_nom_uv; int inst_curr_ua; int avg_curr_ua; int bat_temp; int fg_samples; int accu_charge; int recovery_cnt; int high_curr_cnt; int init_cnt; int low_bat_cnt; int nbr_cceoc_irq_cnt; u32 line_impedance_uohm; bool recovery_needed; bool high_curr_mode; bool init_capacity; bool turn_off_fg; enum ab8500_fg_calibration_state calib_state; enum ab8500_fg_discharge_state discharge_state; enum ab8500_fg_charge_state charge_state; struct completion ab8500_fg_started; struct completion ab8500_fg_complete; struct ab8500_fg_flags flags; struct ab8500_fg_battery_capacity bat_cap; struct ab8500_fg_avg_cap avg_cap; struct ab8500 *parent; struct iio_channel *main_bat_v; struct ab8500_bm_data *bm; struct power_supply *fg_psy; struct workqueue_struct *fg_wq; struct delayed_work fg_periodic_work; struct delayed_work fg_low_bat_work; struct delayed_work fg_reinit_work; struct work_struct fg_work; struct work_struct fg_acc_cur_work; struct delayed_work fg_check_hw_failure_work; struct mutex cc_lock; struct kobject fg_kobject; }; static LIST_HEAD(ab8500_fg_list); /** * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge * (i.e. the first fuel gauge in the instance list) */ struct ab8500_fg *ab8500_fg_get(void) { return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg, node); } /* Main battery properties */ static enum power_supply_property ab8500_fg_props[] = { POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, POWER_SUPPLY_PROP_ENERGY_FULL, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, }; /* * This array maps the raw hex value to lowbat voltage used by the AB8500 * Values taken from the UM0836, in microvolts. */ static int ab8500_fg_lowbat_voltage_map[] = { 2300000, 2325000, 2350000, 2375000, 2400000, 2425000, 2450000, 2475000, 2500000, 2525000, 2550000, 2575000, 2600000, 2625000, 2650000, 2675000, 2700000, 2725000, 2750000, 2775000, 2800000, 2825000, 2850000, 2875000, 2900000, 2925000, 2950000, 2975000, 3000000, 3025000, 3050000, 3075000, 3100000, 3125000, 3150000, 3175000, 3200000, 3225000, 3250000, 3275000, 3300000, 3325000, 3350000, 3375000, 3400000, 3425000, 3450000, 3475000, 3500000, 3525000, 3550000, 3575000, 3600000, 3625000, 3650000, 3675000, 3700000, 3725000, 3750000, 3775000, 3800000, 3825000, 3850000, 3850000, }; static u8 ab8500_volt_to_regval(int voltage_uv) { int i; if (voltage_uv < ab8500_fg_lowbat_voltage_map[0]) return 0; for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) { if (voltage_uv < ab8500_fg_lowbat_voltage_map[i]) return (u8) i - 1; } /* If not captured above, return index of last element */ return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1; } /** * ab8500_fg_is_low_curr() - Low or high current mode * @di: pointer to the ab8500_fg structure * @curr_ua: the current to base or our decision on in microampere * * Low current mode if the current consumption is below a certain threshold */ static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr_ua) { /* * We want to know if we're in low current mode */ if (curr_ua > -di->bm->fg_params->high_curr_threshold_ua) return true; else return false; } /** * ab8500_fg_add_cap_sample() - Add capacity to average filter * @di: pointer to the ab8500_fg structure * @sample: the capacity in mAh to add to the filter * * A capacity is added to the filter and a new mean capacity is calculated and * returned */ static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample) { time64_t now = ktime_get_boottime_seconds(); struct ab8500_fg_avg_cap *avg = &di->avg_cap; do { avg->sum += sample - avg->samples[avg->pos]; avg->samples[avg->pos] = sample; avg->time_stamps[avg->pos] = now; avg->pos++; if (avg->pos == NBR_AVG_SAMPLES) avg->pos = 0; if (avg->nbr_samples < NBR_AVG_SAMPLES) avg->nbr_samples++; /* * Check the time stamp for each sample. If too old, * replace with latest sample */ } while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]); avg->avg = avg->sum / avg->nbr_samples; return avg->avg; } /** * ab8500_fg_clear_cap_samples() - Clear average filter * @di: pointer to the ab8500_fg structure * * The capacity filter is reset to zero. */ static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di) { int i; struct ab8500_fg_avg_cap *avg = &di->avg_cap; avg->pos = 0; avg->nbr_samples = 0; avg->sum = 0; avg->avg = 0; for (i = 0; i < NBR_AVG_SAMPLES; i++) { avg->samples[i] = 0; avg->time_stamps[i] = 0; } } /** * ab8500_fg_fill_cap_sample() - Fill average filter * @di: pointer to the ab8500_fg structure * @sample: the capacity in mAh to fill the filter with * * The capacity filter is filled with a capacity in mAh */ static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample) { int i; time64_t now; struct ab8500_fg_avg_cap *avg = &di->avg_cap; now = ktime_get_boottime_seconds(); for (i = 0; i < NBR_AVG_SAMPLES; i++) { avg->samples[i] = sample; avg->time_stamps[i] = now; } avg->pos = 0; avg->nbr_samples = NBR_AVG_SAMPLES; avg->sum = sample * NBR_AVG_SAMPLES; avg->avg = sample; } /** * ab8500_fg_coulomb_counter() - enable coulomb counter * @di: pointer to the ab8500_fg structure * @enable: enable/disable * * Enable/Disable coulomb counter. * On failure returns negative value. */ static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable) { int ret = 0; mutex_lock(&di->cc_lock); if (enable) { /* To be able to reprogram the number of samples, we have to * first stop the CC and then enable it again */ ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, 0x00); if (ret) goto cc_err; /* Program the samples */ ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, di->fg_samples); if (ret) goto cc_err; /* Start the CC */ ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); if (ret) goto cc_err; di->flags.fg_enabled = true; } else { /* Clear any pending read requests */ ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, (RESET_ACCU | READ_REQ), 0); if (ret) goto cc_err; ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0); if (ret) goto cc_err; /* Stop the CC */ ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, 0); if (ret) goto cc_err; di->flags.fg_enabled = false; } dev_dbg(di->dev, " CC enabled: %d Samples: %d\n", enable, di->fg_samples); mutex_unlock(&di->cc_lock); return ret; cc_err: dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__); mutex_unlock(&di->cc_lock); return ret; } /** * ab8500_fg_inst_curr_start() - start battery instantaneous current * @di: pointer to the ab8500_fg structure * * Returns 0 or error code * Note: This is part "one" and has to be called before * ab8500_fg_inst_curr_finalize() */ int ab8500_fg_inst_curr_start(struct ab8500_fg *di) { u8 reg_val; int ret; mutex_lock(&di->cc_lock); di->nbr_cceoc_irq_cnt = 0; ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, ®_val); if (ret < 0) goto fail; if (!(reg_val & CC_PWR_UP_ENA)) { dev_dbg(di->dev, "%s Enable FG\n", __func__); di->turn_off_fg = true; /* Program the samples */ ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, SEC_TO_SAMPLE(10)); if (ret) goto fail; /* Start the CC */ ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); if (ret) goto fail; } else { di->turn_off_fg = false; } /* Return and WFI */ reinit_completion(&di->ab8500_fg_started); reinit_completion(&di->ab8500_fg_complete); enable_irq(di->irq); /* Note: cc_lock is still locked */ return 0; fail: mutex_unlock(&di->cc_lock); return ret; } /** * ab8500_fg_inst_curr_started() - check if fg conversion has started * @di: pointer to the ab8500_fg structure * * Returns 1 if conversion started, 0 if still waiting */ int ab8500_fg_inst_curr_started(struct ab8500_fg *di) { return completion_done(&di->ab8500_fg_started); } /** * ab8500_fg_inst_curr_done() - check if fg conversion is done * @di: pointer to the ab8500_fg structure * * Returns 1 if conversion done, 0 if still waiting */ int ab8500_fg_inst_curr_done(struct ab8500_fg *di) { return completion_done(&di->ab8500_fg_complete); } /** * ab8500_fg_inst_curr_finalize() - battery instantaneous current * @di: pointer to the ab8500_fg structure * @curr_ua: battery instantenous current in microampere (on success) * * Returns 0 or an error code * Note: This is part "two" and has to be called at earliest 250 ms * after ab8500_fg_inst_curr_start() */ int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *curr_ua) { u8 low, high; int val; int ret; unsigned long timeout; if (!completion_done(&di->ab8500_fg_complete)) { timeout = wait_for_completion_timeout( &di->ab8500_fg_complete, INS_CURR_TIMEOUT); dev_dbg(di->dev, "Finalize time: %d ms\n", jiffies_to_msecs(INS_CURR_TIMEOUT - timeout)); if (!timeout) { ret = -ETIME; disable_irq(di->irq); di->nbr_cceoc_irq_cnt = 0; dev_err(di->dev, "completion timed out [%d]\n", __LINE__); goto fail; } } disable_irq(di->irq); di->nbr_cceoc_irq_cnt = 0; ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, READ_REQ, READ_REQ); /* 100uS between read request and read is needed */ usleep_range(100, 100); /* Read CC Sample conversion value Low and high */ ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_SMPL_CNVL_REG, &low); if (ret < 0) goto fail; ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_SMPL_CNVH_REG, &high); if (ret < 0) goto fail; /* * negative value for Discharging * convert 2's complement into decimal */ if (high & 0x10) val = (low | (high << 8) | 0xFFFFE000); else val = (low | (high << 8)); /* * Convert to unit value in mA * Full scale input voltage is * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542.000 uA * Given a 250ms conversion cycle time the LSB corresponds * to 107.1 nAh. Convert to current by dividing by the conversion * time in hours (250ms = 1 / (3600 * 4)h) * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm */ val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) / di->bm->fg_res; if (di->turn_off_fg) { dev_dbg(di->dev, "%s Disable FG\n", __func__); /* Clear any pending read requests */ ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0); if (ret) goto fail; /* Stop the CC */ ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8500_RTC_CC_CONF_REG, 0); if (ret) goto fail; } mutex_unlock(&di->cc_lock); *curr_ua = val; return 0; fail: mutex_unlock(&di->cc_lock); return ret; } /** * ab8500_fg_inst_curr_blocking() - battery instantaneous current * @di: pointer to the ab8500_fg structure * * Returns battery instantenous current in microampere (on success) * else error code */ int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di) { int ret; unsigned long timeout; int curr_ua = 0; ret = ab8500_fg_inst_curr_start(di); if (ret) { dev_err(di->dev, "Failed to initialize fg_inst\n"); return 0; } /* Wait for CC to actually start */ if (!completion_done(&di->ab8500_fg_started)) { timeout = wait_for_completion_timeout( &di->ab8500_fg_started, INS_CURR_TIMEOUT); dev_dbg(di->dev, "Start time: %d ms\n", jiffies_to_msecs(INS_CURR_TIMEOUT - timeout)); if (!timeout) { ret = -ETIME; dev_err(di->dev, "completion timed out [%d]\n", __LINE__); goto fail; } } ret = ab8500_fg_inst_curr_finalize(di, &curr_ua); if (ret) { dev_err(di->dev, "Failed to finalize fg_inst\n"); return 0; } dev_dbg(di->dev, "%s instant current: %d uA", __func__, curr_ua); return curr_ua; fail: disable_irq(di->irq); mutex_unlock(&di->cc_lock); return ret; } /** * ab8500_fg_acc_cur_work() - average battery current * @work: pointer to the work_struct structure * * Updated the average battery current obtained from the * coulomb counter. */ static void ab8500_fg_acc_cur_work(struct work_struct *work) { int val; int ret; u8 low, med, high; struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_acc_cur_work); mutex_lock(&di->cc_lock); ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ); if (ret) goto exit; ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_LOW, &low); if (ret < 0) goto exit; ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_MED, &med); if (ret < 0) goto exit; ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_HIGH, &high); if (ret < 0) goto exit; /* Check for sign bit in case of negative value, 2's complement */ if (high & 0x10) val = (low | (med << 8) | (high << 16) | 0xFFE00000); else val = (low | (med << 8) | (high << 16)); /* * Convert to uAh * Given a 250ms conversion cycle time the LSB corresponds * to 112.9 nAh. * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm */ di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) / (100 * di->bm->fg_res); /* * Convert to unit value in uA * by dividing by the conversion * time in hours (= samples / (3600 * 4)h) */ di->avg_curr_ua = (val * QLSB_NANO_AMP_HOURS_X10 * 36) / (di->bm->fg_res * (di->fg_samples / 4)); di->flags.conv_done = true; mutex_unlock(&di->cc_lock); queue_work(di->fg_wq, &di->fg_work); dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n", di->bm->fg_res, di->fg_samples, val, di->accu_charge); return; exit: dev_err(di->dev, "Failed to read or write gas gauge registers\n"); mutex_unlock(&di->cc_lock); queue_work(di->fg_wq, &di->fg_work); } /** * ab8500_fg_bat_voltage() - get battery voltage * @di: pointer to the ab8500_fg structure * * Returns battery voltage in microvolts (on success) else error code */ static int ab8500_fg_bat_voltage(struct ab8500_fg *di) { int vbat, ret; static int prev; ret = iio_read_channel_processed(di->main_bat_v, &vbat); if (ret < 0) { dev_err(di->dev, "%s ADC conversion failed, using previous value\n", __func__); return prev; } /* IIO returns millivolts but we want microvolts */ vbat *= 1000; prev = vbat; return vbat; } /** * ab8500_fg_volt_to_capacity() - Voltage based capacity * @di: pointer to the ab8500_fg structure * @voltage_uv: The voltage to convert to a capacity in microvolt * * Returns battery capacity in per mille based on voltage */ static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage_uv) { struct power_supply_battery_info *bi = di->bm->bi; /* Multiply by 10 because the capacity is tracked in per mille */ return power_supply_batinfo_ocv2cap(bi, voltage_uv, di->bat_temp) * 10; } /** * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity * @di: pointer to the ab8500_fg structure * * Returns battery capacity based on battery voltage that is not compensated * for the voltage drop due to the load */ static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di) { di->vbat_uv = ab8500_fg_bat_voltage(di); return ab8500_fg_volt_to_capacity(di, di->vbat_uv); } /** * ab8500_fg_battery_resistance() - Returns the battery inner resistance * @di: pointer to the ab8500_fg structure * @vbat_uncomp_uv: Uncompensated VBAT voltage * * Returns battery inner resistance added with the fuel gauge resistor value * to get the total resistance in the whole link from gnd to bat+ node * in milliohm. */ static int ab8500_fg_battery_resistance(struct ab8500_fg *di, int vbat_uncomp_uv) { struct power_supply_battery_info *bi = di->bm->bi; int resistance_percent = 0; int resistance; /* * Determine the resistance at this voltage. First try VBAT-to-Ri else * just infer it from the surrounding temperature, if nothing works just * use the internal resistance. */ if (power_supply_supports_vbat2ri(bi)) { resistance = power_supply_vbat2ri(bi, vbat_uncomp_uv, di->flags.charging); /* Convert to milliohm */ resistance = resistance / 1000; } else if (power_supply_supports_temp2ri(bi)) { resistance_percent = power_supply_temp2resist_simple(bi->resist_table, bi->resist_table_size, di->bat_temp / 10); /* Convert to milliohm */ resistance = bi->factory_internal_resistance_uohm / 1000; resistance = resistance * resistance_percent / 100; } else { /* Last fallback */ resistance = bi->factory_internal_resistance_uohm / 1000; } /* Compensate for line impedance */ resistance += (di->line_impedance_uohm / 1000); dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d" " fg resistance %d, total: %d (mOhm)\n", __func__, di->bat_temp, resistance, di->bm->fg_res / 10, (di->bm->fg_res / 10) + resistance); /* fg_res variable is in 0.1mOhm */ resistance += di->bm->fg_res / 10; return resistance; } /** * ab8500_load_comp_fg_bat_voltage() - get load compensated battery voltage * @di: pointer to the ab8500_fg structure * @always: always return a voltage, also uncompensated * * Returns compensated battery voltage (on success) else error code. * If always is specified, we always return a voltage but it may be * uncompensated. */ static int ab8500_load_comp_fg_bat_voltage(struct ab8500_fg *di, bool always) { int i = 0; int vbat_uv = 0; int rcomp; /* Average the instant current to get a stable current measurement */ ab8500_fg_inst_curr_start(di); do { vbat_uv += ab8500_fg_bat_voltage(di); i++; usleep_range(5000, 6000); } while (!ab8500_fg_inst_curr_done(di) && i <= WAIT_FOR_INST_CURRENT_MAX); if (i > WAIT_FOR_INST_CURRENT_MAX) { dev_err(di->dev, "TIMEOUT: return uncompensated measurement of VBAT\n"); di->vbat_uv = vbat_uv / i; return di->vbat_uv; } ab8500_fg_inst_curr_finalize(di, &di->inst_curr_ua); /* * If there is too high current dissipation, the compensation cannot be * trusted so return an error unless we must return something here, as * enforced by the "always" parameter. */ if (!always && di->inst_curr_ua < IGNORE_VBAT_HIGHCUR) return -EINVAL; vbat_uv = vbat_uv / i; /* Next we apply voltage compensation from internal resistance */ rcomp = ab8500_fg_battery_resistance(di, vbat_uv); vbat_uv = vbat_uv - (di->inst_curr_ua * rcomp) / 1000; /* Always keep this state at latest measurement */ di->vbat_uv = vbat_uv; return vbat_uv; } /** * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity * @di: pointer to the ab8500_fg structure * * Returns battery capacity based on battery voltage that is load compensated * for the voltage drop */ static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di) { int vbat_comp_uv; vbat_comp_uv = ab8500_load_comp_fg_bat_voltage(di, true); return ab8500_fg_volt_to_capacity(di, vbat_comp_uv); } /** * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille * @di: pointer to the ab8500_fg structure * @cap_mah: capacity in mAh * * Converts capacity in mAh to capacity in permille */ static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah) { return (cap_mah * 1000) / di->bat_cap.max_mah_design; } /** * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh * @di: pointer to the ab8500_fg structure * @cap_pm: capacity in permille * * Converts capacity in permille to capacity in mAh */ static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm) { return cap_pm * di->bat_cap.max_mah_design / 1000; } /** * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh * @di: pointer to the ab8500_fg structure * @cap_mah: capacity in mAh * * Converts capacity in mAh to capacity in uWh */ static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah) { u64 div_res; u32 div_rem; /* * Capacity is in milli ampere hours (10^-3)Ah * Nominal voltage is in microvolts (10^-6)V * divide by 1000000 after multiplication to get to mWh */ div_res = ((u64) cap_mah) * ((u64) di->vbat_nom_uv); div_rem = do_div(div_res, 1000000); /* Make sure to round upwards if necessary */ if (div_rem >= 1000000 / 2) div_res++; return (int) div_res; } /** * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging * @di: pointer to the ab8500_fg structure * * Return the capacity in mAh based on previous calculated capcity and the FG * accumulator register value. The filter is filled with this capacity */ static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di) { dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", __func__, di->bat_cap.mah, di->accu_charge); /* Capacity should not be less than 0 */ if (di->bat_cap.mah + di->accu_charge > 0) di->bat_cap.mah += di->accu_charge; else di->bat_cap.mah = 0; /* * We force capacity to 100% once when the algorithm * reports that it's full. */ if (di->bat_cap.mah >= di->bat_cap.max_mah_design || di->flags.force_full) { di->bat_cap.mah = di->bat_cap.max_mah_design; } ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); /* We need to update battery voltage and inst current when charging */ di->vbat_uv = ab8500_fg_bat_voltage(di); di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di); return di->bat_cap.mah; } /** * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage * @di: pointer to the ab8500_fg structure * * Return the capacity in mAh based on the load compensated battery voltage. * This value is added to the filter and a new mean value is calculated and * returned. */ static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di) { int permille, mah; permille = ab8500_fg_load_comp_volt_to_capacity(di); mah = ab8500_fg_convert_permille_to_mah(di, permille); di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah); di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); return di->bat_cap.mah; } /** * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG * @di: pointer to the ab8500_fg structure * * Return the capacity in mAh based on previous calculated capcity and the FG * accumulator register value. This value is added to the filter and a * new mean value is calculated and returned. */ static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di) { int permille_volt, permille; dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", __func__, di->bat_cap.mah, di->accu_charge); /* Capacity should not be less than 0 */ if (di->bat_cap.mah + di->accu_charge > 0) di->bat_cap.mah += di->accu_charge; else di->bat_cap.mah = 0; if (di->bat_cap.mah >= di->bat_cap.max_mah_design) di->bat_cap.mah = di->bat_cap.max_mah_design; /* * Check against voltage based capacity. It can not be lower * than what the uncompensated voltage says */ permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); permille_volt = ab8500_fg_uncomp_volt_to_capacity(di); if (permille < permille_volt) { di->bat_cap.permille = permille_volt; di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di, di->bat_cap.permille); dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n", __func__, permille, permille_volt); ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); } else { ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); } return di->bat_cap.mah; } /** * ab8500_fg_capacity_level() - Get the battery capacity level * @di: pointer to the ab8500_fg structure * * Get the battery capacity level based on the capacity in percent */ static int ab8500_fg_capacity_level(struct ab8500_fg *di) { int ret, percent; percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10); if (percent <= di->bm->cap_levels->critical || di->flags.low_bat) ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else if (percent <= di->bm->cap_levels->low) ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW; else if (percent <= di->bm->cap_levels->normal) ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; else if (percent <= di->bm->cap_levels->high) ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; else ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL; return ret; } /** * ab8500_fg_calculate_scaled_capacity() - Capacity scaling * @di: pointer to the ab8500_fg structure * * Calculates the capacity to be shown to upper layers. Scales the capacity * to have 100% as a reference from the actual capacity upon removal of charger * when charging is in maintenance mode. */ static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di) { struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale; int capacity = di->bat_cap.prev_percent; if (!cs->enable) return capacity; /* * As long as we are in fully charge mode scale the capacity * to show 100%. */ if (di->flags.fully_charged) { cs->cap_to_scale[0] = 100; cs->cap_to_scale[1] = max(capacity, di->bm->fg_params->maint_thres); dev_dbg(di->dev, "Scale cap with %d/%d\n", cs->cap_to_scale[0], cs->cap_to_scale[1]); } /* Calculates the scaled capacity. */ if ((cs->cap_to_scale[0] != cs->cap_to_scale[1]) && (cs->cap_to_scale[1] > 0)) capacity = min(100, DIV_ROUND_CLOSEST(di->bat_cap.prev_percent * cs->cap_to_scale[0], cs->cap_to_scale[1])); if (di->flags.charging) { if (capacity < cs->disable_cap_level) { cs->disable_cap_level = capacity; dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n", cs->disable_cap_level); } else if (!di->flags.fully_charged) { if (di->bat_cap.prev_percent >= cs->disable_cap_level) { dev_dbg(di->dev, "Disabling scaled capacity\n"); cs->enable = false; capacity = di->bat_cap.prev_percent; } else { dev_dbg(di->dev, "Waiting in cap to level %d%%\n", cs->disable_cap_level); capacity = cs->disable_cap_level; } } } return capacity; } /** * ab8500_fg_update_cap_scalers() - Capacity scaling * @di: pointer to the ab8500_fg structure * * To be called when state change from charge<->discharge to update * the capacity scalers. */ static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di) { struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale; if (!cs->enable) return; if (di->flags.charging) { di->bat_cap.cap_scale.disable_cap_level = di->bat_cap.cap_scale.scaled_cap; dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n", di->bat_cap.cap_scale.disable_cap_level); } else { if (cs->scaled_cap != 100) { cs->cap_to_scale[0] = cs->scaled_cap; cs->cap_to_scale[1] = di->bat_cap.prev_percent; } else { cs->cap_to_scale[0] = 100; cs->cap_to_scale[1] = max(di->bat_cap.prev_percent, di->bm->fg_params->maint_thres); } dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n", cs->cap_to_scale[0], cs->cap_to_scale[1]); } } /** * ab8500_fg_check_capacity_limits() - Check if capacity has changed * @di: pointer to the ab8500_fg structure * @init: capacity is allowed to go up in init mode * * Check if capacity or capacity limit has changed and notify the system * about it using the power_supply framework */ static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init) { bool changed = false; int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10); di->bat_cap.level = ab8500_fg_capacity_level(di); if (di->bat_cap.level != di->bat_cap.prev_level) { /* * We do not allow reported capacity level to go up * unless we're charging or if we're in init */ if (!(!di->flags.charging && di->bat_cap.level > di->bat_cap.prev_level) || init) { dev_dbg(di->dev, "level changed from %d to %d\n", di->bat_cap.prev_level, di->bat_cap.level); di->bat_cap.prev_level = di->bat_cap.level; changed = true; } else { dev_dbg(di->dev, "level not allowed to go up " "since no charger is connected: %d to %d\n", di->bat_cap.prev_level, di->bat_cap.level); } } /* * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate * shutdown */ if (di->flags.low_bat) { dev_dbg(di->dev, "Battery low, set capacity to 0\n"); di->bat_cap.prev_percent = 0; di->bat_cap.permille = 0; percent = 0; di->bat_cap.prev_mah = 0; di->bat_cap.mah = 0; changed = true; } else if (di->flags.fully_charged) { /* * We report 100% if algorithm reported fully charged * and show 100% during maintenance charging (scaling). */ if (di->flags.force_full) { di->bat_cap.prev_percent = percent; di->bat_cap.prev_mah = di->bat_cap.mah; changed = true; if (!di->bat_cap.cap_scale.enable && di->bm->capacity_scaling) { di->bat_cap.cap_scale.enable = true; di->bat_cap.cap_scale.cap_to_scale[0] = 100; di->bat_cap.cap_scale.cap_to_scale[1] = di->bat_cap.prev_percent; di->bat_cap.cap_scale.disable_cap_level = 100; } } else if (di->bat_cap.prev_percent != percent) { dev_dbg(di->dev, "battery reported full " "but capacity dropping: %d\n", percent); di->bat_cap.prev_percent = percent; di->bat_cap.prev_mah = di->bat_cap.mah; changed = true; } } else if (di->bat_cap.prev_percent != percent) { if (percent == 0) { /* * We will not report 0% unless we've got * the LOW_BAT IRQ, no matter what the FG * algorithm says. */ di->bat_cap.prev_percent = 1; percent = 1; changed = true; } else if (!(!di->flags.charging && percent > di->bat_cap.prev_percent) || init) { /* * We do not allow reported capacity to go up * unless we're charging or if we're in init */ dev_dbg(di->dev, "capacity changed from %d to %d (%d)\n", di->bat_cap.prev_percent, percent, di->bat_cap.permille); di->bat_cap.prev_percent = percent; di->bat_cap.prev_mah = di->bat_cap.mah; changed = true; } else { dev_dbg(di->dev, "capacity not allowed to go up since " "no charger is connected: %d to %d (%d)\n", di->bat_cap.prev_percent, percent, di->bat_cap.permille); } } if (changed) { if (di->bm->capacity_scaling) { di->bat_cap.cap_scale.scaled_cap = ab8500_fg_calculate_scaled_capacity(di); dev_info(di->dev, "capacity=%d (%d)\n", di->bat_cap.prev_percent, di->bat_cap.cap_scale.scaled_cap); } power_supply_changed(di->fg_psy); if (di->flags.fully_charged && di->flags.force_full) { dev_dbg(di->dev, "Battery full, notifying.\n"); di->flags.force_full = false; sysfs_notify(&di->fg_kobject, NULL, "charge_full"); } sysfs_notify(&di->fg_kobject, NULL, "charge_now"); } } static void ab8500_fg_charge_state_to(struct ab8500_fg *di, enum ab8500_fg_charge_state new_state) { dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n", di->charge_state, charge_state[di->charge_state], new_state, charge_state[new_state]); di->charge_state = new_state; } static void ab8500_fg_discharge_state_to(struct ab8500_fg *di, enum ab8500_fg_discharge_state new_state) { dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n", di->discharge_state, discharge_state[di->discharge_state], new_state, discharge_state[new_state]); di->discharge_state = new_state; } /** * ab8500_fg_algorithm_charging() - FG algorithm for when charging * @di: pointer to the ab8500_fg structure * * Battery capacity calculation state machine for when we're charging */ static void ab8500_fg_algorithm_charging(struct ab8500_fg *di) { /* * If we change to discharge mode * we should start with recovery */ if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY) ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT_RECOVERY); switch (di->charge_state) { case AB8500_FG_CHARGE_INIT: di->fg_samples = SEC_TO_SAMPLE( di->bm->fg_params->accu_charging); ab8500_fg_coulomb_counter(di, true); ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT); break; case AB8500_FG_CHARGE_READOUT: /* * Read the FG and calculate the new capacity */ mutex_lock(&di->cc_lock); if (!di->flags.conv_done && !di->flags.force_full) { /* Wasn't the CC IRQ that got us here */ mutex_unlock(&di->cc_lock); dev_dbg(di->dev, "%s CC conv not done\n", __func__); break; } di->flags.conv_done = false; mutex_unlock(&di->cc_lock); ab8500_fg_calc_cap_charging(di); break; default: break; } /* Check capacity limits */ ab8500_fg_check_capacity_limits(di, false); } static void force_capacity(struct ab8500_fg *di) { int cap; ab8500_fg_clear_cap_samples(di); cap = di->bat_cap.user_mah; if (cap > di->bat_cap.max_mah_design) { dev_dbg(di->dev, "Remaining cap %d can't be bigger than total" " %d\n", cap, di->bat_cap.max_mah_design); cap = di->bat_cap.max_mah_design; } ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah); di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap); di->bat_cap.mah = cap; ab8500_fg_check_capacity_limits(di, true); } static bool check_sysfs_capacity(struct ab8500_fg *di) { int cap, lower, upper; int cap_permille; cap = di->bat_cap.user_mah; cap_permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.user_mah); lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10; upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10; if (lower < 0) lower = 0; /* 1000 is permille, -> 100 percent */ if (upper > 1000) upper = 1000; dev_dbg(di->dev, "Capacity limits:" " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n", lower, cap_permille, upper, cap, di->bat_cap.mah); /* If within limits, use the saved capacity and exit estimation...*/ if (cap_permille > lower && cap_permille < upper) { dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap); force_capacity(di); return true; } dev_dbg(di->dev, "Capacity from user out of limits, ignoring"); return false; } /** * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging * @di: pointer to the ab8500_fg structure * * Battery capacity calculation state machine for when we're discharging */ static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di) { int sleep_time; /* If we change to charge mode we should start with init */ if (di->charge_state != AB8500_FG_CHARGE_INIT) ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); switch (di->discharge_state) { case AB8500_FG_DISCHARGE_INIT: /* We use the FG IRQ to work on */ di->init_cnt = 0; di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer); ab8500_fg_coulomb_counter(di, true); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INITMEASURING); fallthrough; case AB8500_FG_DISCHARGE_INITMEASURING: /* * Discard a number of samples during startup. * After that, use compensated voltage for a few * samples to get an initial capacity. * Then go to READOUT */ sleep_time = di->bm->fg_params->init_timer; /* Discard the first [x] seconds */ if (di->init_cnt > di->bm->fg_params->init_discard_time) { ab8500_fg_calc_cap_discharge_voltage(di); ab8500_fg_check_capacity_limits(di, true); } di->init_cnt += sleep_time; if (di->init_cnt > di->bm->fg_params->init_total_time) ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT_INIT); break; case AB8500_FG_DISCHARGE_INIT_RECOVERY: di->recovery_cnt = 0; di->recovery_needed = true; ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_RECOVERY); fallthrough; case AB8500_FG_DISCHARGE_RECOVERY: sleep_time = di->bm->fg_params->recovery_sleep_timer; /* * We should check the power consumption * If low, go to READOUT (after x min) or * RECOVERY_SLEEP if time left. * If high, go to READOUT */ di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di); if (ab8500_fg_is_low_curr(di, di->inst_curr_ua)) { if (di->recovery_cnt > di->bm->fg_params->recovery_total_time) { di->fg_samples = SEC_TO_SAMPLE( di->bm->fg_params->accu_high_curr); ab8500_fg_coulomb_counter(di, true); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT); di->recovery_needed = false; } else { queue_delayed_work(di->fg_wq, &di->fg_periodic_work, sleep_time * HZ); } di->recovery_cnt += sleep_time; } else { di->fg_samples = SEC_TO_SAMPLE( di->bm->fg_params->accu_high_curr); ab8500_fg_coulomb_counter(di, true); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT); } break; case AB8500_FG_DISCHARGE_READOUT_INIT: di->fg_samples = SEC_TO_SAMPLE( di->bm->fg_params->accu_high_curr); ab8500_fg_coulomb_counter(di, true); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT); break; case AB8500_FG_DISCHARGE_READOUT: di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di); if (ab8500_fg_is_low_curr(di, di->inst_curr_ua)) { /* Detect mode change */ if (di->high_curr_mode) { di->high_curr_mode = false; di->high_curr_cnt = 0; } if (di->recovery_needed) { ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT_RECOVERY); queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); break; } ab8500_fg_calc_cap_discharge_voltage(di); } else { mutex_lock(&di->cc_lock); if (!di->flags.conv_done) { /* Wasn't the CC IRQ that got us here */ mutex_unlock(&di->cc_lock); dev_dbg(di->dev, "%s CC conv not done\n", __func__); break; } di->flags.conv_done = false; mutex_unlock(&di->cc_lock); /* Detect mode change */ if (!di->high_curr_mode) { di->high_curr_mode = true; di->high_curr_cnt = 0; } di->high_curr_cnt += di->bm->fg_params->accu_high_curr; if (di->high_curr_cnt > di->bm->fg_params->high_curr_time) di->recovery_needed = true; ab8500_fg_calc_cap_discharge_fg(di); } ab8500_fg_check_capacity_limits(di, false); break; case AB8500_FG_DISCHARGE_WAKEUP: ab8500_fg_calc_cap_discharge_voltage(di); di->fg_samples = SEC_TO_SAMPLE( di->bm->fg_params->accu_high_curr); ab8500_fg_coulomb_counter(di, true); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT); ab8500_fg_check_capacity_limits(di, false); break; default: break; } } /** * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration * @di: pointer to the ab8500_fg structure * */ static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di) { int ret; switch (di->calib_state) { case AB8500_FG_CALIB_INIT: dev_dbg(di->dev, "Calibration ongoing...\n"); ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8); if (ret < 0) goto err; ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA); if (ret < 0) goto err; di->calib_state = AB8500_FG_CALIB_WAIT; break; case AB8500_FG_CALIB_END: ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, CC_MUXOFFSET, CC_MUXOFFSET); if (ret < 0) goto err; di->flags.calibrate = false; dev_dbg(di->dev, "Calibration done...\n"); queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); break; case AB8500_FG_CALIB_WAIT: dev_dbg(di->dev, "Calibration WFI\n"); break; default: break; } return; err: /* Something went wrong, don't calibrate then */ dev_err(di->dev, "failed to calibrate the CC\n"); di->flags.calibrate = false; di->calib_state = AB8500_FG_CALIB_INIT; queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); } /** * ab8500_fg_algorithm() - Entry point for the FG algorithm * @di: pointer to the ab8500_fg structure * * Entry point for the battery capacity calculation state machine */ static void ab8500_fg_algorithm(struct ab8500_fg *di) { if (di->flags.calibrate) ab8500_fg_algorithm_calibrate(di); else { if (di->flags.charging) ab8500_fg_algorithm_charging(di); else ab8500_fg_algorithm_discharging(di); } dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d " "%d %d %d %d %d %d %d\n", di->bat_cap.max_mah_design, di->bat_cap.max_mah, di->bat_cap.mah, di->bat_cap.permille, di->bat_cap.level, di->bat_cap.prev_mah, di->bat_cap.prev_percent, di->bat_cap.prev_level, di->vbat_uv, di->inst_curr_ua, di->avg_curr_ua, di->accu_charge, di->flags.charging, di->charge_state, di->discharge_state, di->high_curr_mode, di->recovery_needed); } /** * ab8500_fg_periodic_work() - Run the FG state machine periodically * @work: pointer to the work_struct structure * * Work queue function for periodic work */ static void ab8500_fg_periodic_work(struct work_struct *work) { struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_periodic_work.work); if (di->init_capacity) { /* Get an initial capacity calculation */ ab8500_fg_calc_cap_discharge_voltage(di); ab8500_fg_check_capacity_limits(di, true); di->init_capacity = false; queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); } else if (di->flags.user_cap) { if (check_sysfs_capacity(di)) { ab8500_fg_check_capacity_limits(di, true); if (di->flags.charging) ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); else ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_READOUT_INIT); } di->flags.user_cap = false; queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); } else ab8500_fg_algorithm(di); } /** * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition * @work: pointer to the work_struct structure * * Work queue function for checking the OVV_BAT condition */ static void ab8500_fg_check_hw_failure_work(struct work_struct *work) { int ret; u8 reg_value; struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_check_hw_failure_work.work); /* * If we have had a battery over-voltage situation, * check ovv-bit to see if it should be reset. */ ret = abx500_get_register_interruptible(di->dev, AB8500_CHARGER, AB8500_CH_STAT_REG, ®_value); if (ret < 0) { dev_err(di->dev, "%s ab8500 read failed\n", __func__); return; } if ((reg_value & BATT_OVV) == BATT_OVV) { if (!di->flags.bat_ovv) { dev_dbg(di->dev, "Battery OVV\n"); di->flags.bat_ovv = true; power_supply_changed(di->fg_psy); } /* Not yet recovered from ovv, reschedule this test */ queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, HZ); } else { dev_dbg(di->dev, "Battery recovered from OVV\n"); di->flags.bat_ovv = false; power_supply_changed(di->fg_psy); } } /** * ab8500_fg_low_bat_work() - Check LOW_BAT condition * @work: pointer to the work_struct structure * * Work queue function for checking the LOW_BAT condition */ static void ab8500_fg_low_bat_work(struct work_struct *work) { int vbat_uv; struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_low_bat_work.work); vbat_uv = ab8500_fg_bat_voltage(di); /* Check if LOW_BAT still fulfilled */ if (vbat_uv < di->bm->fg_params->lowbat_threshold_uv) { /* Is it time to shut down? */ if (di->low_bat_cnt < 1) { di->flags.low_bat = true; dev_warn(di->dev, "Shut down pending...\n"); } else { /* * Else we need to re-schedule this check to be able to detect * if the voltage increases again during charging or * due to decreasing load. */ di->low_bat_cnt--; dev_warn(di->dev, "Battery voltage still LOW\n"); queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, round_jiffies(LOW_BAT_CHECK_INTERVAL)); } } else { di->flags.low_bat_delay = false; di->low_bat_cnt = 10; dev_warn(di->dev, "Battery voltage OK again\n"); } /* This is needed to dispatch LOW_BAT */ ab8500_fg_check_capacity_limits(di, false); } /** * ab8500_fg_battok_calc - calculate the bit pattern corresponding * to the target voltage. * @di: pointer to the ab8500_fg structure * @target: target voltage * * Returns bit pattern closest to the target voltage * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS) */ static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target) { if (target > BATT_OK_MIN + (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS)) return BATT_OK_MAX_NR_INCREMENTS; if (target < BATT_OK_MIN) return 0; return (target - BATT_OK_MIN) / BATT_OK_INCREMENT; } /** * ab8500_fg_battok_init_hw_register - init battok levels * @di: pointer to the ab8500_fg structure * */ static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di) { int selected; int sel0; int sel1; int cbp_sel0; int cbp_sel1; int ret; int new_val; sel0 = di->bm->fg_params->battok_falling_th_sel0; sel1 = di->bm->fg_params->battok_raising_th_sel1; cbp_sel0 = ab8500_fg_battok_calc(di, sel0); cbp_sel1 = ab8500_fg_battok_calc(di, sel1); selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT; if (selected != sel0) dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", sel0, selected, cbp_sel0); selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT; if (selected != sel1) dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", sel1, selected, cbp_sel1); new_val = cbp_sel0 | (cbp_sel1 << 4); dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1); ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK, AB8500_BATT_OK_REG, new_val); return ret; } /** * ab8500_fg_instant_work() - Run the FG state machine instantly * @work: pointer to the work_struct structure * * Work queue function for instant work */ static void ab8500_fg_instant_work(struct work_struct *work) { struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work); ab8500_fg_algorithm(di); } /** * ab8500_fg_cc_data_end_handler() - end of data conversion isr. * @irq: interrupt number * @_di: pointer to the ab8500_fg structure * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di) { struct ab8500_fg *di = _di; if (!di->nbr_cceoc_irq_cnt) { di->nbr_cceoc_irq_cnt++; complete(&di->ab8500_fg_started); } else { di->nbr_cceoc_irq_cnt = 0; complete(&di->ab8500_fg_complete); } return IRQ_HANDLED; } /** * ab8500_fg_cc_int_calib_handler () - end of calibration isr. * @irq: interrupt number * @_di: pointer to the ab8500_fg structure * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di) { struct ab8500_fg *di = _di; di->calib_state = AB8500_FG_CALIB_END; queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); return IRQ_HANDLED; } /** * ab8500_fg_cc_convend_handler() - isr to get battery avg current. * @irq: interrupt number * @_di: pointer to the ab8500_fg structure * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di) { struct ab8500_fg *di = _di; queue_work(di->fg_wq, &di->fg_acc_cur_work); return IRQ_HANDLED; } /** * ab8500_fg_batt_ovv_handler() - Battery OVV occured * @irq: interrupt number * @_di: pointer to the ab8500_fg structure * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di) { struct ab8500_fg *di = _di; dev_dbg(di->dev, "Battery OVV\n"); /* Schedule a new HW failure check */ queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0); return IRQ_HANDLED; } /** * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold * @irq: interrupt number * @_di: pointer to the ab8500_fg structure * * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di) { struct ab8500_fg *di = _di; /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */ if (!di->flags.low_bat_delay) { dev_warn(di->dev, "Battery voltage is below LOW threshold\n"); di->flags.low_bat_delay = true; /* * Start a timer to check LOW_BAT again after some time * This is done to avoid shutdown on single voltage dips */ queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, round_jiffies(LOW_BAT_CHECK_INTERVAL)); } return IRQ_HANDLED; } /** * ab8500_fg_get_property() - get the fg properties * @psy: pointer to the power_supply structure * @psp: pointer to the power_supply_property structure * @val: pointer to the power_supply_propval union * * This function gets called when an application tries to get the * fg properties by reading the sysfs files. * voltage_now: battery voltage * current_now: battery instant current * current_avg: battery average current * charge_full_design: capacity where battery is considered full * charge_now: battery capacity in nAh * capacity: capacity in percent * capacity_level: capacity level * * Returns error code in case of failure else 0 on success */ static int ab8500_fg_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct ab8500_fg *di = power_supply_get_drvdata(psy); /* * If battery is identified as unknown and charging of unknown * batteries is disabled, we always report 100% capacity and * capacity level UNKNOWN, since we can't calculate * remaining capacity */ switch (psp) { case POWER_SUPPLY_PROP_VOLTAGE_NOW: if (di->flags.bat_ovv) val->intval = BATT_OVV_VALUE; else val->intval = di->vbat_uv; break; case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = di->inst_curr_ua; break; case POWER_SUPPLY_PROP_CURRENT_AVG: val->intval = di->avg_curr_ua; break; case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: val->intval = ab8500_fg_convert_mah_to_uwh(di, di->bat_cap.max_mah_design); break; case POWER_SUPPLY_PROP_ENERGY_FULL: val->intval = ab8500_fg_convert_mah_to_uwh(di, di->bat_cap.max_mah); break; case POWER_SUPPLY_PROP_ENERGY_NOW: if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && di->flags.batt_id_received) val->intval = ab8500_fg_convert_mah_to_uwh(di, di->bat_cap.max_mah); else val->intval = ab8500_fg_convert_mah_to_uwh(di, di->bat_cap.prev_mah); break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: val->intval = di->bat_cap.max_mah_design; break; case POWER_SUPPLY_PROP_CHARGE_FULL: val->intval = di->bat_cap.max_mah; break; case POWER_SUPPLY_PROP_CHARGE_NOW: if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && di->flags.batt_id_received) val->intval = di->bat_cap.max_mah; else val->intval = di->bat_cap.prev_mah; break; case POWER_SUPPLY_PROP_CAPACITY: if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && di->flags.batt_id_received) val->intval = 100; else val->intval = di->bat_cap.prev_percent; break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && di->flags.batt_id_received) val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; else val->intval = di->bat_cap.prev_level; break; default: return -EINVAL; } return 0; } static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data) { struct power_supply *psy; struct power_supply *ext = dev_get_drvdata(dev); const char **supplicants = (const char **)ext->supplied_to; struct ab8500_fg *di; struct power_supply_battery_info *bi; union power_supply_propval ret; int j; psy = (struct power_supply *)data; di = power_supply_get_drvdata(psy); bi = di->bm->bi; /* * For all psy where the name of your driver * appears in any supplied_to */ j = match_string(supplicants, ext->num_supplicants, psy->desc->name); if (j < 0) return 0; /* Go through all properties for the psy */ for (j = 0; j < ext->desc->num_properties; j++) { enum power_supply_property prop; prop = ext->desc->properties[j]; if (power_supply_get_property(ext, prop, &ret)) continue; switch (prop) { case POWER_SUPPLY_PROP_STATUS: switch (ext->desc->type) { case POWER_SUPPLY_TYPE_BATTERY: switch (ret.intval) { case POWER_SUPPLY_STATUS_UNKNOWN: case POWER_SUPPLY_STATUS_DISCHARGING: case POWER_SUPPLY_STATUS_NOT_CHARGING: if (!di->flags.charging) break; di->flags.charging = false; di->flags.fully_charged = false; if (di->bm->capacity_scaling) ab8500_fg_update_cap_scalers(di); queue_work(di->fg_wq, &di->fg_work); break; case POWER_SUPPLY_STATUS_FULL: if (di->flags.fully_charged) break; di->flags.fully_charged = true; di->flags.force_full = true; /* Save current capacity as maximum */ di->bat_cap.max_mah = di->bat_cap.mah; queue_work(di->fg_wq, &di->fg_work); break; case POWER_SUPPLY_STATUS_CHARGING: if (di->flags.charging && !di->flags.fully_charged) break; di->flags.charging = true; di->flags.fully_charged = false; if (di->bm->capacity_scaling) ab8500_fg_update_cap_scalers(di); queue_work(di->fg_wq, &di->fg_work); break; } break; default: break; } break; case POWER_SUPPLY_PROP_TECHNOLOGY: switch (ext->desc->type) { case POWER_SUPPLY_TYPE_BATTERY: if (!di->flags.batt_id_received && (bi && (bi->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN))) { di->flags.batt_id_received = true; di->bat_cap.max_mah_design = di->bm->bi->charge_full_design_uah; di->bat_cap.max_mah = di->bat_cap.max_mah_design; di->vbat_nom_uv = di->bm->bi->voltage_max_design_uv; } if (ret.intval) di->flags.batt_unknown = false; else di->flags.batt_unknown = true; break; default: break; } break; case POWER_SUPPLY_PROP_TEMP: switch (ext->desc->type) { case POWER_SUPPLY_TYPE_BATTERY: if (di->flags.batt_id_received) di->bat_temp = ret.intval; break; default: break; } break; default: break; } } return 0; } /** * ab8500_fg_init_hw_registers() - Set up FG related registers * @di: pointer to the ab8500_fg structure * * Set up battery OVV, low battery voltage registers */ static int ab8500_fg_init_hw_registers(struct ab8500_fg *di) { int ret; /* * Set VBAT OVV (overvoltage) threshold to 4.75V (typ) this is what * the hardware supports, nothing else can be configured in hardware. * See this as an "outer limit" where the charger will certainly * shut down. Other (lower) overvoltage levels need to be implemented * in software. */ ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_CHARGER, AB8500_BATT_OVV, BATT_OVV_TH_4P75, BATT_OVV_TH_4P75); if (ret) { dev_err(di->dev, "failed to set BATT_OVV\n"); goto out; } /* Enable VBAT OVV detection */ ret = abx500_mask_and_set_register_interruptible(di->dev, AB8500_CHARGER, AB8500_BATT_OVV, BATT_OVV_ENA, BATT_OVV_ENA); if (ret) { dev_err(di->dev, "failed to enable BATT_OVV\n"); goto out; } /* Low Battery Voltage */ ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK, AB8500_LOW_BAT_REG, ab8500_volt_to_regval( di->bm->fg_params->lowbat_threshold_uv) << 1 | LOW_BAT_ENABLE); if (ret) { dev_err(di->dev, "%s write failed\n", __func__); goto out; } /* Battery OK threshold */ ret = ab8500_fg_battok_init_hw_register(di); if (ret) { dev_err(di->dev, "BattOk init write failed.\n"); goto out; } if (is_ab8505(di->parent)) { ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time); if (ret) { dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__); goto out; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time); if (ret) { dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__); goto out; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart); if (ret) { dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__); goto out; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time); if (ret) { dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__); goto out; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable); if (ret) { dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__); goto out; } } out: return ret; } /** * ab8500_fg_external_power_changed() - callback for power supply changes * @psy: pointer to the structure power_supply * * This function is the entry point of the pointer external_power_changed * of the structure power_supply. * This function gets executed when there is a change in any external power * supply that this driver needs to be notified of. */ static void ab8500_fg_external_power_changed(struct power_supply *psy) { power_supply_for_each_device(psy, ab8500_fg_get_ext_psy_data); } /** * ab8500_fg_reinit_work() - work to reset the FG algorithm * @work: pointer to the work_struct structure * * Used to reset the current battery capacity to be able to * retrigger a new voltage base capacity calculation. For * test and verification purpose. */ static void ab8500_fg_reinit_work(struct work_struct *work) { struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_reinit_work.work); if (!di->flags.calibrate) { dev_dbg(di->dev, "Resetting FG state machine to init.\n"); ab8500_fg_clear_cap_samples(di); ab8500_fg_calc_cap_discharge_voltage(di); ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); } else { dev_err(di->dev, "Residual offset calibration ongoing " "retrying..\n"); /* Wait one second until next try*/ queue_delayed_work(di->fg_wq, &di->fg_reinit_work, round_jiffies(1)); } } /* Exposure to the sysfs interface */ struct ab8500_fg_sysfs_entry { struct attribute attr; ssize_t (*show)(struct ab8500_fg *, char *); ssize_t (*store)(struct ab8500_fg *, const char *, size_t); }; static ssize_t charge_full_show(struct ab8500_fg *di, char *buf) { return sysfs_emit(buf, "%d\n", di->bat_cap.max_mah); } static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf, size_t count) { unsigned long charge_full; int ret; ret = kstrtoul(buf, 10, &charge_full); if (ret) return ret; di->bat_cap.max_mah = (int) charge_full; return count; } static ssize_t charge_now_show(struct ab8500_fg *di, char *buf) { return sysfs_emit(buf, "%d\n", di->bat_cap.prev_mah); } static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf, size_t count) { unsigned long charge_now; int ret; ret = kstrtoul(buf, 10, &charge_now); if (ret) return ret; di->bat_cap.user_mah = (int) charge_now; di->flags.user_cap = true; queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); return count; } static struct ab8500_fg_sysfs_entry charge_full_attr = __ATTR(charge_full, 0644, charge_full_show, charge_full_store); static struct ab8500_fg_sysfs_entry charge_now_attr = __ATTR(charge_now, 0644, charge_now_show, charge_now_store); static ssize_t ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf) { struct ab8500_fg_sysfs_entry *entry; struct ab8500_fg *di; entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); di = container_of(kobj, struct ab8500_fg, fg_kobject); if (!entry->show) return -EIO; return entry->show(di, buf); } static ssize_t ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count) { struct ab8500_fg_sysfs_entry *entry; struct ab8500_fg *di; entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); di = container_of(kobj, struct ab8500_fg, fg_kobject); if (!entry->store) return -EIO; return entry->store(di, buf, count); } static const struct sysfs_ops ab8500_fg_sysfs_ops = { .show = ab8500_fg_show, .store = ab8500_fg_store, }; static struct attribute *ab8500_fg_attrs[] = { &charge_full_attr.attr, &charge_now_attr.attr, NULL, }; ATTRIBUTE_GROUPS(ab8500_fg); static struct kobj_type ab8500_fg_ktype = { .sysfs_ops = &ab8500_fg_sysfs_ops, .default_groups = ab8500_fg_groups, }; /** * ab8500_fg_sysfs_exit() - de-init of sysfs entry * @di: pointer to the struct ab8500_chargalg * * This function removes the entry in sysfs. */ static void ab8500_fg_sysfs_exit(struct ab8500_fg *di) { kobject_del(&di->fg_kobject); } /** * ab8500_fg_sysfs_init() - init of sysfs entry * @di: pointer to the struct ab8500_chargalg * * This function adds an entry in sysfs. * Returns error code in case of failure else 0(on success) */ static int ab8500_fg_sysfs_init(struct ab8500_fg *di) { int ret = 0; ret = kobject_init_and_add(&di->fg_kobject, &ab8500_fg_ktype, NULL, "battery"); if (ret < 0) { kobject_put(&di->fg_kobject); dev_err(di->dev, "failed to create sysfs entry\n"); } return ret; } static ssize_t ab8505_powercut_flagtime_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_FLAG_TIME_REG, ®_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0x7F)); fail: return ret; } static ssize_t ab8505_powercut_flagtime_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; int reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); if (kstrtoint(buf, 10, ®_value)) goto fail; if (reg_value > 0x7F) { dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n"); goto fail; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value); if (ret < 0) dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n"); fail: return count; } static ssize_t ab8505_powercut_maxtime_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_MAX_TIME_REG, ®_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0x7F)); fail: return ret; } static ssize_t ab8505_powercut_maxtime_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; int reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); if (kstrtoint(buf, 10, ®_value)) goto fail; if (reg_value > 0x7F) { dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n"); goto fail; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value); if (ret < 0) dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n"); fail: return count; } static ssize_t ab8505_powercut_restart_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_RESTART_REG, ®_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0xF)); fail: return ret; } static ssize_t ab8505_powercut_restart_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; int reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); if (kstrtoint(buf, 10, ®_value)) goto fail; if (reg_value > 0xF) { dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n"); goto fail; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value); if (ret < 0) dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n"); fail: return count; } static ssize_t ab8505_powercut_timer_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_TIME_REG, ®_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0x7F)); fail: return ret; } static ssize_t ab8505_powercut_restart_counter_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_RESTART_REG, ®_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0xF0) >> 4); fail: return ret; } static ssize_t ab8505_powercut_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value); if (ret < 0) goto fail; return sysfs_emit(buf, "%d\n", (reg_value & 0x1)); fail: return ret; } static ssize_t ab8505_powercut_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; int reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); if (kstrtoint(buf, 10, ®_value)) goto fail; if (reg_value > 0x1) { dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n"); goto fail; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value); if (ret < 0) dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n"); fail: return count; } static ssize_t ab8505_powercut_flag_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", ((reg_value & 0x10) >> 4)); fail: return ret; } static ssize_t ab8505_powercut_debounce_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_DEBOUNCE_REG, ®_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", (reg_value & 0x7)); fail: return ret; } static ssize_t ab8505_powercut_debounce_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int ret; int reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); if (kstrtoint(buf, 10, ®_value)) goto fail; if (reg_value > 0x7) { dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n"); goto fail; } ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value); if (ret < 0) dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n"); fail: return count; } static ssize_t ab8505_powercut_enable_status_read(struct device *dev, struct device_attribute *attr, char *buf) { int ret; u8 reg_value; struct power_supply *psy = dev_get_drvdata(dev); struct ab8500_fg *di = power_supply_get_drvdata(psy); ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value); if (ret < 0) { dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n"); goto fail; } return sysfs_emit(buf, "%d\n", ((reg_value & 0x20) >> 5)); fail: return ret; } static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = { __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP), ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write), __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP), ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write), __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP), ab8505_powercut_restart_read, ab8505_powercut_restart_write), __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL), __ATTR(powercut_restart_counter, S_IRUGO, ab8505_powercut_restart_counter_read, NULL), __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP), ab8505_powercut_read, ab8505_powercut_write), __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL), __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP), ab8505_powercut_debounce_read, ab8505_powercut_debounce_write), __ATTR(powercut_enable_status, S_IRUGO, ab8505_powercut_enable_status_read, NULL), }; static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di) { unsigned int i; if (is_ab8505(di->parent)) { for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++) if (device_create_file(&di->fg_psy->dev, &ab8505_fg_sysfs_psy_attrs[i])) goto sysfs_psy_create_attrs_failed_ab8505; } return 0; sysfs_psy_create_attrs_failed_ab8505: dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n"); while (i--) device_remove_file(&di->fg_psy->dev, &ab8505_fg_sysfs_psy_attrs[i]); return -EIO; } static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di) { unsigned int i; if (is_ab8505(di->parent)) { for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++) (void)device_remove_file(&di->fg_psy->dev, &ab8505_fg_sysfs_psy_attrs[i]); } } /* Exposure to the sysfs interface <<END>> */ static int __maybe_unused ab8500_fg_resume(struct device *dev) { struct ab8500_fg *di = dev_get_drvdata(dev); /* * Change state if we're not charging. If we're charging we will wake * up on the FG IRQ */ if (!di->flags.charging) { ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP); queue_work(di->fg_wq, &di->fg_work); } return 0; } static int __maybe_unused ab8500_fg_suspend(struct device *dev) { struct ab8500_fg *di = dev_get_drvdata(dev); flush_delayed_work(&di->fg_periodic_work); flush_work(&di->fg_work); flush_work(&di->fg_acc_cur_work); flush_delayed_work(&di->fg_reinit_work); flush_delayed_work(&di->fg_low_bat_work); flush_delayed_work(&di->fg_check_hw_failure_work); /* * If the FG is enabled we will disable it before going to suspend * only if we're not charging */ if (di->flags.fg_enabled && !di->flags.charging) ab8500_fg_coulomb_counter(di, false); return 0; } /* ab8500 fg driver interrupts and their respective isr */ static struct ab8500_fg_interrupts ab8500_fg_irq[] = { {"NCONV_ACCU", ab8500_fg_cc_convend_handler}, {"BATT_OVV", ab8500_fg_batt_ovv_handler}, {"LOW_BAT_F", ab8500_fg_lowbatf_handler}, {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler}, {"CCEOC", ab8500_fg_cc_data_end_handler}, }; static char *supply_interface[] = { "ab8500_chargalg", "ab8500_usb", }; static const struct power_supply_desc ab8500_fg_desc = { .name = "ab8500_fg", .type = POWER_SUPPLY_TYPE_BATTERY, .properties = ab8500_fg_props, .num_properties = ARRAY_SIZE(ab8500_fg_props), .get_property = ab8500_fg_get_property, .external_power_changed = ab8500_fg_external_power_changed, }; static int ab8500_fg_bind(struct device *dev, struct device *master, void *data) { struct ab8500_fg *di = dev_get_drvdata(dev); di->bat_cap.max_mah_design = di->bm->bi->charge_full_design_uah; di->bat_cap.max_mah = di->bat_cap.max_mah_design; di->vbat_nom_uv = di->bm->bi->voltage_max_design_uv; /* Start the coulomb counter */ ab8500_fg_coulomb_counter(di, true); /* Run the FG algorithm */ queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); return 0; } static void ab8500_fg_unbind(struct device *dev, struct device *master, void *data) { struct ab8500_fg *di = dev_get_drvdata(dev); int ret; /* Disable coulomb counter */ ret = ab8500_fg_coulomb_counter(di, false); if (ret) dev_err(dev, "failed to disable coulomb counter\n"); flush_workqueue(di->fg_wq); } static const struct component_ops ab8500_fg_component_ops = { .bind = ab8500_fg_bind, .unbind = ab8500_fg_unbind, }; static int ab8500_fg_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct power_supply_config psy_cfg = {}; struct ab8500_fg *di; int i, irq; int ret = 0; di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL); if (!di) return -ENOMEM; di->bm = &ab8500_bm_data; mutex_init(&di->cc_lock); /* get parent data */ di->dev = dev; di->parent = dev_get_drvdata(pdev->dev.parent); di->main_bat_v = devm_iio_channel_get(dev, "main_bat_v"); if (IS_ERR(di->main_bat_v)) { ret = dev_err_probe(dev, PTR_ERR(di->main_bat_v), "failed to get main battery ADC channel\n"); return ret; } if (!of_property_read_u32(dev->of_node, "line-impedance-micro-ohms", &di->line_impedance_uohm)) dev_info(dev, "line impedance: %u uOhm\n", di->line_impedance_uohm); psy_cfg.supplied_to = supply_interface; psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface); psy_cfg.drv_data = di; di->init_capacity = true; ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); /* Create a work queue for running the FG algorithm */ di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM); if (di->fg_wq == NULL) { dev_err(dev, "failed to create work queue\n"); return -ENOMEM; } /* Init work for running the fg algorithm instantly */ INIT_WORK(&di->fg_work, ab8500_fg_instant_work); /* Init work for getting the battery accumulated current */ INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work); /* Init work for reinitialising the fg algorithm */ INIT_DEFERRABLE_WORK(&di->fg_reinit_work, ab8500_fg_reinit_work); /* Work delayed Queue to run the state machine */ INIT_DEFERRABLE_WORK(&di->fg_periodic_work, ab8500_fg_periodic_work); /* Work to check low battery condition */ INIT_DEFERRABLE_WORK(&di->fg_low_bat_work, ab8500_fg_low_bat_work); /* Init work for HW failure check */ INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work, ab8500_fg_check_hw_failure_work); /* Reset battery low voltage flag */ di->flags.low_bat = false; /* Initialize low battery counter */ di->low_bat_cnt = 10; /* Initialize OVV, and other registers */ ret = ab8500_fg_init_hw_registers(di); if (ret) { dev_err(dev, "failed to initialize registers\n"); destroy_workqueue(di->fg_wq); return ret; } /* Consider battery unknown until we're informed otherwise */ di->flags.batt_unknown = true; di->flags.batt_id_received = false; /* Register FG power supply class */ di->fg_psy = devm_power_supply_register(dev, &ab8500_fg_desc, &psy_cfg); if (IS_ERR(di->fg_psy)) { dev_err(dev, "failed to register FG psy\n"); destroy_workqueue(di->fg_wq); return PTR_ERR(di->fg_psy); } di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer); /* * Initialize completion used to notify completion and start * of inst current */ init_completion(&di->ab8500_fg_started); init_completion(&di->ab8500_fg_complete); /* Register primary interrupt handlers */ for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) { irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name); if (irq < 0) { destroy_workqueue(di->fg_wq); return irq; } ret = devm_request_threaded_irq(dev, irq, NULL, ab8500_fg_irq[i].isr, IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT, ab8500_fg_irq[i].name, di); if (ret != 0) { dev_err(dev, "failed to request %s IRQ %d: %d\n", ab8500_fg_irq[i].name, irq, ret); destroy_workqueue(di->fg_wq); return ret; } dev_dbg(dev, "Requested %s IRQ %d: %d\n", ab8500_fg_irq[i].name, irq, ret); } di->irq = platform_get_irq_byname(pdev, "CCEOC"); disable_irq(di->irq); di->nbr_cceoc_irq_cnt = 0; platform_set_drvdata(pdev, di); ret = ab8500_fg_sysfs_init(di); if (ret) { dev_err(dev, "failed to create sysfs entry\n"); destroy_workqueue(di->fg_wq); return ret; } ret = ab8500_fg_sysfs_psy_create_attrs(di); if (ret) { dev_err(dev, "failed to create FG psy\n"); ab8500_fg_sysfs_exit(di); destroy_workqueue(di->fg_wq); return ret; } /* Calibrate the fg first time */ di->flags.calibrate = true; di->calib_state = AB8500_FG_CALIB_INIT; /* Use room temp as default value until we get an update from driver. */ di->bat_temp = 210; list_add_tail(&di->node, &ab8500_fg_list); return component_add(dev, &ab8500_fg_component_ops); } static void ab8500_fg_remove(struct platform_device *pdev) { struct ab8500_fg *di = platform_get_drvdata(pdev); destroy_workqueue(di->fg_wq); component_del(&pdev->dev, &ab8500_fg_component_ops); list_del(&di->node); ab8500_fg_sysfs_exit(di); ab8500_fg_sysfs_psy_remove_attrs(di); } static SIMPLE_DEV_PM_OPS(ab8500_fg_pm_ops, ab8500_fg_suspend, ab8500_fg_resume); static const struct of_device_id ab8500_fg_match[] = { { .compatible = "stericsson,ab8500-fg", }, { }, }; MODULE_DEVICE_TABLE(of, ab8500_fg_match); struct platform_driver ab8500_fg_driver = { .probe = ab8500_fg_probe, .remove_new = ab8500_fg_remove, .driver = { .name = "ab8500-fg", .of_match_table = ab8500_fg_match, .pm = &ab8500_fg_pm_ops, }, }; MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Johan Palsson, Karl Komierowski"); MODULE_ALIAS("platform:ab8500-fg"); MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1