Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniel Lezcano | 1052 | 88.55% | 12 | 63.16% |
Lukasz Luba | 117 | 9.85% | 3 | 15.79% |
Dietmar Eggemann | 7 | 0.59% | 1 | 5.26% |
Dawei Li | 6 | 0.51% | 1 | 5.26% |
Thomas Gleixner | 5 | 0.42% | 1 | 5.26% |
Colin Ian King | 1 | 0.08% | 1 | 5.26% |
Total | 1188 | 19 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2020 Linaro Limited * * Author: Daniel Lezcano <daniel.lezcano@linaro.org> * * The DTPM CPU is based on the energy model. It hooks the CPU in the * DTPM tree which in turns update the power number by propagating the * power number from the CPU energy model information to the parents. * * The association between the power and the performance state, allows * to set the power of the CPU at the OPP granularity. * * The CPU hotplug is supported and the power numbers will be updated * if a CPU is hot plugged / unplugged. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/cpumask.h> #include <linux/cpufreq.h> #include <linux/cpuhotplug.h> #include <linux/dtpm.h> #include <linux/energy_model.h> #include <linux/of.h> #include <linux/pm_qos.h> #include <linux/slab.h> struct dtpm_cpu { struct dtpm dtpm; struct freq_qos_request qos_req; int cpu; }; static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu); static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm) { return container_of(dtpm, struct dtpm_cpu, dtpm); } static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit) { struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm); struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu); struct em_perf_state *table; unsigned long freq; u64 power; int i, nr_cpus; nr_cpus = cpumask_weight_and(cpu_online_mask, to_cpumask(pd->cpus)); rcu_read_lock(); table = em_perf_state_from_pd(pd); for (i = 0; i < pd->nr_perf_states; i++) { power = table[i].power * nr_cpus; if (power > power_limit) break; } freq = table[i - 1].frequency; power_limit = table[i - 1].power * nr_cpus; rcu_read_unlock(); freq_qos_update_request(&dtpm_cpu->qos_req, freq); return power_limit; } static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power) { unsigned long max, sum_util = 0; int cpu; /* * The capacity is the same for all CPUs belonging to * the same perf domain. */ max = arch_scale_cpu_capacity(cpumask_first(pd_mask)); for_each_cpu_and(cpu, pd_mask, cpu_online_mask) sum_util += sched_cpu_util(cpu); return (power * ((sum_util << 10) / max)) >> 10; } static u64 get_pd_power_uw(struct dtpm *dtpm) { struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm); struct em_perf_state *table; struct em_perf_domain *pd; struct cpumask *pd_mask; unsigned long freq; u64 power = 0; int i; pd = em_cpu_get(dtpm_cpu->cpu); pd_mask = em_span_cpus(pd); freq = cpufreq_quick_get(dtpm_cpu->cpu); rcu_read_lock(); table = em_perf_state_from_pd(pd); for (i = 0; i < pd->nr_perf_states; i++) { if (table[i].frequency < freq) continue; power = scale_pd_power_uw(pd_mask, table[i].power); break; } rcu_read_unlock(); return power; } static int update_pd_power_uw(struct dtpm *dtpm) { struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm); struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu); struct em_perf_state *table; int nr_cpus; nr_cpus = cpumask_weight_and(cpu_online_mask, to_cpumask(em->cpus)); rcu_read_lock(); table = em_perf_state_from_pd(em); dtpm->power_min = table[0].power; dtpm->power_min *= nr_cpus; dtpm->power_max = table[em->nr_perf_states - 1].power; dtpm->power_max *= nr_cpus; rcu_read_unlock(); return 0; } static void pd_release(struct dtpm *dtpm) { struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm); struct cpufreq_policy *policy; if (freq_qos_request_active(&dtpm_cpu->qos_req)) freq_qos_remove_request(&dtpm_cpu->qos_req); policy = cpufreq_cpu_get(dtpm_cpu->cpu); if (policy) { for_each_cpu(dtpm_cpu->cpu, policy->related_cpus) per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL; cpufreq_cpu_put(policy); } kfree(dtpm_cpu); } static struct dtpm_ops dtpm_ops = { .set_power_uw = set_pd_power_limit, .get_power_uw = get_pd_power_uw, .update_power_uw = update_pd_power_uw, .release = pd_release, }; static int cpuhp_dtpm_cpu_offline(unsigned int cpu) { struct dtpm_cpu *dtpm_cpu; dtpm_cpu = per_cpu(dtpm_per_cpu, cpu); if (dtpm_cpu) dtpm_update_power(&dtpm_cpu->dtpm); return 0; } static int cpuhp_dtpm_cpu_online(unsigned int cpu) { struct dtpm_cpu *dtpm_cpu; dtpm_cpu = per_cpu(dtpm_per_cpu, cpu); if (dtpm_cpu) return dtpm_update_power(&dtpm_cpu->dtpm); return 0; } static int __dtpm_cpu_setup(int cpu, struct dtpm *parent) { struct dtpm_cpu *dtpm_cpu; struct cpufreq_policy *policy; struct em_perf_state *table; struct em_perf_domain *pd; char name[CPUFREQ_NAME_LEN]; int ret = -ENOMEM; dtpm_cpu = per_cpu(dtpm_per_cpu, cpu); if (dtpm_cpu) return 0; policy = cpufreq_cpu_get(cpu); if (!policy) return 0; pd = em_cpu_get(cpu); if (!pd || em_is_artificial(pd)) { ret = -EINVAL; goto release_policy; } dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL); if (!dtpm_cpu) { ret = -ENOMEM; goto release_policy; } dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops); dtpm_cpu->cpu = cpu; for_each_cpu(cpu, policy->related_cpus) per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu; snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu); ret = dtpm_register(name, &dtpm_cpu->dtpm, parent); if (ret) goto out_kfree_dtpm_cpu; rcu_read_lock(); table = em_perf_state_from_pd(pd); ret = freq_qos_add_request(&policy->constraints, &dtpm_cpu->qos_req, FREQ_QOS_MAX, table[pd->nr_perf_states - 1].frequency); rcu_read_unlock(); if (ret < 0) goto out_dtpm_unregister; cpufreq_cpu_put(policy); return 0; out_dtpm_unregister: dtpm_unregister(&dtpm_cpu->dtpm); dtpm_cpu = NULL; out_kfree_dtpm_cpu: for_each_cpu(cpu, policy->related_cpus) per_cpu(dtpm_per_cpu, cpu) = NULL; kfree(dtpm_cpu); release_policy: cpufreq_cpu_put(policy); return ret; } static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np) { int cpu; cpu = of_cpu_node_to_id(np); if (cpu < 0) return 0; return __dtpm_cpu_setup(cpu, dtpm); } static int dtpm_cpu_init(void) { int ret; /* * The callbacks at CPU hotplug time are calling * dtpm_update_power() which in turns calls update_pd_power(). * * The function update_pd_power() uses the online mask to * figure out the power consumption limits. * * At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU * online mask when the cpuhp_dtpm_cpu_online function is * called, but the CPU is still in the online mask for the * tear down callback. So the power can not be updated when * the CPU is unplugged. * * At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as * above. The CPU online mask is not up to date when the CPU * is plugged in. * * For this reason, we need to call the online and offline * callbacks at different moments when the CPU online mask is * consistent with the power numbers we want to update. */ ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline", NULL, cpuhp_dtpm_cpu_offline); if (ret < 0) return ret; ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online", cpuhp_dtpm_cpu_online, NULL); if (ret < 0) return ret; return 0; } static void dtpm_cpu_exit(void) { cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN); cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD); } struct dtpm_subsys_ops dtpm_cpu_ops = { .name = KBUILD_MODNAME, .init = dtpm_cpu_init, .exit = dtpm_cpu_exit, .setup = dtpm_cpu_setup, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1