Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Biju Das | 2302 | 96.93% | 2 | 40.00% |
Uwe Kleine-König | 73 | 3.07% | 3 | 60.00% |
Total | 2375 | 5 |
// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/G2L MTU3a PWM Timer driver * * Copyright (C) 2023 Renesas Electronics Corporation * * Hardware manual for this IP can be found here * https://www.renesas.com/eu/en/document/mah/rzg2l-group-rzg2lc-group-users-manual-hardware-0?language=en * * Limitations: * - When PWM is disabled, the output is driven to Hi-Z. * - While the hardware supports both polarities, the driver (for now) * only handles normal polarity. * - HW uses one counter and two match components to configure duty_cycle * and period. * - Multi-Function Timer Pulse Unit (a.k.a MTU) has 7 HW channels for PWM * operations. (The channels are MTU{0..4, 6, 7}.) * - MTU{1, 2} channels have a single IO, whereas all other HW channels have * 2 IOs. * - Each IO is modelled as an independent PWM channel. * - rz_mtu3_channel_io_map table is used to map the PWM channel to the * corresponding HW channel as there are difference in number of IOs * between HW channels. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/limits.h> #include <linux/mfd/rz-mtu3.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/pwm.h> #include <linux/time.h> #define RZ_MTU3_MAX_PWM_CHANNELS 12 #define RZ_MTU3_MAX_HW_CHANNELS 7 /** * struct rz_mtu3_channel_io_map - MTU3 pwm channel map * * @base_pwm_number: First PWM of a channel * @num_channel_ios: number of IOs on the HW channel. */ struct rz_mtu3_channel_io_map { u8 base_pwm_number; u8 num_channel_ios; }; /** * struct rz_mtu3_pwm_channel - MTU3 pwm channel data * * @mtu: MTU3 channel data * @map: MTU3 pwm channel map */ struct rz_mtu3_pwm_channel { struct rz_mtu3_channel *mtu; const struct rz_mtu3_channel_io_map *map; }; /** * struct rz_mtu3_pwm_chip - MTU3 pwm private data * * @clk: MTU3 module clock * @lock: Lock to prevent concurrent access for usage count * @rate: MTU3 clock rate * @user_count: MTU3 usage count * @enable_count: MTU3 enable count * @prescale: MTU3 prescale * @channel_data: MTU3 pwm channel data */ struct rz_mtu3_pwm_chip { struct clk *clk; struct mutex lock; unsigned long rate; u32 user_count[RZ_MTU3_MAX_HW_CHANNELS]; u32 enable_count[RZ_MTU3_MAX_HW_CHANNELS]; u8 prescale[RZ_MTU3_MAX_HW_CHANNELS]; struct rz_mtu3_pwm_channel channel_data[RZ_MTU3_MAX_HW_CHANNELS]; }; /* * The MTU channels are {0..4, 6, 7} and the number of IO on MTU1 * and MTU2 channel is 1 compared to 2 on others. */ static const struct rz_mtu3_channel_io_map channel_map[] = { { 0, 2 }, { 2, 1 }, { 3, 1 }, { 4, 2 }, { 6, 2 }, { 8, 2 }, { 10, 2 } }; static inline struct rz_mtu3_pwm_chip *to_rz_mtu3_pwm_chip(struct pwm_chip *chip) { return pwmchip_get_drvdata(chip); } static void rz_mtu3_pwm_read_tgr_registers(struct rz_mtu3_pwm_channel *priv, u16 reg_pv_offset, u16 *pv_val, u16 reg_dc_offset, u16 *dc_val) { *pv_val = rz_mtu3_16bit_ch_read(priv->mtu, reg_pv_offset); *dc_val = rz_mtu3_16bit_ch_read(priv->mtu, reg_dc_offset); } static void rz_mtu3_pwm_write_tgr_registers(struct rz_mtu3_pwm_channel *priv, u16 reg_pv_offset, u16 pv_val, u16 reg_dc_offset, u16 dc_val) { rz_mtu3_16bit_ch_write(priv->mtu, reg_pv_offset, pv_val); rz_mtu3_16bit_ch_write(priv->mtu, reg_dc_offset, dc_val); } static u8 rz_mtu3_pwm_calculate_prescale(struct rz_mtu3_pwm_chip *rz_mtu3, u64 period_cycles) { u32 prescaled_period_cycles; u8 prescale; /* * Supported prescale values are 1, 4, 16 and 64. * TODO: Support prescale values 2, 8, 32, 256 and 1024. */ prescaled_period_cycles = period_cycles >> 16; if (prescaled_period_cycles >= 16) prescale = 3; else prescale = (fls(prescaled_period_cycles) + 1) / 2; return prescale; } static struct rz_mtu3_pwm_channel * rz_mtu3_get_channel(struct rz_mtu3_pwm_chip *rz_mtu3_pwm, u32 hwpwm) { struct rz_mtu3_pwm_channel *priv = rz_mtu3_pwm->channel_data; unsigned int ch; for (ch = 0; ch < RZ_MTU3_MAX_HW_CHANNELS; ch++, priv++) { if (priv->map->base_pwm_number + priv->map->num_channel_ios > hwpwm) break; } return priv; } static bool rz_mtu3_pwm_is_ch_enabled(struct rz_mtu3_pwm_chip *rz_mtu3_pwm, u32 hwpwm) { struct rz_mtu3_pwm_channel *priv; bool is_channel_en; u8 val; priv = rz_mtu3_get_channel(rz_mtu3_pwm, hwpwm); is_channel_en = rz_mtu3_is_enabled(priv->mtu); if (!is_channel_en) return false; if (priv->map->base_pwm_number == hwpwm) val = rz_mtu3_8bit_ch_read(priv->mtu, RZ_MTU3_TIORH); else val = rz_mtu3_8bit_ch_read(priv->mtu, RZ_MTU3_TIORL); return val & RZ_MTU3_TIOR_IOA; } static int rz_mtu3_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip); struct rz_mtu3_pwm_channel *priv; bool is_mtu3_channel_available; u32 ch; priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm); ch = priv - rz_mtu3_pwm->channel_data; mutex_lock(&rz_mtu3_pwm->lock); /* * Each channel must be requested only once, so if the channel * serves two PWMs and the other is already requested, skip over * rz_mtu3_request_channel() */ if (!rz_mtu3_pwm->user_count[ch]) { is_mtu3_channel_available = rz_mtu3_request_channel(priv->mtu); if (!is_mtu3_channel_available) { mutex_unlock(&rz_mtu3_pwm->lock); return -EBUSY; } } rz_mtu3_pwm->user_count[ch]++; mutex_unlock(&rz_mtu3_pwm->lock); return 0; } static void rz_mtu3_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm) { struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip); struct rz_mtu3_pwm_channel *priv; u32 ch; priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm); ch = priv - rz_mtu3_pwm->channel_data; mutex_lock(&rz_mtu3_pwm->lock); rz_mtu3_pwm->user_count[ch]--; if (!rz_mtu3_pwm->user_count[ch]) rz_mtu3_release_channel(priv->mtu); mutex_unlock(&rz_mtu3_pwm->lock); } static int rz_mtu3_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm) { struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip); struct rz_mtu3_pwm_channel *priv; u32 ch; u8 val; int rc; rc = pm_runtime_resume_and_get(pwmchip_parent(chip)); if (rc) return rc; priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm); ch = priv - rz_mtu3_pwm->channel_data; val = RZ_MTU3_TIOR_OC_IOB_TOGGLE | RZ_MTU3_TIOR_OC_IOA_H_COMP_MATCH; rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TMDR1, RZ_MTU3_TMDR1_MD_PWMMODE1); if (priv->map->base_pwm_number == pwm->hwpwm) rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TIORH, val); else rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TIORL, val); mutex_lock(&rz_mtu3_pwm->lock); if (!rz_mtu3_pwm->enable_count[ch]) rz_mtu3_enable(priv->mtu); rz_mtu3_pwm->enable_count[ch]++; mutex_unlock(&rz_mtu3_pwm->lock); return 0; } static void rz_mtu3_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm) { struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip); struct rz_mtu3_pwm_channel *priv; u32 ch; priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm); ch = priv - rz_mtu3_pwm->channel_data; /* Disable output pins of MTU3 channel */ if (priv->map->base_pwm_number == pwm->hwpwm) rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TIORH, RZ_MTU3_TIOR_OC_RETAIN); else rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TIORL, RZ_MTU3_TIOR_OC_RETAIN); mutex_lock(&rz_mtu3_pwm->lock); rz_mtu3_pwm->enable_count[ch]--; if (!rz_mtu3_pwm->enable_count[ch]) rz_mtu3_disable(priv->mtu); mutex_unlock(&rz_mtu3_pwm->lock); pm_runtime_put_sync(pwmchip_parent(chip)); } static int rz_mtu3_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip); int rc; rc = pm_runtime_resume_and_get(pwmchip_parent(chip)); if (rc) return rc; state->enabled = rz_mtu3_pwm_is_ch_enabled(rz_mtu3_pwm, pwm->hwpwm); if (state->enabled) { struct rz_mtu3_pwm_channel *priv; u8 prescale, val; u16 dc, pv; u64 tmp; priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm); if (priv->map->base_pwm_number == pwm->hwpwm) rz_mtu3_pwm_read_tgr_registers(priv, RZ_MTU3_TGRA, &pv, RZ_MTU3_TGRB, &dc); else rz_mtu3_pwm_read_tgr_registers(priv, RZ_MTU3_TGRC, &pv, RZ_MTU3_TGRD, &dc); val = rz_mtu3_8bit_ch_read(priv->mtu, RZ_MTU3_TCR); prescale = FIELD_GET(RZ_MTU3_TCR_TPCS, val); /* With prescale <= 7 and pv <= 0xffff this doesn't overflow. */ tmp = NSEC_PER_SEC * (u64)pv << (2 * prescale); state->period = DIV_ROUND_UP_ULL(tmp, rz_mtu3_pwm->rate); tmp = NSEC_PER_SEC * (u64)dc << (2 * prescale); state->duty_cycle = DIV_ROUND_UP_ULL(tmp, rz_mtu3_pwm->rate); if (state->duty_cycle > state->period) state->duty_cycle = state->period; } state->polarity = PWM_POLARITY_NORMAL; pm_runtime_put(pwmchip_parent(chip)); return 0; } static u16 rz_mtu3_pwm_calculate_pv_or_dc(u64 period_or_duty_cycle, u8 prescale) { return min(period_or_duty_cycle >> (2 * prescale), (u64)U16_MAX); } static int rz_mtu3_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip); struct rz_mtu3_pwm_channel *priv; u64 period_cycles; u64 duty_cycles; u8 prescale; u16 pv, dc; u8 val; u32 ch; priv = rz_mtu3_get_channel(rz_mtu3_pwm, pwm->hwpwm); ch = priv - rz_mtu3_pwm->channel_data; period_cycles = mul_u64_u32_div(state->period, rz_mtu3_pwm->rate, NSEC_PER_SEC); prescale = rz_mtu3_pwm_calculate_prescale(rz_mtu3_pwm, period_cycles); /* * Prescalar is shared by multiple channels, so prescale can * NOT be modified when there are multiple channels in use with * different settings. Modify prescalar if other PWM is off or handle * it, if current prescale value is less than the one we want to set. */ if (rz_mtu3_pwm->enable_count[ch] > 1) { if (rz_mtu3_pwm->prescale[ch] > prescale) return -EBUSY; prescale = rz_mtu3_pwm->prescale[ch]; } pv = rz_mtu3_pwm_calculate_pv_or_dc(period_cycles, prescale); duty_cycles = mul_u64_u32_div(state->duty_cycle, rz_mtu3_pwm->rate, NSEC_PER_SEC); dc = rz_mtu3_pwm_calculate_pv_or_dc(duty_cycles, prescale); /* * If the PWM channel is disabled, make sure to turn on the clock * before writing the register. */ if (!pwm->state.enabled) { int rc; rc = pm_runtime_resume_and_get(pwmchip_parent(chip)); if (rc) return rc; } val = RZ_MTU3_TCR_CKEG_RISING | prescale; /* Counter must be stopped while updating TCR register */ if (rz_mtu3_pwm->prescale[ch] != prescale && rz_mtu3_pwm->enable_count[ch]) rz_mtu3_disable(priv->mtu); if (priv->map->base_pwm_number == pwm->hwpwm) { rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TCR, RZ_MTU3_TCR_CCLR_TGRA | val); rz_mtu3_pwm_write_tgr_registers(priv, RZ_MTU3_TGRA, pv, RZ_MTU3_TGRB, dc); } else { rz_mtu3_8bit_ch_write(priv->mtu, RZ_MTU3_TCR, RZ_MTU3_TCR_CCLR_TGRC | val); rz_mtu3_pwm_write_tgr_registers(priv, RZ_MTU3_TGRC, pv, RZ_MTU3_TGRD, dc); } if (rz_mtu3_pwm->prescale[ch] != prescale) { /* * Prescalar is shared by multiple channels, we cache the * prescalar value from first enabled channel and use the same * value for both channels. */ rz_mtu3_pwm->prescale[ch] = prescale; if (rz_mtu3_pwm->enable_count[ch]) rz_mtu3_enable(priv->mtu); } /* If the PWM is not enabled, turn the clock off again to save power. */ if (!pwm->state.enabled) pm_runtime_put(pwmchip_parent(chip)); return 0; } static int rz_mtu3_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip); bool enabled = pwm->state.enabled; int ret; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; if (!state->enabled) { if (enabled) rz_mtu3_pwm_disable(chip, pwm); return 0; } mutex_lock(&rz_mtu3_pwm->lock); ret = rz_mtu3_pwm_config(chip, pwm, state); mutex_unlock(&rz_mtu3_pwm->lock); if (ret) return ret; if (!enabled) ret = rz_mtu3_pwm_enable(chip, pwm); return ret; } static const struct pwm_ops rz_mtu3_pwm_ops = { .request = rz_mtu3_pwm_request, .free = rz_mtu3_pwm_free, .get_state = rz_mtu3_pwm_get_state, .apply = rz_mtu3_pwm_apply, }; static int rz_mtu3_pwm_pm_runtime_suspend(struct device *dev) { struct pwm_chip *chip = dev_get_drvdata(dev); struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip); clk_disable_unprepare(rz_mtu3_pwm->clk); return 0; } static int rz_mtu3_pwm_pm_runtime_resume(struct device *dev) { struct pwm_chip *chip = dev_get_drvdata(dev); struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip); return clk_prepare_enable(rz_mtu3_pwm->clk); } static DEFINE_RUNTIME_DEV_PM_OPS(rz_mtu3_pwm_pm_ops, rz_mtu3_pwm_pm_runtime_suspend, rz_mtu3_pwm_pm_runtime_resume, NULL); static void rz_mtu3_pwm_pm_disable(void *data) { struct pwm_chip *chip = data; struct rz_mtu3_pwm_chip *rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip); clk_rate_exclusive_put(rz_mtu3_pwm->clk); pm_runtime_disable(pwmchip_parent(chip)); pm_runtime_set_suspended(pwmchip_parent(chip)); } static int rz_mtu3_pwm_probe(struct platform_device *pdev) { struct rz_mtu3 *parent_ddata = dev_get_drvdata(pdev->dev.parent); struct rz_mtu3_pwm_chip *rz_mtu3_pwm; struct pwm_chip *chip; struct device *dev = &pdev->dev; unsigned int i, j = 0; int ret; chip = devm_pwmchip_alloc(&pdev->dev, RZ_MTU3_MAX_PWM_CHANNELS, sizeof(*rz_mtu3_pwm)); if (IS_ERR(chip)) return PTR_ERR(chip); rz_mtu3_pwm = to_rz_mtu3_pwm_chip(chip); rz_mtu3_pwm->clk = parent_ddata->clk; for (i = 0; i < RZ_MTU_NUM_CHANNELS; i++) { if (i == RZ_MTU3_CHAN_5 || i == RZ_MTU3_CHAN_8) continue; rz_mtu3_pwm->channel_data[j].mtu = &parent_ddata->channels[i]; rz_mtu3_pwm->channel_data[j].mtu->dev = dev; rz_mtu3_pwm->channel_data[j].map = &channel_map[j]; j++; } mutex_init(&rz_mtu3_pwm->lock); platform_set_drvdata(pdev, chip); ret = clk_prepare_enable(rz_mtu3_pwm->clk); if (ret) return dev_err_probe(dev, ret, "Clock enable failed\n"); clk_rate_exclusive_get(rz_mtu3_pwm->clk); rz_mtu3_pwm->rate = clk_get_rate(rz_mtu3_pwm->clk); /* * Refuse clk rates > 1 GHz to prevent overflow later for computing * period and duty cycle. */ if (rz_mtu3_pwm->rate > NSEC_PER_SEC) { ret = -EINVAL; clk_rate_exclusive_put(rz_mtu3_pwm->clk); goto disable_clock; } pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = devm_add_action_or_reset(&pdev->dev, rz_mtu3_pwm_pm_disable, chip); if (ret < 0) return ret; chip->ops = &rz_mtu3_pwm_ops; ret = devm_pwmchip_add(&pdev->dev, chip); if (ret) return dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n"); pm_runtime_idle(&pdev->dev); return 0; disable_clock: clk_disable_unprepare(rz_mtu3_pwm->clk); return ret; } static struct platform_driver rz_mtu3_pwm_driver = { .driver = { .name = "pwm-rz-mtu3", .pm = pm_ptr(&rz_mtu3_pwm_pm_ops), }, .probe = rz_mtu3_pwm_probe, }; module_platform_driver(rz_mtu3_pwm_driver); MODULE_AUTHOR("Biju Das <biju.das.jz@bp.renesas.com>"); MODULE_ALIAS("platform:pwm-rz-mtu3"); MODULE_DESCRIPTION("Renesas RZ/G2L MTU3a PWM Timer Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1