Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexandre Belloni | 1575 | 70.91% | 4 | 12.12% |
Jernej Škrabec | 295 | 13.28% | 4 | 12.12% |
Uwe Kleine-König | 134 | 6.03% | 9 | 27.27% |
Clément Péron | 59 | 2.66% | 3 | 9.09% |
Hans de Goede | 47 | 2.12% | 1 | 3.03% |
Peter Vasil | 21 | 0.95% | 1 | 3.03% |
Krzysztof Kozlowski | 20 | 0.90% | 1 | 3.03% |
Andre Przywara | 19 | 0.86% | 2 | 6.06% |
Kim (Woogyom) Milo | 17 | 0.77% | 1 | 3.03% |
Corentin Labbe | 12 | 0.54% | 1 | 3.03% |
Max Kellermann | 7 | 0.32% | 2 | 6.06% |
Ondrej Jirman | 6 | 0.27% | 1 | 3.03% |
Thierry Reding | 6 | 0.27% | 1 | 3.03% |
Yangtao Li | 2 | 0.09% | 1 | 3.03% |
Thomas Gleixner | 1 | 0.05% | 1 | 3.03% |
Total | 2221 | 33 |
// SPDX-License-Identifier: GPL-2.0-only /* * Driver for Allwinner sun4i Pulse Width Modulation Controller * * Copyright (C) 2014 Alexandre Belloni <alexandre.belloni@free-electrons.com> * * Limitations: * - When outputing the source clock directly, the PWM logic will be bypassed * and the currently running period is not guaranteed to be completed */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/jiffies.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/time.h> #define PWM_CTRL_REG 0x0 #define PWM_CH_PRD_BASE 0x4 #define PWM_CH_PRD_OFFSET 0x4 #define PWM_CH_PRD(ch) (PWM_CH_PRD_BASE + PWM_CH_PRD_OFFSET * (ch)) #define PWMCH_OFFSET 15 #define PWM_PRESCAL_MASK GENMASK(3, 0) #define PWM_PRESCAL_OFF 0 #define PWM_EN BIT(4) #define PWM_ACT_STATE BIT(5) #define PWM_CLK_GATING BIT(6) #define PWM_MODE BIT(7) #define PWM_PULSE BIT(8) #define PWM_BYPASS BIT(9) #define PWM_RDY_BASE 28 #define PWM_RDY_OFFSET 1 #define PWM_RDY(ch) BIT(PWM_RDY_BASE + PWM_RDY_OFFSET * (ch)) #define PWM_PRD(prd) (((prd) - 1) << 16) #define PWM_PRD_MASK GENMASK(15, 0) #define PWM_DTY_MASK GENMASK(15, 0) #define PWM_REG_PRD(reg) ((((reg) >> 16) & PWM_PRD_MASK) + 1) #define PWM_REG_DTY(reg) ((reg) & PWM_DTY_MASK) #define PWM_REG_PRESCAL(reg, chan) (((reg) >> ((chan) * PWMCH_OFFSET)) & PWM_PRESCAL_MASK) #define BIT_CH(bit, chan) ((bit) << ((chan) * PWMCH_OFFSET)) static const u32 prescaler_table[] = { 120, 180, 240, 360, 480, 0, 0, 0, 12000, 24000, 36000, 48000, 72000, 0, 0, 0, /* Actually 1 but tested separately */ }; struct sun4i_pwm_data { bool has_prescaler_bypass; bool has_direct_mod_clk_output; unsigned int npwm; }; struct sun4i_pwm_chip { struct clk *bus_clk; struct clk *clk; struct reset_control *rst; void __iomem *base; spinlock_t ctrl_lock; const struct sun4i_pwm_data *data; }; static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip) { return pwmchip_get_drvdata(chip); } static inline u32 sun4i_pwm_readl(struct sun4i_pwm_chip *sun4ichip, unsigned long offset) { return readl(sun4ichip->base + offset); } static inline void sun4i_pwm_writel(struct sun4i_pwm_chip *sun4ichip, u32 val, unsigned long offset) { writel(val, sun4ichip->base + offset); } static int sun4i_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip); u64 clk_rate, tmp; u32 val; unsigned int prescaler; clk_rate = clk_get_rate(sun4ichip->clk); if (!clk_rate) return -EINVAL; val = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG); /* * PWM chapter in H6 manual has a diagram which explains that if bypass * bit is set, no other setting has any meaning. Even more, experiment * proved that also enable bit is ignored in this case. */ if ((val & BIT_CH(PWM_BYPASS, pwm->hwpwm)) && sun4ichip->data->has_direct_mod_clk_output) { state->period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, clk_rate); state->duty_cycle = DIV_ROUND_UP_ULL(state->period, 2); state->polarity = PWM_POLARITY_NORMAL; state->enabled = true; return 0; } if ((PWM_REG_PRESCAL(val, pwm->hwpwm) == PWM_PRESCAL_MASK) && sun4ichip->data->has_prescaler_bypass) prescaler = 1; else prescaler = prescaler_table[PWM_REG_PRESCAL(val, pwm->hwpwm)]; if (prescaler == 0) return -EINVAL; if (val & BIT_CH(PWM_ACT_STATE, pwm->hwpwm)) state->polarity = PWM_POLARITY_NORMAL; else state->polarity = PWM_POLARITY_INVERSED; if ((val & BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) == BIT_CH(PWM_CLK_GATING | PWM_EN, pwm->hwpwm)) state->enabled = true; else state->enabled = false; val = sun4i_pwm_readl(sun4ichip, PWM_CH_PRD(pwm->hwpwm)); tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_DTY(val); state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); tmp = (u64)prescaler * NSEC_PER_SEC * PWM_REG_PRD(val); state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate); return 0; } static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4ichip, const struct pwm_state *state, u32 *dty, u32 *prd, unsigned int *prsclr, bool *bypass) { u64 clk_rate, div = 0; unsigned int prescaler = 0; clk_rate = clk_get_rate(sun4ichip->clk); *bypass = sun4ichip->data->has_direct_mod_clk_output && state->enabled && (state->period * clk_rate >= NSEC_PER_SEC) && (state->period * clk_rate < 2 * NSEC_PER_SEC) && (state->duty_cycle * clk_rate * 2 >= NSEC_PER_SEC); /* Skip calculation of other parameters if we bypass them */ if (*bypass) return 0; if (sun4ichip->data->has_prescaler_bypass) { /* First, test without any prescaler when available */ prescaler = PWM_PRESCAL_MASK; /* * When not using any prescaler, the clock period in nanoseconds * is not an integer so round it half up instead of * truncating to get less surprising values. */ div = clk_rate * state->period + NSEC_PER_SEC / 2; do_div(div, NSEC_PER_SEC); if (div - 1 > PWM_PRD_MASK) prescaler = 0; } if (prescaler == 0) { /* Go up from the first divider */ for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) { unsigned int pval = prescaler_table[prescaler]; if (!pval) continue; div = clk_rate; do_div(div, pval); div = div * state->period; do_div(div, NSEC_PER_SEC); if (div - 1 <= PWM_PRD_MASK) break; } if (div - 1 > PWM_PRD_MASK) return -EINVAL; } *prd = div; div *= state->duty_cycle; do_div(div, state->period); *dty = div; *prsclr = prescaler; return 0; } static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip); struct pwm_state cstate; u32 ctrl, duty = 0, period = 0, val; int ret; unsigned int delay_us, prescaler = 0; bool bypass; pwm_get_state(pwm, &cstate); if (!cstate.enabled) { ret = clk_prepare_enable(sun4ichip->clk); if (ret) { dev_err(pwmchip_parent(chip), "failed to enable PWM clock\n"); return ret; } } ret = sun4i_pwm_calculate(sun4ichip, state, &duty, &period, &prescaler, &bypass); if (ret) { dev_err(pwmchip_parent(chip), "period exceeds the maximum value\n"); if (!cstate.enabled) clk_disable_unprepare(sun4ichip->clk); return ret; } spin_lock(&sun4ichip->ctrl_lock); ctrl = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG); if (sun4ichip->data->has_direct_mod_clk_output) { if (bypass) { ctrl |= BIT_CH(PWM_BYPASS, pwm->hwpwm); /* We can skip other parameter */ sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG); spin_unlock(&sun4ichip->ctrl_lock); return 0; } ctrl &= ~BIT_CH(PWM_BYPASS, pwm->hwpwm); } if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) { /* Prescaler changed, the clock has to be gated */ ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG); ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm); ctrl |= BIT_CH(prescaler, pwm->hwpwm); } val = (duty & PWM_DTY_MASK) | PWM_PRD(period); sun4i_pwm_writel(sun4ichip, val, PWM_CH_PRD(pwm->hwpwm)); if (state->polarity != PWM_POLARITY_NORMAL) ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm); else ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm); ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm); if (state->enabled) ctrl |= BIT_CH(PWM_EN, pwm->hwpwm); sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG); spin_unlock(&sun4ichip->ctrl_lock); if (state->enabled) return 0; /* We need a full period to elapse before disabling the channel. */ delay_us = DIV_ROUND_UP_ULL(cstate.period, NSEC_PER_USEC); if ((delay_us / 500) > MAX_UDELAY_MS) msleep(delay_us / 1000 + 1); else usleep_range(delay_us, delay_us * 2); spin_lock(&sun4ichip->ctrl_lock); ctrl = sun4i_pwm_readl(sun4ichip, PWM_CTRL_REG); ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm); ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm); sun4i_pwm_writel(sun4ichip, ctrl, PWM_CTRL_REG); spin_unlock(&sun4ichip->ctrl_lock); clk_disable_unprepare(sun4ichip->clk); return 0; } static const struct pwm_ops sun4i_pwm_ops = { .apply = sun4i_pwm_apply, .get_state = sun4i_pwm_get_state, }; static const struct sun4i_pwm_data sun4i_pwm_dual_nobypass = { .has_prescaler_bypass = false, .npwm = 2, }; static const struct sun4i_pwm_data sun4i_pwm_dual_bypass = { .has_prescaler_bypass = true, .npwm = 2, }; static const struct sun4i_pwm_data sun4i_pwm_single_bypass = { .has_prescaler_bypass = true, .npwm = 1, }; static const struct sun4i_pwm_data sun50i_a64_pwm_data = { .has_prescaler_bypass = true, .has_direct_mod_clk_output = true, .npwm = 1, }; static const struct sun4i_pwm_data sun50i_h6_pwm_data = { .has_prescaler_bypass = true, .has_direct_mod_clk_output = true, .npwm = 2, }; static const struct of_device_id sun4i_pwm_dt_ids[] = { { .compatible = "allwinner,sun4i-a10-pwm", .data = &sun4i_pwm_dual_nobypass, }, { .compatible = "allwinner,sun5i-a10s-pwm", .data = &sun4i_pwm_dual_bypass, }, { .compatible = "allwinner,sun5i-a13-pwm", .data = &sun4i_pwm_single_bypass, }, { .compatible = "allwinner,sun7i-a20-pwm", .data = &sun4i_pwm_dual_bypass, }, { .compatible = "allwinner,sun8i-h3-pwm", .data = &sun4i_pwm_single_bypass, }, { .compatible = "allwinner,sun50i-a64-pwm", .data = &sun50i_a64_pwm_data, }, { .compatible = "allwinner,sun50i-h6-pwm", .data = &sun50i_h6_pwm_data, }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, sun4i_pwm_dt_ids); static int sun4i_pwm_probe(struct platform_device *pdev) { struct pwm_chip *chip; const struct sun4i_pwm_data *data; struct sun4i_pwm_chip *sun4ichip; int ret; data = of_device_get_match_data(&pdev->dev); if (!data) return -ENODEV; chip = devm_pwmchip_alloc(&pdev->dev, data->npwm, sizeof(*sun4ichip)); if (IS_ERR(chip)) return PTR_ERR(chip); sun4ichip = to_sun4i_pwm_chip(chip); sun4ichip->data = data; sun4ichip->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(sun4ichip->base)) return PTR_ERR(sun4ichip->base); /* * All hardware variants need a source clock that is divided and * then feeds the counter that defines the output wave form. In the * device tree this clock is either unnamed or called "mod". * Some variants (e.g. H6) need another clock to access the * hardware registers; this is called "bus". * So we request "mod" first (and ignore the corner case that a * parent provides a "mod" clock while the right one would be the * unnamed one of the PWM device) and if this is not found we fall * back to the first clock of the PWM. */ sun4ichip->clk = devm_clk_get_optional(&pdev->dev, "mod"); if (IS_ERR(sun4ichip->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk), "get mod clock failed\n"); if (!sun4ichip->clk) { sun4ichip->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(sun4ichip->clk)) return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->clk), "get unnamed clock failed\n"); } sun4ichip->bus_clk = devm_clk_get_optional(&pdev->dev, "bus"); if (IS_ERR(sun4ichip->bus_clk)) return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->bus_clk), "get bus clock failed\n"); sun4ichip->rst = devm_reset_control_get_optional_shared(&pdev->dev, NULL); if (IS_ERR(sun4ichip->rst)) return dev_err_probe(&pdev->dev, PTR_ERR(sun4ichip->rst), "get reset failed\n"); /* Deassert reset */ ret = reset_control_deassert(sun4ichip->rst); if (ret) { dev_err(&pdev->dev, "cannot deassert reset control: %pe\n", ERR_PTR(ret)); return ret; } /* * We're keeping the bus clock on for the sake of simplicity. * Actually it only needs to be on for hardware register accesses. */ ret = clk_prepare_enable(sun4ichip->bus_clk); if (ret) { dev_err(&pdev->dev, "cannot prepare and enable bus_clk %pe\n", ERR_PTR(ret)); goto err_bus; } chip->ops = &sun4i_pwm_ops; spin_lock_init(&sun4ichip->ctrl_lock); ret = pwmchip_add(chip); if (ret < 0) { dev_err(&pdev->dev, "failed to add PWM chip: %d\n", ret); goto err_pwm_add; } platform_set_drvdata(pdev, chip); return 0; err_pwm_add: clk_disable_unprepare(sun4ichip->bus_clk); err_bus: reset_control_assert(sun4ichip->rst); return ret; } static void sun4i_pwm_remove(struct platform_device *pdev) { struct pwm_chip *chip = platform_get_drvdata(pdev); struct sun4i_pwm_chip *sun4ichip = to_sun4i_pwm_chip(chip); pwmchip_remove(chip); clk_disable_unprepare(sun4ichip->bus_clk); reset_control_assert(sun4ichip->rst); } static struct platform_driver sun4i_pwm_driver = { .driver = { .name = "sun4i-pwm", .of_match_table = sun4i_pwm_dt_ids, }, .probe = sun4i_pwm_probe, .remove_new = sun4i_pwm_remove, }; module_platform_driver(sun4i_pwm_driver); MODULE_ALIAS("platform:sun4i-pwm"); MODULE_AUTHOR("Alexandre Belloni <alexandre.belloni@free-electrons.com>"); MODULE_DESCRIPTION("Allwinner sun4i PWM driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1