Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Krystian Garbaciak | 3383 | 73.05% | 2 | 5.88% |
Vincent Pelletier | 492 | 10.62% | 1 | 2.94% |
Benjamin Bara | 466 | 10.06% | 2 | 5.88% |
Marek Vašut | 103 | 2.22% | 2 | 5.88% |
Axel Lin | 85 | 1.84% | 6 | 17.65% |
Jingoo Han | 20 | 0.43% | 1 | 2.94% |
Rishi Gupta | 16 | 0.35% | 1 | 2.94% |
Martin Fuzzey | 11 | 0.24% | 2 | 5.88% |
Gustavo A. R. Silva | 9 | 0.19% | 2 | 5.88% |
Wolfram Sang | 9 | 0.19% | 2 | 5.88% |
Sachin Kamat | 8 | 0.17% | 3 | 8.82% |
Philipp Zabel | 7 | 0.15% | 1 | 2.94% |
Kees Cook | 7 | 0.15% | 2 | 5.88% |
Doug Anderson | 5 | 0.11% | 1 | 2.94% |
Geert Uytterhoeven | 3 | 0.06% | 2 | 5.88% |
Dan Carpenter | 2 | 0.04% | 1 | 2.94% |
Julia Lawall | 2 | 0.04% | 1 | 2.94% |
Steve Twiss | 2 | 0.04% | 1 | 2.94% |
Dmitry Lavnikevich | 1 | 0.02% | 1 | 2.94% |
Total | 4631 | 34 |
// SPDX-License-Identifier: GPL-2.0+ // // Regulator driver for DA9063 PMIC series // // Copyright 2012 Dialog Semiconductors Ltd. // Copyright 2013 Philipp Zabel, Pengutronix // // Author: Krystian Garbaciak <krystian.garbaciak@diasemi.com> #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/driver.h> #include <linux/regulator/machine.h> #include <linux/regulator/of_regulator.h> #include <linux/mfd/da9063/core.h> #include <linux/mfd/da9063/registers.h> /* Definition for registering regmap bit fields using a mask */ #define BFIELD(_reg, _mask) \ REG_FIELD(_reg, __builtin_ffs((int)_mask) - 1, \ sizeof(unsigned int) * 8 - __builtin_clz((_mask)) - 1) /* DA9063 and DA9063L regulator IDs */ enum { /* BUCKs */ DA9063_ID_BCORE1, DA9063_ID_BCORE2, DA9063_ID_BPRO, DA9063_ID_BMEM, DA9063_ID_BIO, DA9063_ID_BPERI, /* BCORE1 and BCORE2 in merged mode */ DA9063_ID_BCORES_MERGED, /* BMEM and BIO in merged mode */ DA9063_ID_BMEM_BIO_MERGED, /* When two BUCKs are merged, they cannot be reused separately */ /* LDOs on both DA9063 and DA9063L */ DA9063_ID_LDO3, DA9063_ID_LDO7, DA9063_ID_LDO8, DA9063_ID_LDO9, DA9063_ID_LDO11, /* DA9063-only LDOs */ DA9063_ID_LDO1, DA9063_ID_LDO2, DA9063_ID_LDO4, DA9063_ID_LDO5, DA9063_ID_LDO6, DA9063_ID_LDO10, }; /* Old regulator platform data */ struct da9063_regulator_data { int id; struct regulator_init_data *initdata; }; struct da9063_regulators_pdata { unsigned int n_regulators; struct da9063_regulator_data *regulator_data; }; /* Regulator capabilities and registers description */ struct da9063_regulator_info { struct regulator_desc desc; /* DA9063 main register fields */ struct reg_field mode; /* buck mode of operation */ struct reg_field suspend; struct reg_field sleep; struct reg_field suspend_sleep; unsigned int suspend_vsel_reg; /* DA9063 event detection bit */ struct reg_field oc_event; /* DA9063 voltage monitor bit */ struct reg_field vmon; }; /* Macros for LDO */ #define DA9063_LDO(chip, regl_name, min_mV, step_mV, max_mV) \ .desc.id = chip##_ID_##regl_name, \ .desc.name = __stringify(chip##_##regl_name), \ .desc.ops = &da9063_ldo_ops, \ .desc.min_uV = (min_mV) * 1000, \ .desc.uV_step = (step_mV) * 1000, \ .desc.n_voltages = (((max_mV) - (min_mV))/(step_mV) + 1 \ + (DA9063_V##regl_name##_BIAS)), \ .desc.enable_reg = DA9063_REG_##regl_name##_CONT, \ .desc.enable_mask = DA9063_LDO_EN, \ .desc.vsel_reg = DA9063_REG_V##regl_name##_A, \ .desc.vsel_mask = DA9063_V##regl_name##_MASK, \ .desc.linear_min_sel = DA9063_V##regl_name##_BIAS, \ .sleep = BFIELD(DA9063_REG_V##regl_name##_A, DA9063_LDO_SL), \ .suspend = BFIELD(DA9063_REG_##regl_name##_CONT, DA9063_LDO_CONF), \ .suspend_sleep = BFIELD(DA9063_REG_V##regl_name##_B, DA9063_LDO_SL), \ .suspend_vsel_reg = DA9063_REG_V##regl_name##_B /* Macros for voltage DC/DC converters (BUCKs) */ #define DA9063_BUCK(chip, regl_name, min_mV, step_mV, max_mV, limits_array, \ creg, cmask) \ .desc.id = chip##_ID_##regl_name, \ .desc.name = __stringify(chip##_##regl_name), \ .desc.ops = &da9063_buck_ops, \ .desc.min_uV = (min_mV) * 1000, \ .desc.uV_step = (step_mV) * 1000, \ .desc.n_voltages = ((max_mV) - (min_mV))/(step_mV) + 1, \ .desc.csel_reg = (creg), \ .desc.csel_mask = (cmask), \ .desc.curr_table = limits_array, \ .desc.n_current_limits = ARRAY_SIZE(limits_array) #define DA9063_BUCK_COMMON_FIELDS(regl_name) \ .desc.enable_reg = DA9063_REG_##regl_name##_CONT, \ .desc.enable_mask = DA9063_BUCK_EN, \ .desc.vsel_reg = DA9063_REG_V##regl_name##_A, \ .desc.vsel_mask = DA9063_VBUCK_MASK, \ .desc.linear_min_sel = DA9063_VBUCK_BIAS, \ .sleep = BFIELD(DA9063_REG_V##regl_name##_A, DA9063_BUCK_SL), \ .suspend = BFIELD(DA9063_REG_##regl_name##_CONT, DA9063_BUCK_CONF), \ .suspend_sleep = BFIELD(DA9063_REG_V##regl_name##_B, DA9063_BUCK_SL), \ .suspend_vsel_reg = DA9063_REG_V##regl_name##_B, \ .mode = BFIELD(DA9063_REG_##regl_name##_CFG, DA9063_BUCK_MODE_MASK) /* Defines asignment of regulators info table to chip model */ struct da9063_dev_model { const struct da9063_regulator_info *regulator_info; unsigned int n_regulators; enum da9063_type type; }; /* Single regulator settings */ struct da9063_regulator { struct regulator_desc desc; struct regulator_dev *rdev; struct da9063 *hw; const struct da9063_regulator_info *info; struct regmap_field *mode; struct regmap_field *suspend; struct regmap_field *sleep; struct regmap_field *suspend_sleep; struct regmap_field *vmon; }; /* Encapsulates all information for the regulators driver */ struct da9063_regulators { unsigned int n_regulators; /* Array size to be defined during init. Keep at end. */ struct da9063_regulator regulator[] __counted_by(n_regulators); }; /* BUCK modes for DA9063 */ enum { BUCK_MODE_MANUAL, /* 0 */ BUCK_MODE_SLEEP, /* 1 */ BUCK_MODE_SYNC, /* 2 */ BUCK_MODE_AUTO /* 3 */ }; /* Regulator operations */ /* * Current limits array (in uA) for BCORE1, BCORE2, BPRO. * Entry indexes corresponds to register values. */ static const unsigned int da9063_buck_a_limits[] = { 500000, 600000, 700000, 800000, 900000, 1000000, 1100000, 1200000, 1300000, 1400000, 1500000, 1600000, 1700000, 1800000, 1900000, 2000000 }; /* * Current limits array (in uA) for BMEM, BIO, BPERI. * Entry indexes corresponds to register values. */ static const unsigned int da9063_buck_b_limits[] = { 1500000, 1600000, 1700000, 1800000, 1900000, 2000000, 2100000, 2200000, 2300000, 2400000, 2500000, 2600000, 2700000, 2800000, 2900000, 3000000 }; /* * Current limits array (in uA) for merged BCORE1 and BCORE2. * Entry indexes corresponds to register values. */ static const unsigned int da9063_bcores_merged_limits[] = { 1000000, 1200000, 1400000, 1600000, 1800000, 2000000, 2200000, 2400000, 2600000, 2800000, 3000000, 3200000, 3400000, 3600000, 3800000, 4000000 }; /* * Current limits array (in uA) for merged BMEM and BIO. * Entry indexes corresponds to register values. */ static const unsigned int da9063_bmem_bio_merged_limits[] = { 3000000, 3200000, 3400000, 3600000, 3800000, 4000000, 4200000, 4400000, 4600000, 4800000, 5000000, 5200000, 5400000, 5600000, 5800000, 6000000 }; static int da9063_set_xvp(struct regulator_dev *rdev, int lim_uV, int severity, bool enable) { struct da9063_regulator *regl = rdev_get_drvdata(rdev); struct device *dev = regl->hw->dev; dev_dbg(dev, "%s: lim: %d, sev: %d, en: %d\n", regl->desc.name, lim_uV, severity, enable); /* * only support enable and disable. * the da9063 offers a GPIO (GP_FB2) which is unasserted if an XV happens. * therefore ignore severity here, as there might be handlers in hardware. */ if (lim_uV) return -EINVAL; return regmap_field_write(regl->vmon, enable ? 1 : 0); } static int da9063_buck_set_mode(struct regulator_dev *rdev, unsigned int mode) { struct da9063_regulator *regl = rdev_get_drvdata(rdev); unsigned int val; switch (mode) { case REGULATOR_MODE_FAST: val = BUCK_MODE_SYNC; break; case REGULATOR_MODE_NORMAL: val = BUCK_MODE_AUTO; break; case REGULATOR_MODE_STANDBY: val = BUCK_MODE_SLEEP; break; default: return -EINVAL; } return regmap_field_write(regl->mode, val); } /* * Bucks use single mode register field for normal operation * and suspend state. * There are 3 modes to map to: FAST, NORMAL, and STANDBY. */ static unsigned int da9063_buck_get_mode(struct regulator_dev *rdev) { struct da9063_regulator *regl = rdev_get_drvdata(rdev); unsigned int val; int ret; ret = regmap_field_read(regl->mode, &val); if (ret < 0) return ret; switch (val) { default: case BUCK_MODE_MANUAL: /* Sleep flag bit decides the mode */ break; case BUCK_MODE_SLEEP: return REGULATOR_MODE_STANDBY; case BUCK_MODE_SYNC: return REGULATOR_MODE_FAST; case BUCK_MODE_AUTO: return REGULATOR_MODE_NORMAL; } ret = regmap_field_read(regl->sleep, &val); if (ret < 0) return 0; if (val) return REGULATOR_MODE_STANDBY; else return REGULATOR_MODE_FAST; } /* * LDOs use sleep flags - one for normal and one for suspend state. * There are 2 modes to map to: NORMAL and STANDBY (sleep) for each state. */ static int da9063_ldo_set_mode(struct regulator_dev *rdev, unsigned int mode) { struct da9063_regulator *regl = rdev_get_drvdata(rdev); unsigned int val; switch (mode) { case REGULATOR_MODE_NORMAL: val = 0; break; case REGULATOR_MODE_STANDBY: val = 1; break; default: return -EINVAL; } return regmap_field_write(regl->sleep, val); } static unsigned int da9063_ldo_get_mode(struct regulator_dev *rdev) { struct da9063_regulator *regl = rdev_get_drvdata(rdev); int ret, val; ret = regmap_field_read(regl->sleep, &val); if (ret < 0) return 0; if (val) return REGULATOR_MODE_STANDBY; else return REGULATOR_MODE_NORMAL; } static int da9063_buck_get_status(struct regulator_dev *rdev) { int ret = regulator_is_enabled_regmap(rdev); if (ret == 0) { ret = REGULATOR_STATUS_OFF; } else if (ret > 0) { ret = da9063_buck_get_mode(rdev); if (ret > 0) ret = regulator_mode_to_status(ret); else if (ret == 0) ret = -EIO; } return ret; } static int da9063_ldo_get_status(struct regulator_dev *rdev) { int ret = regulator_is_enabled_regmap(rdev); if (ret == 0) { ret = REGULATOR_STATUS_OFF; } else if (ret > 0) { ret = da9063_ldo_get_mode(rdev); if (ret > 0) ret = regulator_mode_to_status(ret); else if (ret == 0) ret = -EIO; } return ret; } static int da9063_set_suspend_voltage(struct regulator_dev *rdev, int uV) { struct da9063_regulator *regl = rdev_get_drvdata(rdev); const struct da9063_regulator_info *rinfo = regl->info; int ret, sel; sel = regulator_map_voltage_linear(rdev, uV, uV); if (sel < 0) return sel; sel <<= ffs(rdev->desc->vsel_mask) - 1; ret = regmap_update_bits(regl->hw->regmap, rinfo->suspend_vsel_reg, rdev->desc->vsel_mask, sel); return ret; } static int da9063_suspend_enable(struct regulator_dev *rdev) { struct da9063_regulator *regl = rdev_get_drvdata(rdev); return regmap_field_write(regl->suspend, 1); } static int da9063_suspend_disable(struct regulator_dev *rdev) { struct da9063_regulator *regl = rdev_get_drvdata(rdev); return regmap_field_write(regl->suspend, 0); } static int da9063_buck_set_suspend_mode(struct regulator_dev *rdev, unsigned int mode) { struct da9063_regulator *regl = rdev_get_drvdata(rdev); int val; switch (mode) { case REGULATOR_MODE_FAST: val = BUCK_MODE_SYNC; break; case REGULATOR_MODE_NORMAL: val = BUCK_MODE_AUTO; break; case REGULATOR_MODE_STANDBY: val = BUCK_MODE_SLEEP; break; default: return -EINVAL; } return regmap_field_write(regl->mode, val); } static int da9063_ldo_set_suspend_mode(struct regulator_dev *rdev, unsigned int mode) { struct da9063_regulator *regl = rdev_get_drvdata(rdev); unsigned int val; switch (mode) { case REGULATOR_MODE_NORMAL: val = 0; break; case REGULATOR_MODE_STANDBY: val = 1; break; default: return -EINVAL; } return regmap_field_write(regl->suspend_sleep, val); } static unsigned int da9063_get_overdrive_mask(const struct regulator_desc *desc) { switch (desc->id) { case DA9063_ID_BCORES_MERGED: case DA9063_ID_BCORE1: return DA9063_BCORE1_OD; case DA9063_ID_BCORE2: return DA9063_BCORE2_OD; case DA9063_ID_BPRO: return DA9063_BPRO_OD; default: return 0; } } static int da9063_buck_set_limit_set_overdrive(struct regulator_dev *rdev, int min_uA, int max_uA, unsigned int overdrive_mask) { /* * When enabling overdrive, do it before changing the current limit to * ensure sufficient supply throughout the switch. */ struct da9063_regulator *regl = rdev_get_drvdata(rdev); int ret; unsigned int orig_overdrive; ret = regmap_read(regl->hw->regmap, DA9063_REG_CONFIG_H, &orig_overdrive); if (ret < 0) return ret; orig_overdrive &= overdrive_mask; if (orig_overdrive == 0) { ret = regmap_set_bits(regl->hw->regmap, DA9063_REG_CONFIG_H, overdrive_mask); if (ret < 0) return ret; } ret = regulator_set_current_limit_regmap(rdev, min_uA / 2, max_uA / 2); if (ret < 0 && orig_overdrive == 0) /* * regulator_set_current_limit_regmap may have rejected the * change because of unusable min_uA and/or max_uA inputs. * Attempt to restore original overdrive state, ignore failure- * on-failure. */ regmap_clear_bits(regl->hw->regmap, DA9063_REG_CONFIG_H, overdrive_mask); return ret; } static int da9063_buck_set_limit_clear_overdrive(struct regulator_dev *rdev, int min_uA, int max_uA, unsigned int overdrive_mask) { /* * When disabling overdrive, do it after changing the current limit to * ensure sufficient supply throughout the switch. */ struct da9063_regulator *regl = rdev_get_drvdata(rdev); int ret, orig_limit; ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &orig_limit); if (ret < 0) return ret; ret = regulator_set_current_limit_regmap(rdev, min_uA, max_uA); if (ret < 0) return ret; ret = regmap_clear_bits(regl->hw->regmap, DA9063_REG_CONFIG_H, overdrive_mask); if (ret < 0) /* * Attempt to restore original current limit, ignore failure- * on-failure. */ regmap_write(rdev->regmap, rdev->desc->csel_reg, orig_limit); return ret; } static int da9063_buck_set_current_limit(struct regulator_dev *rdev, int min_uA, int max_uA) { unsigned int overdrive_mask, n_currents; overdrive_mask = da9063_get_overdrive_mask(rdev->desc); if (overdrive_mask) { n_currents = rdev->desc->n_current_limits; if (n_currents == 0) return -EINVAL; if (max_uA > rdev->desc->curr_table[n_currents - 1]) return da9063_buck_set_limit_set_overdrive(rdev, min_uA, max_uA, overdrive_mask); return da9063_buck_set_limit_clear_overdrive(rdev, min_uA, max_uA, overdrive_mask); } return regulator_set_current_limit_regmap(rdev, min_uA, max_uA); } static int da9063_buck_get_current_limit(struct regulator_dev *rdev) { struct da9063_regulator *regl = rdev_get_drvdata(rdev); int val, ret, limit; unsigned int mask; limit = regulator_get_current_limit_regmap(rdev); if (limit < 0) return limit; mask = da9063_get_overdrive_mask(rdev->desc); if (mask) { ret = regmap_read(regl->hw->regmap, DA9063_REG_CONFIG_H, &val); if (ret < 0) return ret; if (val & mask) limit *= 2; } return limit; } static const struct regulator_ops da9063_buck_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, .set_voltage_sel = regulator_set_voltage_sel_regmap, .list_voltage = regulator_list_voltage_linear, .set_current_limit = da9063_buck_set_current_limit, .get_current_limit = da9063_buck_get_current_limit, .set_mode = da9063_buck_set_mode, .get_mode = da9063_buck_get_mode, .get_status = da9063_buck_get_status, .set_suspend_voltage = da9063_set_suspend_voltage, .set_suspend_enable = da9063_suspend_enable, .set_suspend_disable = da9063_suspend_disable, .set_suspend_mode = da9063_buck_set_suspend_mode, .set_over_voltage_protection = da9063_set_xvp, .set_under_voltage_protection = da9063_set_xvp, }; static const struct regulator_ops da9063_ldo_ops = { .enable = regulator_enable_regmap, .disable = regulator_disable_regmap, .is_enabled = regulator_is_enabled_regmap, .get_voltage_sel = regulator_get_voltage_sel_regmap, .set_voltage_sel = regulator_set_voltage_sel_regmap, .list_voltage = regulator_list_voltage_linear, .set_mode = da9063_ldo_set_mode, .get_mode = da9063_ldo_get_mode, .get_status = da9063_ldo_get_status, .set_suspend_voltage = da9063_set_suspend_voltage, .set_suspend_enable = da9063_suspend_enable, .set_suspend_disable = da9063_suspend_disable, .set_suspend_mode = da9063_ldo_set_suspend_mode, .set_over_voltage_protection = da9063_set_xvp, .set_under_voltage_protection = da9063_set_xvp, }; /* Info of regulators for DA9063 */ static const struct da9063_regulator_info da9063_regulator_info[] = { { DA9063_BUCK(DA9063, BCORE1, 300, 10, 1570, da9063_buck_a_limits, DA9063_REG_BUCK_ILIM_C, DA9063_BCORE1_ILIM_MASK), DA9063_BUCK_COMMON_FIELDS(BCORE1), .vmon = BFIELD(DA9063_BB_REG_MON_REG_4, DA9063_BCORE1_MON_EN), }, { DA9063_BUCK(DA9063, BCORE2, 300, 10, 1570, da9063_buck_a_limits, DA9063_REG_BUCK_ILIM_C, DA9063_BCORE2_ILIM_MASK), DA9063_BUCK_COMMON_FIELDS(BCORE2), .vmon = BFIELD(DA9063_BB_REG_MON_REG_4, DA9063_BCORE2_MON_EN), }, { DA9063_BUCK(DA9063, BPRO, 530, 10, 1800, da9063_buck_a_limits, DA9063_REG_BUCK_ILIM_B, DA9063_BPRO_ILIM_MASK), DA9063_BUCK_COMMON_FIELDS(BPRO), .vmon = BFIELD(DA9063_BB_REG_MON_REG_4, DA9063_BPRO_MON_EN), }, { DA9063_BUCK(DA9063, BMEM, 800, 20, 3340, da9063_buck_b_limits, DA9063_REG_BUCK_ILIM_A, DA9063_BMEM_ILIM_MASK), DA9063_BUCK_COMMON_FIELDS(BMEM), .vmon = BFIELD(DA9063_BB_REG_MON_REG_4, DA9063_BMEM_MON_EN), }, { DA9063_BUCK(DA9063, BIO, 800, 20, 3340, da9063_buck_b_limits, DA9063_REG_BUCK_ILIM_A, DA9063_BIO_ILIM_MASK), DA9063_BUCK_COMMON_FIELDS(BIO), .vmon = BFIELD(DA9063_BB_REG_MON_REG_4, DA9063_BIO_MON_EN), }, { DA9063_BUCK(DA9063, BPERI, 800, 20, 3340, da9063_buck_b_limits, DA9063_REG_BUCK_ILIM_B, DA9063_BPERI_ILIM_MASK), DA9063_BUCK_COMMON_FIELDS(BPERI), .vmon = BFIELD(DA9063_BB_REG_MON_REG_4, DA9063_BPERI_MON_EN), }, { DA9063_BUCK(DA9063, BCORES_MERGED, 300, 10, 1570, da9063_bcores_merged_limits, DA9063_REG_BUCK_ILIM_C, DA9063_BCORE1_ILIM_MASK), /* BCORES_MERGED uses the same register fields as BCORE1 */ DA9063_BUCK_COMMON_FIELDS(BCORE1), .vmon = BFIELD(DA9063_BB_REG_MON_REG_4, DA9063_BCORE1_MON_EN), }, { DA9063_BUCK(DA9063, BMEM_BIO_MERGED, 800, 20, 3340, da9063_bmem_bio_merged_limits, DA9063_REG_BUCK_ILIM_A, DA9063_BMEM_ILIM_MASK), /* BMEM_BIO_MERGED uses the same register fields as BMEM */ DA9063_BUCK_COMMON_FIELDS(BMEM), .vmon = BFIELD(DA9063_BB_REG_MON_REG_4, DA9063_BMEM_MON_EN), }, { DA9063_LDO(DA9063, LDO3, 900, 20, 3440), .oc_event = BFIELD(DA9063_REG_STATUS_D, DA9063_LDO3_LIM), .vmon = BFIELD(DA9063_BB_REG_MON_REG_2, DA9063_LDO3_MON_EN), }, { DA9063_LDO(DA9063, LDO7, 900, 50, 3600), .oc_event = BFIELD(DA9063_REG_STATUS_D, DA9063_LDO7_LIM), .vmon = BFIELD(DA9063_BB_REG_MON_REG_2, DA9063_LDO7_MON_EN), }, { DA9063_LDO(DA9063, LDO8, 900, 50, 3600), .oc_event = BFIELD(DA9063_REG_STATUS_D, DA9063_LDO8_LIM), .vmon = BFIELD(DA9063_BB_REG_MON_REG_2, DA9063_LDO8_MON_EN), }, { DA9063_LDO(DA9063, LDO9, 950, 50, 3600), .vmon = BFIELD(DA9063_BB_REG_MON_REG_3, DA9063_LDO9_MON_EN), }, { DA9063_LDO(DA9063, LDO11, 900, 50, 3600), .oc_event = BFIELD(DA9063_REG_STATUS_D, DA9063_LDO11_LIM), .vmon = BFIELD(DA9063_BB_REG_MON_REG_3, DA9063_LDO11_MON_EN), }, /* The following LDOs are present only on DA9063, not on DA9063L */ { DA9063_LDO(DA9063, LDO1, 600, 20, 1860), .vmon = BFIELD(DA9063_BB_REG_MON_REG_2, DA9063_LDO1_MON_EN), }, { DA9063_LDO(DA9063, LDO2, 600, 20, 1860), .vmon = BFIELD(DA9063_BB_REG_MON_REG_2, DA9063_LDO2_MON_EN), }, { DA9063_LDO(DA9063, LDO4, 900, 20, 3440), .oc_event = BFIELD(DA9063_REG_STATUS_D, DA9063_LDO4_LIM), .vmon = BFIELD(DA9063_BB_REG_MON_REG_2, DA9063_LDO4_MON_EN), }, { DA9063_LDO(DA9063, LDO5, 900, 50, 3600), .vmon = BFIELD(DA9063_BB_REG_MON_REG_2, DA9063_LDO5_MON_EN), }, { DA9063_LDO(DA9063, LDO6, 900, 50, 3600), .vmon = BFIELD(DA9063_BB_REG_MON_REG_2, DA9063_LDO6_MON_EN), }, { DA9063_LDO(DA9063, LDO10, 900, 50, 3600), .vmon = BFIELD(DA9063_BB_REG_MON_REG_3, DA9063_LDO10_MON_EN), }, }; /* Link chip model with regulators info table */ static struct da9063_dev_model regulators_models[] = { { .regulator_info = da9063_regulator_info, .n_regulators = ARRAY_SIZE(da9063_regulator_info), .type = PMIC_TYPE_DA9063, }, { .regulator_info = da9063_regulator_info, .n_regulators = ARRAY_SIZE(da9063_regulator_info) - 6, .type = PMIC_TYPE_DA9063L, }, { } }; /* Regulator interrupt handlers */ static irqreturn_t da9063_ldo_lim_event(int irq, void *data) { struct da9063_regulators *regulators = data; struct da9063 *hw = regulators->regulator[0].hw; struct da9063_regulator *regl; int bits, i, ret; ret = regmap_read(hw->regmap, DA9063_REG_STATUS_D, &bits); if (ret < 0) return IRQ_NONE; for (i = regulators->n_regulators - 1; i >= 0; i--) { regl = ®ulators->regulator[i]; if (regl->info->oc_event.reg != DA9063_REG_STATUS_D) continue; if (BIT(regl->info->oc_event.lsb) & bits) { regulator_notifier_call_chain(regl->rdev, REGULATOR_EVENT_OVER_CURRENT, NULL); } } return IRQ_HANDLED; } /* * Probing and Initialisation functions */ static const struct regulator_init_data *da9063_get_regulator_initdata( const struct da9063_regulators_pdata *regl_pdata, int id) { int i; for (i = 0; i < regl_pdata->n_regulators; i++) { if (id == regl_pdata->regulator_data[i].id) return regl_pdata->regulator_data[i].initdata; } return NULL; } static int da9063_check_xvp_constraints(struct regulator_config *config) { struct da9063_regulator *regl = config->driver_data; const struct regulation_constraints *constr = &config->init_data->constraints; const struct notification_limit *uv_l = &constr->under_voltage_limits; const struct notification_limit *ov_l = &constr->over_voltage_limits; /* make sure that only one severity is used to clarify if unchanged, enabled or disabled */ if ((!!uv_l->prot + !!uv_l->err + !!uv_l->warn) > 1) { dev_err(config->dev, "%s: at most one voltage monitoring severity allowed!\n", regl->desc.name); return -EINVAL; } /* make sure that UV and OV monitoring is set to the same severity and value */ if (uv_l->prot != ov_l->prot) { dev_err(config->dev, "%s: protection-microvolt: value must be equal for uv and ov!\n", regl->desc.name); return -EINVAL; } if (uv_l->err != ov_l->err) { dev_err(config->dev, "%s: error-microvolt: value must be equal for uv and ov!\n", regl->desc.name); return -EINVAL; } if (uv_l->warn != ov_l->warn) { dev_err(config->dev, "%s: warn-microvolt: value must be equal for uv and ov!\n", regl->desc.name); return -EINVAL; } return 0; } static struct of_regulator_match da9063_matches[] = { [DA9063_ID_BCORE1] = { .name = "bcore1" }, [DA9063_ID_BCORE2] = { .name = "bcore2" }, [DA9063_ID_BPRO] = { .name = "bpro", }, [DA9063_ID_BMEM] = { .name = "bmem", }, [DA9063_ID_BIO] = { .name = "bio", }, [DA9063_ID_BPERI] = { .name = "bperi", }, [DA9063_ID_BCORES_MERGED] = { .name = "bcores-merged" }, [DA9063_ID_BMEM_BIO_MERGED] = { .name = "bmem-bio-merged", }, [DA9063_ID_LDO3] = { .name = "ldo3", }, [DA9063_ID_LDO7] = { .name = "ldo7", }, [DA9063_ID_LDO8] = { .name = "ldo8", }, [DA9063_ID_LDO9] = { .name = "ldo9", }, [DA9063_ID_LDO11] = { .name = "ldo11", }, /* The following LDOs are present only on DA9063, not on DA9063L */ [DA9063_ID_LDO1] = { .name = "ldo1", }, [DA9063_ID_LDO2] = { .name = "ldo2", }, [DA9063_ID_LDO4] = { .name = "ldo4", }, [DA9063_ID_LDO5] = { .name = "ldo5", }, [DA9063_ID_LDO6] = { .name = "ldo6", }, [DA9063_ID_LDO10] = { .name = "ldo10", }, }; static struct da9063_regulators_pdata *da9063_parse_regulators_dt( struct platform_device *pdev, struct of_regulator_match **da9063_reg_matches) { struct da9063 *da9063 = dev_get_drvdata(pdev->dev.parent); struct da9063_regulators_pdata *pdata; struct da9063_regulator_data *rdata; struct device_node *node; int da9063_matches_len = ARRAY_SIZE(da9063_matches); int i, n, num; if (da9063->type == PMIC_TYPE_DA9063L) da9063_matches_len -= 6; node = of_get_child_by_name(pdev->dev.parent->of_node, "regulators"); if (!node) { dev_err(&pdev->dev, "Regulators device node not found\n"); return ERR_PTR(-ENODEV); } num = of_regulator_match(&pdev->dev, node, da9063_matches, da9063_matches_len); of_node_put(node); if (num < 0) { dev_err(&pdev->dev, "Failed to match regulators\n"); return ERR_PTR(-EINVAL); } pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return ERR_PTR(-ENOMEM); pdata->regulator_data = devm_kcalloc(&pdev->dev, num, sizeof(*pdata->regulator_data), GFP_KERNEL); if (!pdata->regulator_data) return ERR_PTR(-ENOMEM); pdata->n_regulators = num; n = 0; for (i = 0; i < da9063_matches_len; i++) { if (!da9063_matches[i].init_data) continue; rdata = &pdata->regulator_data[n]; rdata->id = i; rdata->initdata = da9063_matches[i].init_data; n++; } *da9063_reg_matches = da9063_matches; return pdata; } static int da9063_regulator_probe(struct platform_device *pdev) { struct da9063 *da9063 = dev_get_drvdata(pdev->dev.parent); struct of_regulator_match *da9063_reg_matches = NULL; struct da9063_regulators_pdata *regl_pdata; const struct da9063_dev_model *model; struct da9063_regulators *regulators; struct da9063_regulator *regl; struct regulator_config config; bool bcores_merged, bmem_bio_merged; int id, irq, n, n_regulators, ret, val; regl_pdata = da9063_parse_regulators_dt(pdev, &da9063_reg_matches); if (IS_ERR(regl_pdata) || regl_pdata->n_regulators == 0) { dev_err(&pdev->dev, "No regulators defined for the platform\n"); return -ENODEV; } /* Find regulators set for particular device model */ for (model = regulators_models; model->regulator_info; model++) { if (model->type == da9063->type) break; } if (!model->regulator_info) { dev_err(&pdev->dev, "Chip model not recognised (%u)\n", da9063->type); return -ENODEV; } ret = regmap_read(da9063->regmap, DA9063_REG_CONFIG_H, &val); if (ret < 0) { dev_err(&pdev->dev, "Error while reading BUCKs configuration\n"); return ret; } bcores_merged = val & DA9063_BCORE_MERGE; bmem_bio_merged = val & DA9063_BUCK_MERGE; n_regulators = model->n_regulators; if (bcores_merged) n_regulators -= 2; /* remove BCORE1, BCORE2 */ else n_regulators--; /* remove BCORES_MERGED */ if (bmem_bio_merged) n_regulators -= 2; /* remove BMEM, BIO */ else n_regulators--; /* remove BMEM_BIO_MERGED */ /* Allocate memory required by usable regulators */ regulators = devm_kzalloc(&pdev->dev, struct_size(regulators, regulator, n_regulators), GFP_KERNEL); if (!regulators) return -ENOMEM; regulators->n_regulators = n_regulators; platform_set_drvdata(pdev, regulators); /* Register all regulators declared in platform information */ n = 0; id = 0; while (n < regulators->n_regulators) { /* Skip regulator IDs depending on merge mode configuration */ switch (id) { case DA9063_ID_BCORE1: case DA9063_ID_BCORE2: if (bcores_merged) { id++; continue; } break; case DA9063_ID_BMEM: case DA9063_ID_BIO: if (bmem_bio_merged) { id++; continue; } break; case DA9063_ID_BCORES_MERGED: if (!bcores_merged) { id++; continue; } break; case DA9063_ID_BMEM_BIO_MERGED: if (!bmem_bio_merged) { id++; continue; } break; } /* Initialise regulator structure */ regl = ®ulators->regulator[n]; regl->hw = da9063; regl->info = &model->regulator_info[id]; regl->desc = regl->info->desc; regl->desc.type = REGULATOR_VOLTAGE; regl->desc.owner = THIS_MODULE; if (regl->info->mode.reg) { regl->mode = devm_regmap_field_alloc(&pdev->dev, da9063->regmap, regl->info->mode); if (IS_ERR(regl->mode)) return PTR_ERR(regl->mode); } if (regl->info->suspend.reg) { regl->suspend = devm_regmap_field_alloc(&pdev->dev, da9063->regmap, regl->info->suspend); if (IS_ERR(regl->suspend)) return PTR_ERR(regl->suspend); } if (regl->info->sleep.reg) { regl->sleep = devm_regmap_field_alloc(&pdev->dev, da9063->regmap, regl->info->sleep); if (IS_ERR(regl->sleep)) return PTR_ERR(regl->sleep); } if (regl->info->suspend_sleep.reg) { regl->suspend_sleep = devm_regmap_field_alloc(&pdev->dev, da9063->regmap, regl->info->suspend_sleep); if (IS_ERR(regl->suspend_sleep)) return PTR_ERR(regl->suspend_sleep); } if (regl->info->vmon.reg) { regl->vmon = devm_regmap_field_alloc(&pdev->dev, da9063->regmap, regl->info->vmon); if (IS_ERR(regl->vmon)) return PTR_ERR(regl->vmon); } /* Register regulator */ memset(&config, 0, sizeof(config)); config.dev = &pdev->dev; config.init_data = da9063_get_regulator_initdata(regl_pdata, id); config.driver_data = regl; if (da9063_reg_matches) config.of_node = da9063_reg_matches[id].of_node; config.regmap = da9063->regmap; /* Checking constraints requires init_data from DT. */ if (config.init_data) { ret = da9063_check_xvp_constraints(&config); if (ret) return ret; } regl->rdev = devm_regulator_register(&pdev->dev, ®l->desc, &config); if (IS_ERR(regl->rdev)) { dev_err(&pdev->dev, "Failed to register %s regulator\n", regl->desc.name); return PTR_ERR(regl->rdev); } id++; n++; } /* LDOs overcurrent event support */ irq = platform_get_irq_byname(pdev, "LDO_LIM"); if (irq < 0) return irq; ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, da9063_ldo_lim_event, IRQF_TRIGGER_LOW | IRQF_ONESHOT, "LDO_LIM", regulators); if (ret) dev_err(&pdev->dev, "Failed to request LDO_LIM IRQ.\n"); return ret; } static struct platform_driver da9063_regulator_driver = { .driver = { .name = DA9063_DRVNAME_REGULATORS, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, .probe = da9063_regulator_probe, }; static int __init da9063_regulator_init(void) { return platform_driver_register(&da9063_regulator_driver); } subsys_initcall(da9063_regulator_init); static void __exit da9063_regulator_cleanup(void) { platform_driver_unregister(&da9063_regulator_driver); } module_exit(da9063_regulator_cleanup); /* Module information */ MODULE_AUTHOR("Krystian Garbaciak <krystian.garbaciak@diasemi.com>"); MODULE_DESCRIPTION("DA9063 regulators driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:" DA9063_DRVNAME_REGULATORS);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1