Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Erin Lo | 2858 | 39.95% | 1 | 2.44% |
Tinghan Shen | 1817 | 25.40% | 14 | 34.15% |
Peter Shih | 925 | 12.93% | 2 | 4.88% |
Olivia Wen | 875 | 12.23% | 2 | 4.88% |
Tzung-Bi Shih | 440 | 6.15% | 8 | 19.51% |
Allen-KH Cheng | 156 | 2.18% | 3 | 7.32% |
Angelo G. Del Regno | 64 | 0.89% | 5 | 12.20% |
Peng Fan | 5 | 0.07% | 1 | 2.44% |
Dan Carpenter | 5 | 0.07% | 1 | 2.44% |
Arnd Bergmann | 3 | 0.04% | 1 | 2.44% |
Uwe Kleine-König | 2 | 0.03% | 1 | 2.44% |
Wei Yongjun | 2 | 0.03% | 1 | 2.44% |
Nathan Chancellor | 2 | 0.03% | 1 | 2.44% |
Total | 7154 | 41 |
// SPDX-License-Identifier: GPL-2.0 // // Copyright (c) 2019 MediaTek Inc. #include <asm/barrier.h> #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/remoteproc.h> #include <linux/remoteproc/mtk_scp.h> #include <linux/rpmsg/mtk_rpmsg.h> #include "mtk_common.h" #include "remoteproc_internal.h" #define SECTION_NAME_IPI_BUFFER ".ipi_buffer" /** * scp_get() - get a reference to SCP. * * @pdev: the platform device of the module requesting SCP platform * device for using SCP API. * * Return: Return NULL if failed. otherwise reference to SCP. **/ struct mtk_scp *scp_get(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *scp_node; struct platform_device *scp_pdev; scp_node = of_parse_phandle(dev->of_node, "mediatek,scp", 0); if (!scp_node) { dev_err(dev, "can't get SCP node\n"); return NULL; } scp_pdev = of_find_device_by_node(scp_node); of_node_put(scp_node); if (WARN_ON(!scp_pdev)) { dev_err(dev, "SCP pdev failed\n"); return NULL; } return platform_get_drvdata(scp_pdev); } EXPORT_SYMBOL_GPL(scp_get); /** * scp_put() - "free" the SCP * * @scp: mtk_scp structure from scp_get(). **/ void scp_put(struct mtk_scp *scp) { put_device(scp->dev); } EXPORT_SYMBOL_GPL(scp_put); static void scp_wdt_handler(struct mtk_scp *scp, u32 scp_to_host) { struct mtk_scp_of_cluster *scp_cluster = scp->cluster; struct mtk_scp *scp_node; dev_err(scp->dev, "SCP watchdog timeout! 0x%x", scp_to_host); /* report watchdog timeout to all cores */ list_for_each_entry(scp_node, &scp_cluster->mtk_scp_list, elem) rproc_report_crash(scp_node->rproc, RPROC_WATCHDOG); } static void scp_init_ipi_handler(void *data, unsigned int len, void *priv) { struct mtk_scp *scp = priv; struct scp_run *run = data; scp->run.signaled = run->signaled; strscpy(scp->run.fw_ver, run->fw_ver, SCP_FW_VER_LEN); scp->run.dec_capability = run->dec_capability; scp->run.enc_capability = run->enc_capability; wake_up_interruptible(&scp->run.wq); } static void scp_ipi_handler(struct mtk_scp *scp) { struct mtk_share_obj __iomem *rcv_obj = scp->recv_buf; struct scp_ipi_desc *ipi_desc = scp->ipi_desc; scp_ipi_handler_t handler; u32 id = readl(&rcv_obj->id); u32 len = readl(&rcv_obj->len); const struct mtk_scp_sizes_data *scp_sizes; scp_sizes = scp->data->scp_sizes; if (len > scp_sizes->ipi_share_buffer_size) { dev_err(scp->dev, "ipi message too long (len %d, max %zd)", len, scp_sizes->ipi_share_buffer_size); return; } if (id >= SCP_IPI_MAX) { dev_err(scp->dev, "No such ipi id = %d\n", id); return; } scp_ipi_lock(scp, id); handler = ipi_desc[id].handler; if (!handler) { dev_err(scp->dev, "No handler for ipi id = %d\n", id); scp_ipi_unlock(scp, id); return; } memset(scp->share_buf, 0, scp_sizes->ipi_share_buffer_size); memcpy_fromio(scp->share_buf, &rcv_obj->share_buf, len); handler(scp->share_buf, len, ipi_desc[id].priv); scp_ipi_unlock(scp, id); scp->ipi_id_ack[id] = true; wake_up(&scp->ack_wq); } static int scp_elf_read_ipi_buf_addr(struct mtk_scp *scp, const struct firmware *fw, size_t *offset); static int scp_ipi_init(struct mtk_scp *scp, const struct firmware *fw) { int ret; size_t buf_sz, offset; size_t share_buf_offset; const struct mtk_scp_sizes_data *scp_sizes; /* read the ipi buf addr from FW itself first */ ret = scp_elf_read_ipi_buf_addr(scp, fw, &offset); if (ret) { /* use default ipi buf addr if the FW doesn't have it */ offset = scp->data->ipi_buf_offset; if (!offset) return ret; } dev_info(scp->dev, "IPI buf addr %#010zx\n", offset); /* Make sure IPI buffer fits in the L2TCM range assigned to this core */ buf_sz = sizeof(*scp->recv_buf) + sizeof(*scp->send_buf); if (scp->sram_size < buf_sz + offset) { dev_err(scp->dev, "IPI buffer does not fit in SRAM.\n"); return -EOVERFLOW; } scp_sizes = scp->data->scp_sizes; scp->recv_buf = (struct mtk_share_obj __iomem *) (scp->sram_base + offset); share_buf_offset = sizeof(scp->recv_buf->id) + sizeof(scp->recv_buf->len) + scp_sizes->ipi_share_buffer_size; scp->send_buf = (struct mtk_share_obj __iomem *) (scp->sram_base + offset + share_buf_offset); memset_io(scp->recv_buf, 0, share_buf_offset); memset_io(scp->send_buf, 0, share_buf_offset); return 0; } static void mt8183_scp_reset_assert(struct mtk_scp *scp) { u32 val; val = readl(scp->cluster->reg_base + MT8183_SW_RSTN); val &= ~MT8183_SW_RSTN_BIT; writel(val, scp->cluster->reg_base + MT8183_SW_RSTN); } static void mt8183_scp_reset_deassert(struct mtk_scp *scp) { u32 val; val = readl(scp->cluster->reg_base + MT8183_SW_RSTN); val |= MT8183_SW_RSTN_BIT; writel(val, scp->cluster->reg_base + MT8183_SW_RSTN); } static void mt8192_scp_reset_assert(struct mtk_scp *scp) { writel(1, scp->cluster->reg_base + MT8192_CORE0_SW_RSTN_SET); } static void mt8192_scp_reset_deassert(struct mtk_scp *scp) { writel(1, scp->cluster->reg_base + MT8192_CORE0_SW_RSTN_CLR); } static void mt8195_scp_c1_reset_assert(struct mtk_scp *scp) { writel(1, scp->cluster->reg_base + MT8195_CORE1_SW_RSTN_SET); } static void mt8195_scp_c1_reset_deassert(struct mtk_scp *scp) { writel(1, scp->cluster->reg_base + MT8195_CORE1_SW_RSTN_CLR); } static void mt8183_scp_irq_handler(struct mtk_scp *scp) { u32 scp_to_host; scp_to_host = readl(scp->cluster->reg_base + MT8183_SCP_TO_HOST); if (scp_to_host & MT8183_SCP_IPC_INT_BIT) scp_ipi_handler(scp); else scp_wdt_handler(scp, scp_to_host); /* SCP won't send another interrupt until we set SCP_TO_HOST to 0. */ writel(MT8183_SCP_IPC_INT_BIT | MT8183_SCP_WDT_INT_BIT, scp->cluster->reg_base + MT8183_SCP_TO_HOST); } static void mt8192_scp_irq_handler(struct mtk_scp *scp) { u32 scp_to_host; scp_to_host = readl(scp->cluster->reg_base + MT8192_SCP2APMCU_IPC_SET); if (scp_to_host & MT8192_SCP_IPC_INT_BIT) { scp_ipi_handler(scp); /* * SCP won't send another interrupt until we clear * MT8192_SCP2APMCU_IPC. */ writel(MT8192_SCP_IPC_INT_BIT, scp->cluster->reg_base + MT8192_SCP2APMCU_IPC_CLR); } else { scp_wdt_handler(scp, scp_to_host); writel(1, scp->cluster->reg_base + MT8192_CORE0_WDT_IRQ); } } static void mt8195_scp_irq_handler(struct mtk_scp *scp) { u32 scp_to_host; scp_to_host = readl(scp->cluster->reg_base + MT8192_SCP2APMCU_IPC_SET); if (scp_to_host & MT8192_SCP_IPC_INT_BIT) { scp_ipi_handler(scp); } else { u32 reason = readl(scp->cluster->reg_base + MT8195_SYS_STATUS); if (reason & MT8195_CORE0_WDT) writel(1, scp->cluster->reg_base + MT8192_CORE0_WDT_IRQ); if (reason & MT8195_CORE1_WDT) writel(1, scp->cluster->reg_base + MT8195_CORE1_WDT_IRQ); scp_wdt_handler(scp, reason); } writel(scp_to_host, scp->cluster->reg_base + MT8192_SCP2APMCU_IPC_CLR); } static void mt8195_scp_c1_irq_handler(struct mtk_scp *scp) { u32 scp_to_host; scp_to_host = readl(scp->cluster->reg_base + MT8195_SSHUB2APMCU_IPC_SET); if (scp_to_host & MT8192_SCP_IPC_INT_BIT) scp_ipi_handler(scp); writel(scp_to_host, scp->cluster->reg_base + MT8195_SSHUB2APMCU_IPC_CLR); } static irqreturn_t scp_irq_handler(int irq, void *priv) { struct mtk_scp *scp = priv; int ret; ret = clk_prepare_enable(scp->clk); if (ret) { dev_err(scp->dev, "failed to enable clocks\n"); return IRQ_NONE; } scp->data->scp_irq_handler(scp); clk_disable_unprepare(scp->clk); return IRQ_HANDLED; } static int scp_elf_load_segments(struct rproc *rproc, const struct firmware *fw) { struct device *dev = &rproc->dev; struct elf32_hdr *ehdr; struct elf32_phdr *phdr; int i, ret = 0; const u8 *elf_data = fw->data; ehdr = (struct elf32_hdr *)elf_data; phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff); /* go through the available ELF segments */ for (i = 0; i < ehdr->e_phnum; i++, phdr++) { u32 da = phdr->p_paddr; u32 memsz = phdr->p_memsz; u32 filesz = phdr->p_filesz; u32 offset = phdr->p_offset; void __iomem *ptr; dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n", phdr->p_type, da, memsz, filesz); if (phdr->p_type != PT_LOAD) continue; if (!filesz) continue; if (filesz > memsz) { dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n", filesz, memsz); ret = -EINVAL; break; } if (offset + filesz > fw->size) { dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n", offset + filesz, fw->size); ret = -EINVAL; break; } /* grab the kernel address for this device address */ ptr = (void __iomem *)rproc_da_to_va(rproc, da, memsz, NULL); if (!ptr) { dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz); ret = -EINVAL; break; } /* put the segment where the remote processor expects it */ scp_memcpy_aligned(ptr, elf_data + phdr->p_offset, filesz); } return ret; } static int scp_elf_read_ipi_buf_addr(struct mtk_scp *scp, const struct firmware *fw, size_t *offset) { struct elf32_hdr *ehdr; struct elf32_shdr *shdr, *shdr_strtab; int i; const u8 *elf_data = fw->data; const char *strtab; ehdr = (struct elf32_hdr *)elf_data; shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff); shdr_strtab = shdr + ehdr->e_shstrndx; strtab = (const char *)(elf_data + shdr_strtab->sh_offset); for (i = 0; i < ehdr->e_shnum; i++, shdr++) { if (strcmp(strtab + shdr->sh_name, SECTION_NAME_IPI_BUFFER) == 0) { *offset = shdr->sh_addr; return 0; } } return -ENOENT; } static int mt8183_scp_clk_get(struct mtk_scp *scp) { struct device *dev = scp->dev; int ret = 0; scp->clk = devm_clk_get(dev, "main"); if (IS_ERR(scp->clk)) { dev_err(dev, "Failed to get clock\n"); ret = PTR_ERR(scp->clk); } return ret; } static int mt8192_scp_clk_get(struct mtk_scp *scp) { return mt8183_scp_clk_get(scp); } static int mt8195_scp_clk_get(struct mtk_scp *scp) { scp->clk = NULL; return 0; } static int mt8183_scp_before_load(struct mtk_scp *scp) { /* Clear SCP to host interrupt */ writel(MT8183_SCP_IPC_INT_BIT, scp->cluster->reg_base + MT8183_SCP_TO_HOST); /* Reset clocks before loading FW */ writel(0x0, scp->cluster->reg_base + MT8183_SCP_CLK_SW_SEL); writel(0x0, scp->cluster->reg_base + MT8183_SCP_CLK_DIV_SEL); /* Initialize TCM before loading FW. */ writel(0x0, scp->cluster->reg_base + MT8183_SCP_L1_SRAM_PD); writel(0x0, scp->cluster->reg_base + MT8183_SCP_TCM_TAIL_SRAM_PD); /* Turn on the power of SCP's SRAM before using it. */ writel(0x0, scp->cluster->reg_base + MT8183_SCP_SRAM_PDN); /* * Set I-cache and D-cache size before loading SCP FW. * SCP SRAM logical address may change when cache size setting differs. */ writel(MT8183_SCP_CACHE_CON_WAYEN | MT8183_SCP_CACHESIZE_8KB, scp->cluster->reg_base + MT8183_SCP_CACHE_CON); writel(MT8183_SCP_CACHESIZE_8KB, scp->cluster->reg_base + MT8183_SCP_DCACHE_CON); return 0; } static void scp_sram_power_on(void __iomem *addr, u32 reserved_mask) { int i; for (i = 31; i >= 0; i--) writel(GENMASK(i, 0) & ~reserved_mask, addr); writel(0, addr); } static void scp_sram_power_off(void __iomem *addr, u32 reserved_mask) { int i; writel(0, addr); for (i = 0; i < 32; i++) writel(GENMASK(i, 0) & ~reserved_mask, addr); } static int mt8186_scp_before_load(struct mtk_scp *scp) { /* Clear SCP to host interrupt */ writel(MT8183_SCP_IPC_INT_BIT, scp->cluster->reg_base + MT8183_SCP_TO_HOST); /* Reset clocks before loading FW */ writel(0x0, scp->cluster->reg_base + MT8183_SCP_CLK_SW_SEL); writel(0x0, scp->cluster->reg_base + MT8183_SCP_CLK_DIV_SEL); /* Turn on the power of SCP's SRAM before using it. Enable 1 block per time*/ scp_sram_power_on(scp->cluster->reg_base + MT8183_SCP_SRAM_PDN, 0); /* Initialize TCM before loading FW. */ writel(0x0, scp->cluster->reg_base + MT8183_SCP_L1_SRAM_PD); writel(0x0, scp->cluster->reg_base + MT8183_SCP_TCM_TAIL_SRAM_PD); writel(0x0, scp->cluster->reg_base + MT8186_SCP_L1_SRAM_PD_P1); writel(0x0, scp->cluster->reg_base + MT8186_SCP_L1_SRAM_PD_p2); /* * Set I-cache and D-cache size before loading SCP FW. * SCP SRAM logical address may change when cache size setting differs. */ writel(MT8183_SCP_CACHE_CON_WAYEN | MT8183_SCP_CACHESIZE_8KB, scp->cluster->reg_base + MT8183_SCP_CACHE_CON); writel(MT8183_SCP_CACHESIZE_8KB, scp->cluster->reg_base + MT8183_SCP_DCACHE_CON); return 0; } static int mt8188_scp_l2tcm_on(struct mtk_scp *scp) { struct mtk_scp_of_cluster *scp_cluster = scp->cluster; mutex_lock(&scp_cluster->cluster_lock); if (scp_cluster->l2tcm_refcnt == 0) { /* clear SPM interrupt, SCP2SPM_IPC_CLR */ writel(0xff, scp->cluster->reg_base + MT8192_SCP2SPM_IPC_CLR); /* Power on L2TCM */ scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0); scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0); scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0); scp_sram_power_on(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN, 0); } scp_cluster->l2tcm_refcnt += 1; mutex_unlock(&scp_cluster->cluster_lock); return 0; } static int mt8188_scp_before_load(struct mtk_scp *scp) { writel(1, scp->cluster->reg_base + MT8192_CORE0_SW_RSTN_SET); mt8188_scp_l2tcm_on(scp); scp_sram_power_on(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0); /* enable MPU for all memory regions */ writel(0xff, scp->cluster->reg_base + MT8192_CORE0_MEM_ATT_PREDEF); return 0; } static int mt8188_scp_c1_before_load(struct mtk_scp *scp) { u32 sec_ctrl; struct mtk_scp *scp_c0; struct mtk_scp_of_cluster *scp_cluster = scp->cluster; scp->data->scp_reset_assert(scp); mt8188_scp_l2tcm_on(scp); scp_sram_power_on(scp->cluster->reg_base + MT8195_CPU1_SRAM_PD, 0); /* enable MPU for all memory regions */ writel(0xff, scp->cluster->reg_base + MT8195_CORE1_MEM_ATT_PREDEF); /* * The L2TCM_OFFSET_RANGE and L2TCM_OFFSET shift the destination address * on SRAM when SCP core 1 accesses SRAM. * * This configuration solves booting the SCP core 0 and core 1 from * different SRAM address because core 0 and core 1 both boot from * the head of SRAM by default. this must be configured before boot SCP core 1. * * The value of L2TCM_OFFSET_RANGE is from the viewpoint of SCP core 1. * When SCP core 1 issues address within the range (L2TCM_OFFSET_RANGE), * the address will be added with a fixed offset (L2TCM_OFFSET) on the bus. * The shift action is tranparent to software. */ writel(0, scp->cluster->reg_base + MT8195_L2TCM_OFFSET_RANGE_0_LOW); writel(scp->sram_size, scp->cluster->reg_base + MT8195_L2TCM_OFFSET_RANGE_0_HIGH); scp_c0 = list_first_entry(&scp_cluster->mtk_scp_list, struct mtk_scp, elem); writel(scp->sram_phys - scp_c0->sram_phys, scp->cluster->reg_base + MT8195_L2TCM_OFFSET); /* enable SRAM offset when fetching instruction and data */ sec_ctrl = readl(scp->cluster->reg_base + MT8195_SEC_CTRL); sec_ctrl |= MT8195_CORE_OFFSET_ENABLE_I | MT8195_CORE_OFFSET_ENABLE_D; writel(sec_ctrl, scp->cluster->reg_base + MT8195_SEC_CTRL); return 0; } static int mt8192_scp_before_load(struct mtk_scp *scp) { /* clear SPM interrupt, SCP2SPM_IPC_CLR */ writel(0xff, scp->cluster->reg_base + MT8192_SCP2SPM_IPC_CLR); writel(1, scp->cluster->reg_base + MT8192_CORE0_SW_RSTN_SET); /* enable SRAM clock */ scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0); scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0); scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0); scp_sram_power_on(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN, 0); scp_sram_power_on(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0); /* enable MPU for all memory regions */ writel(0xff, scp->cluster->reg_base + MT8192_CORE0_MEM_ATT_PREDEF); return 0; } static int mt8195_scp_l2tcm_on(struct mtk_scp *scp) { struct mtk_scp_of_cluster *scp_cluster = scp->cluster; mutex_lock(&scp_cluster->cluster_lock); if (scp_cluster->l2tcm_refcnt == 0) { /* clear SPM interrupt, SCP2SPM_IPC_CLR */ writel(0xff, scp->cluster->reg_base + MT8192_SCP2SPM_IPC_CLR); /* Power on L2TCM */ scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0); scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0); scp_sram_power_on(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0); scp_sram_power_on(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN, MT8195_L1TCM_SRAM_PDN_RESERVED_RSI_BITS); } scp_cluster->l2tcm_refcnt += 1; mutex_unlock(&scp_cluster->cluster_lock); return 0; } static int mt8195_scp_before_load(struct mtk_scp *scp) { writel(1, scp->cluster->reg_base + MT8192_CORE0_SW_RSTN_SET); mt8195_scp_l2tcm_on(scp); scp_sram_power_on(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0); /* enable MPU for all memory regions */ writel(0xff, scp->cluster->reg_base + MT8192_CORE0_MEM_ATT_PREDEF); return 0; } static int mt8195_scp_c1_before_load(struct mtk_scp *scp) { u32 sec_ctrl; struct mtk_scp *scp_c0; struct mtk_scp_of_cluster *scp_cluster = scp->cluster; scp->data->scp_reset_assert(scp); mt8195_scp_l2tcm_on(scp); scp_sram_power_on(scp->cluster->reg_base + MT8195_CPU1_SRAM_PD, 0); /* enable MPU for all memory regions */ writel(0xff, scp->cluster->reg_base + MT8195_CORE1_MEM_ATT_PREDEF); /* * The L2TCM_OFFSET_RANGE and L2TCM_OFFSET shift the destination address * on SRAM when SCP core 1 accesses SRAM. * * This configuration solves booting the SCP core 0 and core 1 from * different SRAM address because core 0 and core 1 both boot from * the head of SRAM by default. this must be configured before boot SCP core 1. * * The value of L2TCM_OFFSET_RANGE is from the viewpoint of SCP core 1. * When SCP core 1 issues address within the range (L2TCM_OFFSET_RANGE), * the address will be added with a fixed offset (L2TCM_OFFSET) on the bus. * The shift action is tranparent to software. */ writel(0, scp->cluster->reg_base + MT8195_L2TCM_OFFSET_RANGE_0_LOW); writel(scp->sram_size, scp->cluster->reg_base + MT8195_L2TCM_OFFSET_RANGE_0_HIGH); scp_c0 = list_first_entry(&scp_cluster->mtk_scp_list, struct mtk_scp, elem); writel(scp->sram_phys - scp_c0->sram_phys, scp->cluster->reg_base + MT8195_L2TCM_OFFSET); /* enable SRAM offset when fetching instruction and data */ sec_ctrl = readl(scp->cluster->reg_base + MT8195_SEC_CTRL); sec_ctrl |= MT8195_CORE_OFFSET_ENABLE_I | MT8195_CORE_OFFSET_ENABLE_D; writel(sec_ctrl, scp->cluster->reg_base + MT8195_SEC_CTRL); return 0; } static int scp_load(struct rproc *rproc, const struct firmware *fw) { struct mtk_scp *scp = rproc->priv; struct device *dev = scp->dev; int ret; ret = clk_prepare_enable(scp->clk); if (ret) { dev_err(dev, "failed to enable clocks\n"); return ret; } /* Hold SCP in reset while loading FW. */ scp->data->scp_reset_assert(scp); ret = scp->data->scp_before_load(scp); if (ret < 0) goto leave; ret = scp_elf_load_segments(rproc, fw); leave: clk_disable_unprepare(scp->clk); return ret; } static int scp_parse_fw(struct rproc *rproc, const struct firmware *fw) { struct mtk_scp *scp = rproc->priv; struct device *dev = scp->dev; int ret; ret = clk_prepare_enable(scp->clk); if (ret) { dev_err(dev, "failed to enable clocks\n"); return ret; } ret = scp_ipi_init(scp, fw); clk_disable_unprepare(scp->clk); return ret; } static int scp_start(struct rproc *rproc) { struct mtk_scp *scp = rproc->priv; struct device *dev = scp->dev; struct scp_run *run = &scp->run; int ret; ret = clk_prepare_enable(scp->clk); if (ret) { dev_err(dev, "failed to enable clocks\n"); return ret; } run->signaled = false; scp->data->scp_reset_deassert(scp); ret = wait_event_interruptible_timeout( run->wq, run->signaled, msecs_to_jiffies(2000)); if (ret == 0) { dev_err(dev, "wait SCP initialization timeout!\n"); ret = -ETIME; goto stop; } if (ret == -ERESTARTSYS) { dev_err(dev, "wait SCP interrupted by a signal!\n"); goto stop; } clk_disable_unprepare(scp->clk); dev_info(dev, "SCP is ready. FW version %s\n", run->fw_ver); return 0; stop: scp->data->scp_reset_assert(scp); clk_disable_unprepare(scp->clk); return ret; } static void *mt8183_scp_da_to_va(struct mtk_scp *scp, u64 da, size_t len) { int offset; const struct mtk_scp_sizes_data *scp_sizes; scp_sizes = scp->data->scp_sizes; if (da < scp->sram_size) { offset = da; if (offset >= 0 && (offset + len) <= scp->sram_size) return (void __force *)scp->sram_base + offset; } else if (scp_sizes->max_dram_size) { offset = da - scp->dma_addr; if (offset >= 0 && (offset + len) <= scp_sizes->max_dram_size) return scp->cpu_addr + offset; } return NULL; } static void *mt8192_scp_da_to_va(struct mtk_scp *scp, u64 da, size_t len) { int offset; const struct mtk_scp_sizes_data *scp_sizes; scp_sizes = scp->data->scp_sizes; if (da >= scp->sram_phys && (da + len) <= scp->sram_phys + scp->sram_size) { offset = da - scp->sram_phys; return (void __force *)scp->sram_base + offset; } /* optional memory region */ if (scp->cluster->l1tcm_size && da >= scp->cluster->l1tcm_phys && (da + len) <= scp->cluster->l1tcm_phys + scp->cluster->l1tcm_size) { offset = da - scp->cluster->l1tcm_phys; return (void __force *)scp->cluster->l1tcm_base + offset; } /* optional memory region */ if (scp_sizes->max_dram_size && da >= scp->dma_addr && (da + len) <= scp->dma_addr + scp_sizes->max_dram_size) { offset = da - scp->dma_addr; return scp->cpu_addr + offset; } return NULL; } static void *scp_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem) { struct mtk_scp *scp = rproc->priv; return scp->data->scp_da_to_va(scp, da, len); } static void mt8183_scp_stop(struct mtk_scp *scp) { /* Disable SCP watchdog */ writel(0, scp->cluster->reg_base + MT8183_WDT_CFG); } static void mt8188_scp_l2tcm_off(struct mtk_scp *scp) { struct mtk_scp_of_cluster *scp_cluster = scp->cluster; mutex_lock(&scp_cluster->cluster_lock); if (scp_cluster->l2tcm_refcnt > 0) scp_cluster->l2tcm_refcnt -= 1; if (scp_cluster->l2tcm_refcnt == 0) { /* Power off L2TCM */ scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0); scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0); scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0); scp_sram_power_off(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN, 0); } mutex_unlock(&scp_cluster->cluster_lock); } static void mt8188_scp_stop(struct mtk_scp *scp) { mt8188_scp_l2tcm_off(scp); scp_sram_power_off(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0); /* Disable SCP watchdog */ writel(0, scp->cluster->reg_base + MT8192_CORE0_WDT_CFG); } static void mt8188_scp_c1_stop(struct mtk_scp *scp) { mt8188_scp_l2tcm_off(scp); /* Power off CPU SRAM */ scp_sram_power_off(scp->cluster->reg_base + MT8195_CPU1_SRAM_PD, 0); /* Disable SCP watchdog */ writel(0, scp->cluster->reg_base + MT8195_CORE1_WDT_CFG); } static void mt8192_scp_stop(struct mtk_scp *scp) { /* Disable SRAM clock */ scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0); scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0); scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0); scp_sram_power_off(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN, 0); scp_sram_power_off(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0); /* Disable SCP watchdog */ writel(0, scp->cluster->reg_base + MT8192_CORE0_WDT_CFG); } static void mt8195_scp_l2tcm_off(struct mtk_scp *scp) { struct mtk_scp_of_cluster *scp_cluster = scp->cluster; mutex_lock(&scp_cluster->cluster_lock); if (scp_cluster->l2tcm_refcnt > 0) scp_cluster->l2tcm_refcnt -= 1; if (scp_cluster->l2tcm_refcnt == 0) { /* Power off L2TCM */ scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_0, 0); scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_1, 0); scp_sram_power_off(scp->cluster->reg_base + MT8192_L2TCM_SRAM_PD_2, 0); scp_sram_power_off(scp->cluster->reg_base + MT8192_L1TCM_SRAM_PDN, MT8195_L1TCM_SRAM_PDN_RESERVED_RSI_BITS); } mutex_unlock(&scp_cluster->cluster_lock); } static void mt8195_scp_stop(struct mtk_scp *scp) { mt8195_scp_l2tcm_off(scp); scp_sram_power_off(scp->cluster->reg_base + MT8192_CPU0_SRAM_PD, 0); /* Disable SCP watchdog */ writel(0, scp->cluster->reg_base + MT8192_CORE0_WDT_CFG); } static void mt8195_scp_c1_stop(struct mtk_scp *scp) { mt8195_scp_l2tcm_off(scp); /* Power off CPU SRAM */ scp_sram_power_off(scp->cluster->reg_base + MT8195_CPU1_SRAM_PD, 0); /* Disable SCP watchdog */ writel(0, scp->cluster->reg_base + MT8195_CORE1_WDT_CFG); } static int scp_stop(struct rproc *rproc) { struct mtk_scp *scp = rproc->priv; int ret; ret = clk_prepare_enable(scp->clk); if (ret) { dev_err(scp->dev, "failed to enable clocks\n"); return ret; } scp->data->scp_reset_assert(scp); scp->data->scp_stop(scp); clk_disable_unprepare(scp->clk); return 0; } static const struct rproc_ops scp_ops = { .start = scp_start, .stop = scp_stop, .load = scp_load, .da_to_va = scp_da_to_va, .parse_fw = scp_parse_fw, .sanity_check = rproc_elf_sanity_check, }; /** * scp_get_device() - get device struct of SCP * * @scp: mtk_scp structure **/ struct device *scp_get_device(struct mtk_scp *scp) { return scp->dev; } EXPORT_SYMBOL_GPL(scp_get_device); /** * scp_get_rproc() - get rproc struct of SCP * * @scp: mtk_scp structure **/ struct rproc *scp_get_rproc(struct mtk_scp *scp) { return scp->rproc; } EXPORT_SYMBOL_GPL(scp_get_rproc); /** * scp_get_vdec_hw_capa() - get video decoder hardware capability * * @scp: mtk_scp structure * * Return: video decoder hardware capability **/ unsigned int scp_get_vdec_hw_capa(struct mtk_scp *scp) { return scp->run.dec_capability; } EXPORT_SYMBOL_GPL(scp_get_vdec_hw_capa); /** * scp_get_venc_hw_capa() - get video encoder hardware capability * * @scp: mtk_scp structure * * Return: video encoder hardware capability **/ unsigned int scp_get_venc_hw_capa(struct mtk_scp *scp) { return scp->run.enc_capability; } EXPORT_SYMBOL_GPL(scp_get_venc_hw_capa); /** * scp_mapping_dm_addr() - Mapping SRAM/DRAM to kernel virtual address * * @scp: mtk_scp structure * @mem_addr: SCP views memory address * * Mapping the SCP's SRAM address / * DMEM (Data Extended Memory) memory address / * Working buffer memory address to * kernel virtual address. * * Return: Return ERR_PTR(-EINVAL) if mapping failed, * otherwise the mapped kernel virtual address **/ void *scp_mapping_dm_addr(struct mtk_scp *scp, u32 mem_addr) { void *ptr; ptr = scp_da_to_va(scp->rproc, mem_addr, 0, NULL); if (!ptr) return ERR_PTR(-EINVAL); return ptr; } EXPORT_SYMBOL_GPL(scp_mapping_dm_addr); static int scp_map_memory_region(struct mtk_scp *scp) { int ret; const struct mtk_scp_sizes_data *scp_sizes; ret = of_reserved_mem_device_init(scp->dev); /* reserved memory is optional. */ if (ret == -ENODEV) { dev_info(scp->dev, "skipping reserved memory initialization."); return 0; } if (ret) { dev_err(scp->dev, "failed to assign memory-region: %d\n", ret); return -ENOMEM; } /* Reserved SCP code size */ scp_sizes = scp->data->scp_sizes; scp->cpu_addr = dma_alloc_coherent(scp->dev, scp_sizes->max_dram_size, &scp->dma_addr, GFP_KERNEL); if (!scp->cpu_addr) return -ENOMEM; return 0; } static void scp_unmap_memory_region(struct mtk_scp *scp) { const struct mtk_scp_sizes_data *scp_sizes; scp_sizes = scp->data->scp_sizes; if (scp_sizes->max_dram_size == 0) return; dma_free_coherent(scp->dev, scp_sizes->max_dram_size, scp->cpu_addr, scp->dma_addr); of_reserved_mem_device_release(scp->dev); } static int scp_register_ipi(struct platform_device *pdev, u32 id, ipi_handler_t handler, void *priv) { struct mtk_scp *scp = platform_get_drvdata(pdev); return scp_ipi_register(scp, id, handler, priv); } static void scp_unregister_ipi(struct platform_device *pdev, u32 id) { struct mtk_scp *scp = platform_get_drvdata(pdev); scp_ipi_unregister(scp, id); } static int scp_send_ipi(struct platform_device *pdev, u32 id, void *buf, unsigned int len, unsigned int wait) { struct mtk_scp *scp = platform_get_drvdata(pdev); return scp_ipi_send(scp, id, buf, len, wait); } static struct mtk_rpmsg_info mtk_scp_rpmsg_info = { .send_ipi = scp_send_ipi, .register_ipi = scp_register_ipi, .unregister_ipi = scp_unregister_ipi, .ns_ipi_id = SCP_IPI_NS_SERVICE, }; static void scp_add_rpmsg_subdev(struct mtk_scp *scp) { scp->rpmsg_subdev = mtk_rpmsg_create_rproc_subdev(to_platform_device(scp->dev), &mtk_scp_rpmsg_info); if (scp->rpmsg_subdev) rproc_add_subdev(scp->rproc, scp->rpmsg_subdev); } static void scp_remove_rpmsg_subdev(struct mtk_scp *scp) { if (scp->rpmsg_subdev) { rproc_remove_subdev(scp->rproc, scp->rpmsg_subdev); mtk_rpmsg_destroy_rproc_subdev(scp->rpmsg_subdev); scp->rpmsg_subdev = NULL; } } static struct mtk_scp *scp_rproc_init(struct platform_device *pdev, struct mtk_scp_of_cluster *scp_cluster, const struct mtk_scp_of_data *of_data) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct mtk_scp *scp; struct rproc *rproc; struct resource *res; const char *fw_name = "scp.img"; int ret, i; const struct mtk_scp_sizes_data *scp_sizes; ret = rproc_of_parse_firmware(dev, 0, &fw_name); if (ret < 0 && ret != -EINVAL) return ERR_PTR(ret); rproc = devm_rproc_alloc(dev, np->name, &scp_ops, fw_name, sizeof(*scp)); if (!rproc) { dev_err(dev, "unable to allocate remoteproc\n"); return ERR_PTR(-ENOMEM); } scp = rproc->priv; scp->rproc = rproc; scp->dev = dev; scp->data = of_data; scp->cluster = scp_cluster; platform_set_drvdata(pdev, scp); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram"); scp->sram_base = devm_ioremap_resource(dev, res); if (IS_ERR(scp->sram_base)) { dev_err(dev, "Failed to parse and map sram memory\n"); return ERR_CAST(scp->sram_base); } scp->sram_size = resource_size(res); scp->sram_phys = res->start; ret = scp->data->scp_clk_get(scp); if (ret) return ERR_PTR(ret); ret = scp_map_memory_region(scp); if (ret) return ERR_PTR(ret); mutex_init(&scp->send_lock); for (i = 0; i < SCP_IPI_MAX; i++) mutex_init(&scp->ipi_desc[i].lock); /* register SCP initialization IPI */ ret = scp_ipi_register(scp, SCP_IPI_INIT, scp_init_ipi_handler, scp); if (ret) { dev_err(dev, "Failed to register IPI_SCP_INIT\n"); goto release_dev_mem; } scp_sizes = scp->data->scp_sizes; scp->share_buf = kzalloc(scp_sizes->ipi_share_buffer_size, GFP_KERNEL); if (!scp->share_buf) { dev_err(dev, "Failed to allocate IPI share buffer\n"); ret = -ENOMEM; goto release_dev_mem; } init_waitqueue_head(&scp->run.wq); init_waitqueue_head(&scp->ack_wq); scp_add_rpmsg_subdev(scp); ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), NULL, scp_irq_handler, IRQF_ONESHOT, pdev->name, scp); if (ret) { dev_err(dev, "failed to request irq\n"); goto remove_subdev; } return scp; remove_subdev: scp_remove_rpmsg_subdev(scp); scp_ipi_unregister(scp, SCP_IPI_INIT); kfree(scp->share_buf); scp->share_buf = NULL; release_dev_mem: scp_unmap_memory_region(scp); for (i = 0; i < SCP_IPI_MAX; i++) mutex_destroy(&scp->ipi_desc[i].lock); mutex_destroy(&scp->send_lock); return ERR_PTR(ret); } static void scp_free(struct mtk_scp *scp) { int i; scp_remove_rpmsg_subdev(scp); scp_ipi_unregister(scp, SCP_IPI_INIT); kfree(scp->share_buf); scp->share_buf = NULL; scp_unmap_memory_region(scp); for (i = 0; i < SCP_IPI_MAX; i++) mutex_destroy(&scp->ipi_desc[i].lock); mutex_destroy(&scp->send_lock); } static int scp_add_single_core(struct platform_device *pdev, struct mtk_scp_of_cluster *scp_cluster) { struct device *dev = &pdev->dev; struct list_head *scp_list = &scp_cluster->mtk_scp_list; struct mtk_scp *scp; int ret; scp = scp_rproc_init(pdev, scp_cluster, of_device_get_match_data(dev)); if (IS_ERR(scp)) return PTR_ERR(scp); ret = rproc_add(scp->rproc); if (ret) { dev_err(dev, "Failed to add rproc\n"); scp_free(scp); return ret; } list_add_tail(&scp->elem, scp_list); return 0; } static int scp_add_multi_core(struct platform_device *pdev, struct mtk_scp_of_cluster *scp_cluster) { struct device *dev = &pdev->dev; struct device_node *np = dev_of_node(dev); struct platform_device *cpdev; struct device_node *child; struct list_head *scp_list = &scp_cluster->mtk_scp_list; const struct mtk_scp_of_data **cluster_of_data; struct mtk_scp *scp, *temp; int core_id = 0; int ret; cluster_of_data = (const struct mtk_scp_of_data **)of_device_get_match_data(dev); for_each_available_child_of_node(np, child) { if (!cluster_of_data[core_id]) { ret = -EINVAL; dev_err(dev, "Not support core %d\n", core_id); of_node_put(child); goto init_fail; } cpdev = of_find_device_by_node(child); if (!cpdev) { ret = -ENODEV; dev_err(dev, "Not found platform device for core %d\n", core_id); of_node_put(child); goto init_fail; } scp = scp_rproc_init(cpdev, scp_cluster, cluster_of_data[core_id]); put_device(&cpdev->dev); if (IS_ERR(scp)) { ret = PTR_ERR(scp); dev_err(dev, "Failed to initialize core %d rproc\n", core_id); of_node_put(child); goto init_fail; } ret = rproc_add(scp->rproc); if (ret) { dev_err(dev, "Failed to add rproc of core %d\n", core_id); of_node_put(child); scp_free(scp); goto init_fail; } list_add_tail(&scp->elem, scp_list); core_id++; } /* * Here we are setting the platform device for @pdev to the last @scp that was * created, which is needed because (1) scp_rproc_init() is calling * platform_set_drvdata() on the child platform devices and (2) we need a handle to * the cluster list in scp_remove(). */ platform_set_drvdata(pdev, scp); return 0; init_fail: list_for_each_entry_safe_reverse(scp, temp, scp_list, elem) { list_del(&scp->elem); rproc_del(scp->rproc); scp_free(scp); } return ret; } static bool scp_is_single_core(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev_of_node(dev); struct device_node *child; int num_cores = 0; for_each_child_of_node(np, child) if (of_device_is_compatible(child, "mediatek,scp-core")) num_cores++; return num_cores < 2; } static int scp_cluster_init(struct platform_device *pdev, struct mtk_scp_of_cluster *scp_cluster) { int ret; if (scp_is_single_core(pdev)) ret = scp_add_single_core(pdev, scp_cluster); else ret = scp_add_multi_core(pdev, scp_cluster); return ret; } static int scp_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mtk_scp_of_cluster *scp_cluster; struct resource *res; int ret; scp_cluster = devm_kzalloc(dev, sizeof(*scp_cluster), GFP_KERNEL); if (!scp_cluster) return -ENOMEM; scp_cluster->reg_base = devm_platform_ioremap_resource_byname(pdev, "cfg"); if (IS_ERR(scp_cluster->reg_base)) return dev_err_probe(dev, PTR_ERR(scp_cluster->reg_base), "Failed to parse and map cfg memory\n"); /* l1tcm is an optional memory region */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "l1tcm"); scp_cluster->l1tcm_base = devm_ioremap_resource(dev, res); if (IS_ERR(scp_cluster->l1tcm_base)) { ret = PTR_ERR(scp_cluster->l1tcm_base); if (ret != -EINVAL) return dev_err_probe(dev, ret, "Failed to map l1tcm memory\n"); scp_cluster->l1tcm_base = NULL; } else { scp_cluster->l1tcm_size = resource_size(res); scp_cluster->l1tcm_phys = res->start; } INIT_LIST_HEAD(&scp_cluster->mtk_scp_list); mutex_init(&scp_cluster->cluster_lock); ret = devm_of_platform_populate(dev); if (ret) return dev_err_probe(dev, ret, "Failed to populate platform devices\n"); ret = scp_cluster_init(pdev, scp_cluster); if (ret) return ret; return 0; } static void scp_remove(struct platform_device *pdev) { struct mtk_scp *scp = platform_get_drvdata(pdev); struct mtk_scp_of_cluster *scp_cluster = scp->cluster; struct mtk_scp *temp; list_for_each_entry_safe_reverse(scp, temp, &scp_cluster->mtk_scp_list, elem) { list_del(&scp->elem); rproc_del(scp->rproc); scp_free(scp); } mutex_destroy(&scp_cluster->cluster_lock); } static const struct mtk_scp_sizes_data default_scp_sizes = { .max_dram_size = 0x500000, .ipi_share_buffer_size = 288, }; static const struct mtk_scp_sizes_data mt8188_scp_sizes = { .max_dram_size = 0x500000, .ipi_share_buffer_size = 600, }; static const struct mtk_scp_sizes_data mt8188_scp_c1_sizes = { .max_dram_size = 0xA00000, .ipi_share_buffer_size = 600, }; static const struct mtk_scp_of_data mt8183_of_data = { .scp_clk_get = mt8183_scp_clk_get, .scp_before_load = mt8183_scp_before_load, .scp_irq_handler = mt8183_scp_irq_handler, .scp_reset_assert = mt8183_scp_reset_assert, .scp_reset_deassert = mt8183_scp_reset_deassert, .scp_stop = mt8183_scp_stop, .scp_da_to_va = mt8183_scp_da_to_va, .host_to_scp_reg = MT8183_HOST_TO_SCP, .host_to_scp_int_bit = MT8183_HOST_IPC_INT_BIT, .ipi_buf_offset = 0x7bdb0, .scp_sizes = &default_scp_sizes, }; static const struct mtk_scp_of_data mt8186_of_data = { .scp_clk_get = mt8195_scp_clk_get, .scp_before_load = mt8186_scp_before_load, .scp_irq_handler = mt8183_scp_irq_handler, .scp_reset_assert = mt8183_scp_reset_assert, .scp_reset_deassert = mt8183_scp_reset_deassert, .scp_stop = mt8183_scp_stop, .scp_da_to_va = mt8183_scp_da_to_va, .host_to_scp_reg = MT8183_HOST_TO_SCP, .host_to_scp_int_bit = MT8183_HOST_IPC_INT_BIT, .ipi_buf_offset = 0x3bdb0, .scp_sizes = &default_scp_sizes, }; static const struct mtk_scp_of_data mt8188_of_data = { .scp_clk_get = mt8195_scp_clk_get, .scp_before_load = mt8188_scp_before_load, .scp_irq_handler = mt8195_scp_irq_handler, .scp_reset_assert = mt8192_scp_reset_assert, .scp_reset_deassert = mt8192_scp_reset_deassert, .scp_stop = mt8188_scp_stop, .scp_da_to_va = mt8192_scp_da_to_va, .host_to_scp_reg = MT8192_GIPC_IN_SET, .host_to_scp_int_bit = MT8192_HOST_IPC_INT_BIT, .scp_sizes = &mt8188_scp_sizes, }; static const struct mtk_scp_of_data mt8188_of_data_c1 = { .scp_clk_get = mt8195_scp_clk_get, .scp_before_load = mt8188_scp_c1_before_load, .scp_irq_handler = mt8195_scp_c1_irq_handler, .scp_reset_assert = mt8195_scp_c1_reset_assert, .scp_reset_deassert = mt8195_scp_c1_reset_deassert, .scp_stop = mt8188_scp_c1_stop, .scp_da_to_va = mt8192_scp_da_to_va, .host_to_scp_reg = MT8192_GIPC_IN_SET, .host_to_scp_int_bit = MT8195_CORE1_HOST_IPC_INT_BIT, .scp_sizes = &mt8188_scp_c1_sizes, }; static const struct mtk_scp_of_data mt8192_of_data = { .scp_clk_get = mt8192_scp_clk_get, .scp_before_load = mt8192_scp_before_load, .scp_irq_handler = mt8192_scp_irq_handler, .scp_reset_assert = mt8192_scp_reset_assert, .scp_reset_deassert = mt8192_scp_reset_deassert, .scp_stop = mt8192_scp_stop, .scp_da_to_va = mt8192_scp_da_to_va, .host_to_scp_reg = MT8192_GIPC_IN_SET, .host_to_scp_int_bit = MT8192_HOST_IPC_INT_BIT, .scp_sizes = &default_scp_sizes, }; static const struct mtk_scp_of_data mt8195_of_data = { .scp_clk_get = mt8195_scp_clk_get, .scp_before_load = mt8195_scp_before_load, .scp_irq_handler = mt8195_scp_irq_handler, .scp_reset_assert = mt8192_scp_reset_assert, .scp_reset_deassert = mt8192_scp_reset_deassert, .scp_stop = mt8195_scp_stop, .scp_da_to_va = mt8192_scp_da_to_va, .host_to_scp_reg = MT8192_GIPC_IN_SET, .host_to_scp_int_bit = MT8192_HOST_IPC_INT_BIT, .scp_sizes = &default_scp_sizes, }; static const struct mtk_scp_of_data mt8195_of_data_c1 = { .scp_clk_get = mt8195_scp_clk_get, .scp_before_load = mt8195_scp_c1_before_load, .scp_irq_handler = mt8195_scp_c1_irq_handler, .scp_reset_assert = mt8195_scp_c1_reset_assert, .scp_reset_deassert = mt8195_scp_c1_reset_deassert, .scp_stop = mt8195_scp_c1_stop, .scp_da_to_va = mt8192_scp_da_to_va, .host_to_scp_reg = MT8192_GIPC_IN_SET, .host_to_scp_int_bit = MT8195_CORE1_HOST_IPC_INT_BIT, .scp_sizes = &default_scp_sizes, }; static const struct mtk_scp_of_data *mt8188_of_data_cores[] = { &mt8188_of_data, &mt8188_of_data_c1, NULL }; static const struct mtk_scp_of_data *mt8195_of_data_cores[] = { &mt8195_of_data, &mt8195_of_data_c1, NULL }; static const struct of_device_id mtk_scp_of_match[] = { { .compatible = "mediatek,mt8183-scp", .data = &mt8183_of_data }, { .compatible = "mediatek,mt8186-scp", .data = &mt8186_of_data }, { .compatible = "mediatek,mt8188-scp", .data = &mt8188_of_data }, { .compatible = "mediatek,mt8188-scp-dual", .data = &mt8188_of_data_cores }, { .compatible = "mediatek,mt8192-scp", .data = &mt8192_of_data }, { .compatible = "mediatek,mt8195-scp", .data = &mt8195_of_data }, { .compatible = "mediatek,mt8195-scp-dual", .data = &mt8195_of_data_cores }, {}, }; MODULE_DEVICE_TABLE(of, mtk_scp_of_match); static struct platform_driver mtk_scp_driver = { .probe = scp_probe, .remove_new = scp_remove, .driver = { .name = "mtk-scp", .of_match_table = mtk_scp_of_match, }, }; module_platform_driver(mtk_scp_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("MediaTek SCP control driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1