Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin Blumenstingl | 1741 | 99.43% | 1 | 14.29% |
Alexandre Belloni | 5 | 0.29% | 2 | 28.57% |
Yue haibing | 2 | 0.11% | 1 | 14.29% |
Bartosz Golaszewski | 2 | 0.11% | 2 | 28.57% |
Nobuhiro Iwamatsu | 1 | 0.06% | 1 | 14.29% |
Total | 1751 | 7 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
// SPDX-License-Identifier: GPL-2.0 /* * RTC driver for the interal RTC block in the Amlogic Meson6, Meson8, * Meson8b and Meson8m2 SoCs. * * The RTC is split in to two parts, the AHB front end and a simple serial * connection to the actual registers. This driver manages both parts. * * Copyright (c) 2018 Martin Blumenstingl <martin.blumenstingl@googlemail.com> * Copyright (c) 2015 Ben Dooks <ben.dooks@codethink.co.uk> for Codethink Ltd * Based on origin by Carlo Caione <carlo@endlessm.com> */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/nvmem-provider.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/rtc.h> /* registers accessed from cpu bus */ #define RTC_ADDR0 0x00 #define RTC_ADDR0_LINE_SCLK BIT(0) #define RTC_ADDR0_LINE_SEN BIT(1) #define RTC_ADDR0_LINE_SDI BIT(2) #define RTC_ADDR0_START_SER BIT(17) #define RTC_ADDR0_WAIT_SER BIT(22) #define RTC_ADDR0_DATA GENMASK(31, 24) #define RTC_ADDR1 0x04 #define RTC_ADDR1_SDO BIT(0) #define RTC_ADDR1_S_READY BIT(1) #define RTC_ADDR2 0x08 #define RTC_ADDR3 0x0c #define RTC_REG4 0x10 #define RTC_REG4_STATIC_VALUE GENMASK(7, 0) /* rtc registers accessed via rtc-serial interface */ #define RTC_COUNTER (0) #define RTC_SEC_ADJ (2) #define RTC_REGMEM_0 (4) #define RTC_REGMEM_1 (5) #define RTC_REGMEM_2 (6) #define RTC_REGMEM_3 (7) #define RTC_ADDR_BITS (3) /* number of address bits to send */ #define RTC_DATA_BITS (32) /* number of data bits to tx/rx */ #define MESON_STATIC_BIAS_CUR (0x5 << 1) #define MESON_STATIC_VOLTAGE (0x3 << 11) #define MESON_STATIC_DEFAULT (MESON_STATIC_BIAS_CUR | MESON_STATIC_VOLTAGE) struct meson_rtc { struct rtc_device *rtc; /* rtc device we created */ struct device *dev; /* device we bound from */ struct reset_control *reset; /* reset source */ struct regulator *vdd; /* voltage input */ struct regmap *peripheral; /* peripheral registers */ struct regmap *serial; /* serial registers */ }; static const struct regmap_config meson_rtc_peripheral_regmap_config = { .name = "peripheral-registers", .reg_bits = 8, .val_bits = 32, .reg_stride = 4, .max_register = RTC_REG4, .fast_io = true, }; /* RTC front-end serialiser controls */ static void meson_rtc_sclk_pulse(struct meson_rtc *rtc) { udelay(5); regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SCLK, 0); udelay(5); regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SCLK, RTC_ADDR0_LINE_SCLK); } static void meson_rtc_send_bit(struct meson_rtc *rtc, unsigned int bit) { regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI, bit ? RTC_ADDR0_LINE_SDI : 0); meson_rtc_sclk_pulse(rtc); } static void meson_rtc_send_bits(struct meson_rtc *rtc, u32 data, unsigned int nr) { u32 bit = 1 << (nr - 1); while (bit) { meson_rtc_send_bit(rtc, data & bit); bit >>= 1; } } static void meson_rtc_set_dir(struct meson_rtc *rtc, u32 mode) { regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN, 0); regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI, 0); meson_rtc_send_bit(rtc, mode); regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SDI, 0); } static u32 meson_rtc_get_data(struct meson_rtc *rtc) { u32 tmp, val = 0; int bit; for (bit = 0; bit < RTC_DATA_BITS; bit++) { meson_rtc_sclk_pulse(rtc); val <<= 1; regmap_read(rtc->peripheral, RTC_ADDR1, &tmp); val |= tmp & RTC_ADDR1_SDO; } return val; } static int meson_rtc_get_bus(struct meson_rtc *rtc) { int ret, retries; u32 val; /* prepare bus for transfers, set all lines low */ val = RTC_ADDR0_LINE_SDI | RTC_ADDR0_LINE_SEN | RTC_ADDR0_LINE_SCLK; regmap_update_bits(rtc->peripheral, RTC_ADDR0, val, 0); for (retries = 0; retries < 3; retries++) { /* wait for the bus to be ready */ if (!regmap_read_poll_timeout(rtc->peripheral, RTC_ADDR1, val, val & RTC_ADDR1_S_READY, 10, 10000)) return 0; dev_warn(rtc->dev, "failed to get bus, resetting RTC\n"); ret = reset_control_reset(rtc->reset); if (ret) return ret; } dev_err(rtc->dev, "bus is not ready\n"); return -ETIMEDOUT; } static int meson_rtc_serial_bus_reg_read(void *context, unsigned int reg, unsigned int *data) { struct meson_rtc *rtc = context; int ret; ret = meson_rtc_get_bus(rtc); if (ret) return ret; regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN, RTC_ADDR0_LINE_SEN); meson_rtc_send_bits(rtc, reg, RTC_ADDR_BITS); meson_rtc_set_dir(rtc, 0); *data = meson_rtc_get_data(rtc); return 0; } static int meson_rtc_serial_bus_reg_write(void *context, unsigned int reg, unsigned int data) { struct meson_rtc *rtc = context; int ret; ret = meson_rtc_get_bus(rtc); if (ret) return ret; regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_LINE_SEN, RTC_ADDR0_LINE_SEN); meson_rtc_send_bits(rtc, data, RTC_DATA_BITS); meson_rtc_send_bits(rtc, reg, RTC_ADDR_BITS); meson_rtc_set_dir(rtc, 1); return 0; } static const struct regmap_bus meson_rtc_serial_bus = { .reg_read = meson_rtc_serial_bus_reg_read, .reg_write = meson_rtc_serial_bus_reg_write, }; static const struct regmap_config meson_rtc_serial_regmap_config = { .name = "serial-registers", .reg_bits = 4, .reg_stride = 1, .val_bits = 32, .max_register = RTC_REGMEM_3, .fast_io = false, }; static int meson_rtc_write_static(struct meson_rtc *rtc, u32 data) { u32 tmp; regmap_write(rtc->peripheral, RTC_REG4, FIELD_PREP(RTC_REG4_STATIC_VALUE, (data >> 8))); /* write the static value and start the auto serializer */ tmp = FIELD_PREP(RTC_ADDR0_DATA, (data & 0xff)) | RTC_ADDR0_START_SER; regmap_update_bits(rtc->peripheral, RTC_ADDR0, RTC_ADDR0_DATA | RTC_ADDR0_START_SER, tmp); /* wait for the auto serializer to complete */ return regmap_read_poll_timeout(rtc->peripheral, RTC_REG4, tmp, !(tmp & RTC_ADDR0_WAIT_SER), 10, 10000); } /* RTC interface layer functions */ static int meson_rtc_gettime(struct device *dev, struct rtc_time *tm) { struct meson_rtc *rtc = dev_get_drvdata(dev); u32 time; int ret; ret = regmap_read(rtc->serial, RTC_COUNTER, &time); if (!ret) rtc_time64_to_tm(time, tm); return ret; } static int meson_rtc_settime(struct device *dev, struct rtc_time *tm) { struct meson_rtc *rtc = dev_get_drvdata(dev); return regmap_write(rtc->serial, RTC_COUNTER, rtc_tm_to_time64(tm)); } static const struct rtc_class_ops meson_rtc_ops = { .read_time = meson_rtc_gettime, .set_time = meson_rtc_settime, }; /* NVMEM interface layer functions */ static int meson_rtc_regmem_read(void *context, unsigned int offset, void *buf, size_t bytes) { struct meson_rtc *rtc = context; unsigned int read_offset, read_size; read_offset = RTC_REGMEM_0 + (offset / 4); read_size = bytes / 4; return regmap_bulk_read(rtc->serial, read_offset, buf, read_size); } static int meson_rtc_regmem_write(void *context, unsigned int offset, void *buf, size_t bytes) { struct meson_rtc *rtc = context; unsigned int write_offset, write_size; write_offset = RTC_REGMEM_0 + (offset / 4); write_size = bytes / 4; return regmap_bulk_write(rtc->serial, write_offset, buf, write_size); } static int meson_rtc_probe(struct platform_device *pdev) { struct nvmem_config meson_rtc_nvmem_config = { .name = "meson-rtc-regmem", .type = NVMEM_TYPE_BATTERY_BACKED, .word_size = 4, .stride = 4, .size = 4 * 4, .reg_read = meson_rtc_regmem_read, .reg_write = meson_rtc_regmem_write, }; struct device *dev = &pdev->dev; struct meson_rtc *rtc; void __iomem *base; int ret; u32 tm; rtc = devm_kzalloc(dev, sizeof(struct meson_rtc), GFP_KERNEL); if (!rtc) return -ENOMEM; rtc->rtc = devm_rtc_allocate_device(dev); if (IS_ERR(rtc->rtc)) return PTR_ERR(rtc->rtc); platform_set_drvdata(pdev, rtc); rtc->dev = dev; rtc->rtc->ops = &meson_rtc_ops; rtc->rtc->range_max = U32_MAX; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); rtc->peripheral = devm_regmap_init_mmio(dev, base, &meson_rtc_peripheral_regmap_config); if (IS_ERR(rtc->peripheral)) { dev_err(dev, "failed to create peripheral regmap\n"); return PTR_ERR(rtc->peripheral); } rtc->reset = devm_reset_control_get(dev, NULL); if (IS_ERR(rtc->reset)) { dev_err(dev, "missing reset line\n"); return PTR_ERR(rtc->reset); } rtc->vdd = devm_regulator_get(dev, "vdd"); if (IS_ERR(rtc->vdd)) { dev_err(dev, "failed to get the vdd-supply\n"); return PTR_ERR(rtc->vdd); } ret = regulator_enable(rtc->vdd); if (ret) { dev_err(dev, "failed to enable vdd-supply\n"); return ret; } ret = meson_rtc_write_static(rtc, MESON_STATIC_DEFAULT); if (ret) { dev_err(dev, "failed to set static values\n"); goto out_disable_vdd; } rtc->serial = devm_regmap_init(dev, &meson_rtc_serial_bus, rtc, &meson_rtc_serial_regmap_config); if (IS_ERR(rtc->serial)) { dev_err(dev, "failed to create serial regmap\n"); ret = PTR_ERR(rtc->serial); goto out_disable_vdd; } /* * check if we can read RTC counter, if not then the RTC is probably * not functional. If it isn't probably best to not bind. */ ret = regmap_read(rtc->serial, RTC_COUNTER, &tm); if (ret) { dev_err(dev, "cannot read RTC counter, RTC not functional\n"); goto out_disable_vdd; } meson_rtc_nvmem_config.priv = rtc; ret = devm_rtc_nvmem_register(rtc->rtc, &meson_rtc_nvmem_config); if (ret) goto out_disable_vdd; ret = devm_rtc_register_device(rtc->rtc); if (ret) goto out_disable_vdd; return 0; out_disable_vdd: regulator_disable(rtc->vdd); return ret; } static const __maybe_unused struct of_device_id meson_rtc_dt_match[] = { { .compatible = "amlogic,meson6-rtc", }, { .compatible = "amlogic,meson8-rtc", }, { .compatible = "amlogic,meson8b-rtc", }, { .compatible = "amlogic,meson8m2-rtc", }, { }, }; MODULE_DEVICE_TABLE(of, meson_rtc_dt_match); static struct platform_driver meson_rtc_driver = { .probe = meson_rtc_probe, .driver = { .name = "meson-rtc", .of_match_table = of_match_ptr(meson_rtc_dt_match), }, }; module_platform_driver(meson_rtc_driver); MODULE_DESCRIPTION("Amlogic Meson RTC Driver"); MODULE_AUTHOR("Ben Dooks <ben.dooks@codethink.co.uk>"); MODULE_AUTHOR("Martin Blumenstingl <martin.blumenstingl@googlemail.com>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:meson-rtc");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1