Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexandre Belloni | 1485 | 48.98% | 22 | 50.00% |
Michael McCormick | 612 | 20.18% | 1 | 2.27% |
Sören Andersen | 441 | 14.54% | 1 | 2.27% |
Sam Ravnborg | 132 | 4.35% | 1 | 2.27% |
Juergen Beisert (or Jourgen Borleis) | 104 | 3.43% | 3 | 6.82% |
Biju Das | 74 | 2.44% | 2 | 4.55% |
Marc Ferland | 52 | 1.72% | 1 | 2.27% |
Alexander Stein | 37 | 1.22% | 2 | 4.55% |
Mirza Krak | 35 | 1.15% | 1 | 2.27% |
Fabio Estevam | 18 | 0.59% | 2 | 4.55% |
Francois Gervais | 17 | 0.56% | 1 | 2.27% |
Chris DeBruin | 13 | 0.43% | 1 | 2.27% |
Phil Elwell | 6 | 0.20% | 1 | 2.27% |
Bartosz Golaszewski | 2 | 0.07% | 2 | 4.55% |
Gustavo A. R. Silva | 2 | 0.07% | 1 | 2.27% |
Rob Herring | 1 | 0.03% | 1 | 2.27% |
Uwe Kleine-König | 1 | 0.03% | 1 | 2.27% |
Total | 3032 | 44 |
// SPDX-License-Identifier: GPL-2.0 /* * An I2C driver for the PCF85063 RTC * Copyright 2014 Rose Technology * * Author: Søren Andersen <san@rosetechnology.dk> * Maintainers: http://www.nslu2-linux.org/ * * Copyright (C) 2019 Micro Crystal AG * Author: Alexandre Belloni <alexandre.belloni@bootlin.com> */ #include <linux/clk-provider.h> #include <linux/i2c.h> #include <linux/bcd.h> #include <linux/rtc.h> #include <linux/module.h> #include <linux/of.h> #include <linux/pm_wakeirq.h> #include <linux/regmap.h> /* * Information for this driver was pulled from the following datasheets. * * https://www.nxp.com/docs/en/data-sheet/PCF85063A.pdf * https://www.nxp.com/docs/en/data-sheet/PCF85063TP.pdf * * PCF85063A -- Rev. 7 — 30 March 2018 * PCF85063TP -- Rev. 4 — 6 May 2015 * * https://www.microcrystal.com/fileadmin/Media/Products/RTC/App.Manual/RV-8263-C7_App-Manual.pdf * RV8263 -- Rev. 1.0 — January 2019 */ #define PCF85063_REG_CTRL1 0x00 /* status */ #define PCF85063_REG_CTRL1_CAP_SEL BIT(0) #define PCF85063_REG_CTRL1_STOP BIT(5) #define PCF85063_REG_CTRL1_EXT_TEST BIT(7) #define PCF85063_REG_CTRL2 0x01 #define PCF85063_CTRL2_AF BIT(6) #define PCF85063_CTRL2_AIE BIT(7) #define PCF85063_REG_OFFSET 0x02 #define PCF85063_OFFSET_SIGN_BIT 6 /* 2's complement sign bit */ #define PCF85063_OFFSET_MODE BIT(7) #define PCF85063_OFFSET_STEP0 4340 #define PCF85063_OFFSET_STEP1 4069 #define PCF85063_REG_CLKO_F_MASK 0x07 /* frequency mask */ #define PCF85063_REG_CLKO_F_32768HZ 0x00 #define PCF85063_REG_CLKO_F_OFF 0x07 #define PCF85063_REG_RAM 0x03 #define PCF85063_REG_SC 0x04 /* datetime */ #define PCF85063_REG_SC_OS 0x80 #define PCF85063_REG_ALM_S 0x0b #define PCF85063_AEN BIT(7) struct pcf85063_config { struct regmap_config regmap; unsigned has_alarms:1; unsigned force_cap_7000:1; }; struct pcf85063 { struct rtc_device *rtc; struct regmap *regmap; #ifdef CONFIG_COMMON_CLK struct clk_hw clkout_hw; #endif }; static int pcf85063_rtc_read_time(struct device *dev, struct rtc_time *tm) { struct pcf85063 *pcf85063 = dev_get_drvdata(dev); int rc; u8 regs[7]; /* * while reading, the time/date registers are blocked and not updated * anymore until the access is finished. To not lose a second * event, the access must be finished within one second. So, read all * time/date registers in one turn. */ rc = regmap_bulk_read(pcf85063->regmap, PCF85063_REG_SC, regs, sizeof(regs)); if (rc) return rc; /* if the clock has lost its power it makes no sense to use its time */ if (regs[0] & PCF85063_REG_SC_OS) { dev_warn(&pcf85063->rtc->dev, "Power loss detected, invalid time\n"); return -EINVAL; } tm->tm_sec = bcd2bin(regs[0] & 0x7F); tm->tm_min = bcd2bin(regs[1] & 0x7F); tm->tm_hour = bcd2bin(regs[2] & 0x3F); /* rtc hr 0-23 */ tm->tm_mday = bcd2bin(regs[3] & 0x3F); tm->tm_wday = regs[4] & 0x07; tm->tm_mon = bcd2bin(regs[5] & 0x1F) - 1; /* rtc mn 1-12 */ tm->tm_year = bcd2bin(regs[6]); tm->tm_year += 100; return 0; } static int pcf85063_rtc_set_time(struct device *dev, struct rtc_time *tm) { struct pcf85063 *pcf85063 = dev_get_drvdata(dev); int rc; u8 regs[7]; /* * to accurately set the time, reset the divider chain and keep it in * reset state until all time/date registers are written */ rc = regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL1, PCF85063_REG_CTRL1_EXT_TEST | PCF85063_REG_CTRL1_STOP, PCF85063_REG_CTRL1_STOP); if (rc) return rc; /* hours, minutes and seconds */ regs[0] = bin2bcd(tm->tm_sec) & 0x7F; /* clear OS flag */ regs[1] = bin2bcd(tm->tm_min); regs[2] = bin2bcd(tm->tm_hour); /* Day of month, 1 - 31 */ regs[3] = bin2bcd(tm->tm_mday); /* Day, 0 - 6 */ regs[4] = tm->tm_wday & 0x07; /* month, 1 - 12 */ regs[5] = bin2bcd(tm->tm_mon + 1); /* year and century */ regs[6] = bin2bcd(tm->tm_year - 100); /* write all registers at once */ rc = regmap_bulk_write(pcf85063->regmap, PCF85063_REG_SC, regs, sizeof(regs)); if (rc) return rc; /* * Write the control register as a separate action since the size of * the register space is different between the PCF85063TP and * PCF85063A devices. The rollover point can not be used. */ return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL1, PCF85063_REG_CTRL1_STOP, 0); } static int pcf85063_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct pcf85063 *pcf85063 = dev_get_drvdata(dev); u8 buf[4]; unsigned int val; int ret; ret = regmap_bulk_read(pcf85063->regmap, PCF85063_REG_ALM_S, buf, sizeof(buf)); if (ret) return ret; alrm->time.tm_sec = bcd2bin(buf[0] & 0x7f); alrm->time.tm_min = bcd2bin(buf[1] & 0x7f); alrm->time.tm_hour = bcd2bin(buf[2] & 0x3f); alrm->time.tm_mday = bcd2bin(buf[3] & 0x3f); ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &val); if (ret) return ret; alrm->enabled = !!(val & PCF85063_CTRL2_AIE); return 0; } static int pcf85063_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct pcf85063 *pcf85063 = dev_get_drvdata(dev); u8 buf[5]; int ret; buf[0] = bin2bcd(alrm->time.tm_sec); buf[1] = bin2bcd(alrm->time.tm_min); buf[2] = bin2bcd(alrm->time.tm_hour); buf[3] = bin2bcd(alrm->time.tm_mday); buf[4] = PCF85063_AEN; /* Do not match on week day */ ret = regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2, PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF, 0); if (ret) return ret; ret = regmap_bulk_write(pcf85063->regmap, PCF85063_REG_ALM_S, buf, sizeof(buf)); if (ret) return ret; return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2, PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF, alrm->enabled ? PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF : PCF85063_CTRL2_AF); } static int pcf85063_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled) { struct pcf85063 *pcf85063 = dev_get_drvdata(dev); return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2, PCF85063_CTRL2_AIE, enabled ? PCF85063_CTRL2_AIE : 0); } static irqreturn_t pcf85063_rtc_handle_irq(int irq, void *dev_id) { struct pcf85063 *pcf85063 = dev_id; unsigned int val; int err; err = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &val); if (err) return IRQ_NONE; if (val & PCF85063_CTRL2_AF) { rtc_update_irq(pcf85063->rtc, 1, RTC_IRQF | RTC_AF); regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2, PCF85063_CTRL2_AIE | PCF85063_CTRL2_AF, 0); return IRQ_HANDLED; } return IRQ_NONE; } static int pcf85063_read_offset(struct device *dev, long *offset) { struct pcf85063 *pcf85063 = dev_get_drvdata(dev); long val; u32 reg; int ret; ret = regmap_read(pcf85063->regmap, PCF85063_REG_OFFSET, ®); if (ret < 0) return ret; val = sign_extend32(reg & ~PCF85063_OFFSET_MODE, PCF85063_OFFSET_SIGN_BIT); if (reg & PCF85063_OFFSET_MODE) *offset = val * PCF85063_OFFSET_STEP1; else *offset = val * PCF85063_OFFSET_STEP0; return 0; } static int pcf85063_set_offset(struct device *dev, long offset) { struct pcf85063 *pcf85063 = dev_get_drvdata(dev); s8 mode0, mode1, reg; unsigned int error0, error1; if (offset > PCF85063_OFFSET_STEP0 * 63) return -ERANGE; if (offset < PCF85063_OFFSET_STEP0 * -64) return -ERANGE; mode0 = DIV_ROUND_CLOSEST(offset, PCF85063_OFFSET_STEP0); mode1 = DIV_ROUND_CLOSEST(offset, PCF85063_OFFSET_STEP1); error0 = abs(offset - (mode0 * PCF85063_OFFSET_STEP0)); error1 = abs(offset - (mode1 * PCF85063_OFFSET_STEP1)); if (mode1 > 63 || mode1 < -64 || error0 < error1) reg = mode0 & ~PCF85063_OFFSET_MODE; else reg = mode1 | PCF85063_OFFSET_MODE; return regmap_write(pcf85063->regmap, PCF85063_REG_OFFSET, reg); } static int pcf85063_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) { struct pcf85063 *pcf85063 = dev_get_drvdata(dev); int status, ret = 0; switch (cmd) { case RTC_VL_READ: ret = regmap_read(pcf85063->regmap, PCF85063_REG_SC, &status); if (ret < 0) return ret; status = (status & PCF85063_REG_SC_OS) ? RTC_VL_DATA_INVALID : 0; return put_user(status, (unsigned int __user *)arg); default: return -ENOIOCTLCMD; } } static const struct rtc_class_ops pcf85063_rtc_ops = { .read_time = pcf85063_rtc_read_time, .set_time = pcf85063_rtc_set_time, .read_offset = pcf85063_read_offset, .set_offset = pcf85063_set_offset, .read_alarm = pcf85063_rtc_read_alarm, .set_alarm = pcf85063_rtc_set_alarm, .alarm_irq_enable = pcf85063_rtc_alarm_irq_enable, .ioctl = pcf85063_ioctl, }; static int pcf85063_nvmem_read(void *priv, unsigned int offset, void *val, size_t bytes) { return regmap_read(priv, PCF85063_REG_RAM, val); } static int pcf85063_nvmem_write(void *priv, unsigned int offset, void *val, size_t bytes) { return regmap_write(priv, PCF85063_REG_RAM, *(u8 *)val); } static int pcf85063_load_capacitance(struct pcf85063 *pcf85063, const struct device_node *np, unsigned int force_cap) { u32 load = 7000; u8 reg = 0; if (force_cap) load = force_cap; else of_property_read_u32(np, "quartz-load-femtofarads", &load); switch (load) { default: dev_warn(&pcf85063->rtc->dev, "Unknown quartz-load-femtofarads value: %d. Assuming 7000", load); fallthrough; case 7000: break; case 12500: reg = PCF85063_REG_CTRL1_CAP_SEL; break; } return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL1, PCF85063_REG_CTRL1_CAP_SEL, reg); } #ifdef CONFIG_COMMON_CLK /* * Handling of the clkout */ #define clkout_hw_to_pcf85063(_hw) container_of(_hw, struct pcf85063, clkout_hw) static int clkout_rates[] = { 32768, 16384, 8192, 4096, 2048, 1024, 1, 0 }; static unsigned long pcf85063_clkout_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw); unsigned int buf; int ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &buf); if (ret < 0) return 0; buf &= PCF85063_REG_CLKO_F_MASK; return clkout_rates[buf]; } static long pcf85063_clkout_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { int i; for (i = 0; i < ARRAY_SIZE(clkout_rates); i++) if (clkout_rates[i] <= rate) return clkout_rates[i]; return 0; } static int pcf85063_clkout_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw); int i; for (i = 0; i < ARRAY_SIZE(clkout_rates); i++) if (clkout_rates[i] == rate) return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2, PCF85063_REG_CLKO_F_MASK, i); return -EINVAL; } static int pcf85063_clkout_control(struct clk_hw *hw, bool enable) { struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw); unsigned int buf; int ret; ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &buf); if (ret < 0) return ret; buf &= PCF85063_REG_CLKO_F_MASK; if (enable) { if (buf == PCF85063_REG_CLKO_F_OFF) buf = PCF85063_REG_CLKO_F_32768HZ; else return 0; } else { if (buf != PCF85063_REG_CLKO_F_OFF) buf = PCF85063_REG_CLKO_F_OFF; else return 0; } return regmap_update_bits(pcf85063->regmap, PCF85063_REG_CTRL2, PCF85063_REG_CLKO_F_MASK, buf); } static int pcf85063_clkout_prepare(struct clk_hw *hw) { return pcf85063_clkout_control(hw, 1); } static void pcf85063_clkout_unprepare(struct clk_hw *hw) { pcf85063_clkout_control(hw, 0); } static int pcf85063_clkout_is_prepared(struct clk_hw *hw) { struct pcf85063 *pcf85063 = clkout_hw_to_pcf85063(hw); unsigned int buf; int ret = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL2, &buf); if (ret < 0) return 0; return (buf & PCF85063_REG_CLKO_F_MASK) != PCF85063_REG_CLKO_F_OFF; } static const struct clk_ops pcf85063_clkout_ops = { .prepare = pcf85063_clkout_prepare, .unprepare = pcf85063_clkout_unprepare, .is_prepared = pcf85063_clkout_is_prepared, .recalc_rate = pcf85063_clkout_recalc_rate, .round_rate = pcf85063_clkout_round_rate, .set_rate = pcf85063_clkout_set_rate, }; static struct clk *pcf85063_clkout_register_clk(struct pcf85063 *pcf85063) { struct clk *clk; struct clk_init_data init; struct device_node *node = pcf85063->rtc->dev.parent->of_node; struct device_node *fixed_clock; fixed_clock = of_get_child_by_name(node, "clock"); if (fixed_clock) { /* * skip registering square wave clock when a fixed * clock has been registered. The fixed clock is * registered automatically when being referenced. */ of_node_put(fixed_clock); return NULL; } init.name = "pcf85063-clkout"; init.ops = &pcf85063_clkout_ops; init.flags = 0; init.parent_names = NULL; init.num_parents = 0; pcf85063->clkout_hw.init = &init; /* optional override of the clockname */ of_property_read_string(node, "clock-output-names", &init.name); /* register the clock */ clk = devm_clk_register(&pcf85063->rtc->dev, &pcf85063->clkout_hw); if (!IS_ERR(clk)) of_clk_add_provider(node, of_clk_src_simple_get, clk); return clk; } #endif static const struct pcf85063_config config_pcf85063 = { .regmap = { .reg_bits = 8, .val_bits = 8, .max_register = 0x0a, }, }; static const struct pcf85063_config config_pcf85063tp = { .regmap = { .reg_bits = 8, .val_bits = 8, .max_register = 0x0a, }, }; static const struct pcf85063_config config_pcf85063a = { .regmap = { .reg_bits = 8, .val_bits = 8, .max_register = 0x11, }, .has_alarms = 1, }; static const struct pcf85063_config config_rv8263 = { .regmap = { .reg_bits = 8, .val_bits = 8, .max_register = 0x11, }, .has_alarms = 1, .force_cap_7000 = 1, }; static int pcf85063_probe(struct i2c_client *client) { struct pcf85063 *pcf85063; unsigned int tmp; int err; const struct pcf85063_config *config; struct nvmem_config nvmem_cfg = { .name = "pcf85063_nvram", .reg_read = pcf85063_nvmem_read, .reg_write = pcf85063_nvmem_write, .type = NVMEM_TYPE_BATTERY_BACKED, .size = 1, }; dev_dbg(&client->dev, "%s\n", __func__); pcf85063 = devm_kzalloc(&client->dev, sizeof(struct pcf85063), GFP_KERNEL); if (!pcf85063) return -ENOMEM; config = i2c_get_match_data(client); if (!config) return -ENODEV; pcf85063->regmap = devm_regmap_init_i2c(client, &config->regmap); if (IS_ERR(pcf85063->regmap)) return PTR_ERR(pcf85063->regmap); i2c_set_clientdata(client, pcf85063); err = regmap_read(pcf85063->regmap, PCF85063_REG_CTRL1, &tmp); if (err) { dev_err(&client->dev, "RTC chip is not present\n"); return err; } pcf85063->rtc = devm_rtc_allocate_device(&client->dev); if (IS_ERR(pcf85063->rtc)) return PTR_ERR(pcf85063->rtc); err = pcf85063_load_capacitance(pcf85063, client->dev.of_node, config->force_cap_7000 ? 7000 : 0); if (err < 0) dev_warn(&client->dev, "failed to set xtal load capacitance: %d", err); pcf85063->rtc->ops = &pcf85063_rtc_ops; pcf85063->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000; pcf85063->rtc->range_max = RTC_TIMESTAMP_END_2099; set_bit(RTC_FEATURE_ALARM_RES_2S, pcf85063->rtc->features); clear_bit(RTC_FEATURE_UPDATE_INTERRUPT, pcf85063->rtc->features); clear_bit(RTC_FEATURE_ALARM, pcf85063->rtc->features); if (config->has_alarms && client->irq > 0) { unsigned long irqflags = IRQF_TRIGGER_LOW; if (dev_fwnode(&client->dev)) irqflags = 0; err = devm_request_threaded_irq(&client->dev, client->irq, NULL, pcf85063_rtc_handle_irq, irqflags | IRQF_ONESHOT, "pcf85063", pcf85063); if (err) { dev_warn(&pcf85063->rtc->dev, "unable to request IRQ, alarms disabled\n"); } else { set_bit(RTC_FEATURE_ALARM, pcf85063->rtc->features); device_init_wakeup(&client->dev, true); err = dev_pm_set_wake_irq(&client->dev, client->irq); if (err) dev_err(&pcf85063->rtc->dev, "failed to enable irq wake\n"); } } nvmem_cfg.priv = pcf85063->regmap; devm_rtc_nvmem_register(pcf85063->rtc, &nvmem_cfg); #ifdef CONFIG_COMMON_CLK /* register clk in common clk framework */ pcf85063_clkout_register_clk(pcf85063); #endif return devm_rtc_register_device(pcf85063->rtc); } static const struct i2c_device_id pcf85063_ids[] = { { "pca85073a", .driver_data = (kernel_ulong_t)&config_pcf85063a }, { "pcf85063", .driver_data = (kernel_ulong_t)&config_pcf85063 }, { "pcf85063tp", .driver_data = (kernel_ulong_t)&config_pcf85063tp }, { "pcf85063a", .driver_data = (kernel_ulong_t)&config_pcf85063a }, { "rv8263", .driver_data = (kernel_ulong_t)&config_rv8263 }, {} }; MODULE_DEVICE_TABLE(i2c, pcf85063_ids); #ifdef CONFIG_OF static const struct of_device_id pcf85063_of_match[] = { { .compatible = "nxp,pca85073a", .data = &config_pcf85063a }, { .compatible = "nxp,pcf85063", .data = &config_pcf85063 }, { .compatible = "nxp,pcf85063tp", .data = &config_pcf85063tp }, { .compatible = "nxp,pcf85063a", .data = &config_pcf85063a }, { .compatible = "microcrystal,rv8263", .data = &config_rv8263 }, {} }; MODULE_DEVICE_TABLE(of, pcf85063_of_match); #endif static struct i2c_driver pcf85063_driver = { .driver = { .name = "rtc-pcf85063", .of_match_table = of_match_ptr(pcf85063_of_match), }, .probe = pcf85063_probe, .id_table = pcf85063_ids, }; module_i2c_driver(pcf85063_driver); MODULE_AUTHOR("Søren Andersen <san@rosetechnology.dk>"); MODULE_DESCRIPTION("PCF85063 RTC driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1