Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harald Freudenberger | 3105 | 53.84% | 48 | 61.54% |
Ingo Tuchscherer | 2219 | 38.48% | 7 | 8.97% |
Martin Schwidefsky | 365 | 6.33% | 8 | 10.26% |
Felix Beck | 42 | 0.73% | 3 | 3.85% |
Heiko Carstens | 7 | 0.12% | 2 | 2.56% |
Holger Dengler | 7 | 0.12% | 2 | 2.56% |
Joe Perches | 6 | 0.10% | 1 | 1.28% |
Ralph Wuerthner | 5 | 0.09% | 1 | 1.28% |
Nicolin Chen | 3 | 0.05% | 1 | 1.28% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 1.28% |
Tony Krowiak | 2 | 0.03% | 1 | 1.28% |
Kees Cook | 2 | 0.03% | 1 | 1.28% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 1.28% |
Linus Torvalds | 1 | 0.02% | 1 | 1.28% |
Total | 5767 | 78 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright IBM Corp. 2016, 2023 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> * * Adjunct processor bus, queue related code. */ #define KMSG_COMPONENT "ap" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/init.h> #include <linux/slab.h> #include <asm/facility.h> #include "ap_bus.h" #include "ap_debug.h" static void __ap_flush_queue(struct ap_queue *aq); /* * some AP queue helper functions */ static inline bool ap_q_supports_bind(struct ap_queue *aq) { return aq->card->hwinfo.ep11 || aq->card->hwinfo.accel; } static inline bool ap_q_supports_assoc(struct ap_queue *aq) { return aq->card->hwinfo.ep11; } static inline bool ap_q_needs_bind(struct ap_queue *aq) { return ap_q_supports_bind(aq) && ap_sb_available(); } /** * ap_queue_enable_irq(): Enable interrupt support on this AP queue. * @aq: The AP queue * @ind: the notification indicator byte * * Enables interruption on AP queue via ap_aqic(). Based on the return * value it waits a while and tests the AP queue if interrupts * have been switched on using ap_test_queue(). */ static int ap_queue_enable_irq(struct ap_queue *aq, void *ind) { union ap_qirq_ctrl qirqctrl = { .value = 0 }; struct ap_queue_status status; qirqctrl.ir = 1; qirqctrl.isc = AP_ISC; status = ap_aqic(aq->qid, qirqctrl, virt_to_phys(ind)); if (status.async) return -EPERM; switch (status.response_code) { case AP_RESPONSE_NORMAL: case AP_RESPONSE_OTHERWISE_CHANGED: return 0; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: case AP_RESPONSE_INVALID_ADDRESS: pr_err("Registering adapter interrupts for AP device %02x.%04x failed\n", AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return -EOPNOTSUPP; case AP_RESPONSE_RESET_IN_PROGRESS: case AP_RESPONSE_BUSY: default: return -EBUSY; } } /** * __ap_send(): Send message to adjunct processor queue. * @qid: The AP queue number * @psmid: The program supplied message identifier * @msg: The message text * @msglen: The message length * @special: Special Bit * * Returns AP queue status structure. * Condition code 1 on NQAP can't happen because the L bit is 1. * Condition code 2 on NQAP also means the send is incomplete, * because a segment boundary was reached. The NQAP is repeated. */ static inline struct ap_queue_status __ap_send(ap_qid_t qid, unsigned long psmid, void *msg, size_t msglen, int special) { if (special) qid |= 0x400000UL; return ap_nqap(qid, psmid, msg, msglen); } /* State machine definitions and helpers */ static enum ap_sm_wait ap_sm_nop(struct ap_queue *aq) { return AP_SM_WAIT_NONE; } /** * ap_sm_recv(): Receive pending reply messages from an AP queue but do * not change the state of the device. * @aq: pointer to the AP queue * * Returns AP_SM_WAIT_NONE, AP_SM_WAIT_AGAIN, or AP_SM_WAIT_INTERRUPT */ static struct ap_queue_status ap_sm_recv(struct ap_queue *aq) { struct ap_queue_status status; struct ap_message *ap_msg; bool found = false; size_t reslen; unsigned long resgr0 = 0; int parts = 0; /* * DQAP loop until response code and resgr0 indicate that * the msg is totally received. As we use the very same buffer * the msg is overwritten with each invocation. That's intended * and the receiver of the msg is informed with a msg rc code * of EMSGSIZE in such a case. */ do { status = ap_dqap(aq->qid, &aq->reply->psmid, aq->reply->msg, aq->reply->bufsize, &aq->reply->len, &reslen, &resgr0); parts++; } while (status.response_code == 0xFF && resgr0 != 0); switch (status.response_code) { case AP_RESPONSE_NORMAL: print_hex_dump_debug("aprpl: ", DUMP_PREFIX_ADDRESS, 16, 1, aq->reply->msg, aq->reply->len, false); aq->queue_count = max_t(int, 0, aq->queue_count - 1); if (!status.queue_empty && !aq->queue_count) aq->queue_count++; if (aq->queue_count > 0) mod_timer(&aq->timeout, jiffies + aq->request_timeout); list_for_each_entry(ap_msg, &aq->pendingq, list) { if (ap_msg->psmid != aq->reply->psmid) continue; list_del_init(&ap_msg->list); aq->pendingq_count--; if (parts > 1) { ap_msg->rc = -EMSGSIZE; ap_msg->receive(aq, ap_msg, NULL); } else { ap_msg->receive(aq, ap_msg, aq->reply); } found = true; break; } if (!found) { AP_DBF_WARN("%s unassociated reply psmid=0x%016lx on 0x%02x.%04x\n", __func__, aq->reply->psmid, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); } fallthrough; case AP_RESPONSE_NO_PENDING_REPLY: if (!status.queue_empty || aq->queue_count <= 0) break; /* The card shouldn't forget requests but who knows. */ aq->queue_count = 0; list_splice_init(&aq->pendingq, &aq->requestq); aq->requestq_count += aq->pendingq_count; pr_debug("%s queue 0x%02x.%04x rescheduled %d reqs (new req %d)\n", __func__, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid), aq->pendingq_count, aq->requestq_count); aq->pendingq_count = 0; break; default: break; } return status; } /** * ap_sm_read(): Receive pending reply messages from an AP queue. * @aq: pointer to the AP queue * * Returns AP_SM_WAIT_NONE, AP_SM_WAIT_AGAIN, or AP_SM_WAIT_INTERRUPT */ static enum ap_sm_wait ap_sm_read(struct ap_queue *aq) { struct ap_queue_status status; if (!aq->reply) return AP_SM_WAIT_NONE; status = ap_sm_recv(aq); if (status.async) return AP_SM_WAIT_NONE; switch (status.response_code) { case AP_RESPONSE_NORMAL: if (aq->queue_count > 0) { aq->sm_state = AP_SM_STATE_WORKING; return AP_SM_WAIT_AGAIN; } aq->sm_state = AP_SM_STATE_IDLE; break; case AP_RESPONSE_NO_PENDING_REPLY: if (aq->queue_count > 0) return status.irq_enabled ? AP_SM_WAIT_INTERRUPT : AP_SM_WAIT_HIGH_TIMEOUT; aq->sm_state = AP_SM_STATE_IDLE; break; default: aq->dev_state = AP_DEV_STATE_ERROR; aq->last_err_rc = status.response_code; AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return AP_SM_WAIT_NONE; } /* Check and maybe enable irq support (again) on this queue */ if (!status.irq_enabled && status.queue_empty) { void *lsi_ptr = ap_airq_ptr(); if (lsi_ptr && ap_queue_enable_irq(aq, lsi_ptr) == 0) { aq->sm_state = AP_SM_STATE_SETIRQ_WAIT; return AP_SM_WAIT_AGAIN; } } return AP_SM_WAIT_NONE; } /** * ap_sm_write(): Send messages from the request queue to an AP queue. * @aq: pointer to the AP queue * * Returns AP_SM_WAIT_NONE, AP_SM_WAIT_AGAIN, or AP_SM_WAIT_INTERRUPT */ static enum ap_sm_wait ap_sm_write(struct ap_queue *aq) { struct ap_queue_status status; struct ap_message *ap_msg; ap_qid_t qid = aq->qid; if (aq->requestq_count <= 0) return AP_SM_WAIT_NONE; /* Start the next request on the queue. */ ap_msg = list_entry(aq->requestq.next, struct ap_message, list); print_hex_dump_debug("apreq: ", DUMP_PREFIX_ADDRESS, 16, 1, ap_msg->msg, ap_msg->len, false); status = __ap_send(qid, ap_msg->psmid, ap_msg->msg, ap_msg->len, ap_msg->flags & AP_MSG_FLAG_SPECIAL); if (status.async) return AP_SM_WAIT_NONE; switch (status.response_code) { case AP_RESPONSE_NORMAL: aq->queue_count = max_t(int, 1, aq->queue_count + 1); if (aq->queue_count == 1) mod_timer(&aq->timeout, jiffies + aq->request_timeout); list_move_tail(&ap_msg->list, &aq->pendingq); aq->requestq_count--; aq->pendingq_count++; if (aq->queue_count < aq->card->hwinfo.qd) { aq->sm_state = AP_SM_STATE_WORKING; return AP_SM_WAIT_AGAIN; } fallthrough; case AP_RESPONSE_Q_FULL: aq->sm_state = AP_SM_STATE_QUEUE_FULL; return status.irq_enabled ? AP_SM_WAIT_INTERRUPT : AP_SM_WAIT_HIGH_TIMEOUT; case AP_RESPONSE_RESET_IN_PROGRESS: aq->sm_state = AP_SM_STATE_RESET_WAIT; return AP_SM_WAIT_LOW_TIMEOUT; case AP_RESPONSE_INVALID_DOMAIN: AP_DBF_WARN("%s RESPONSE_INVALID_DOMAIN on NQAP\n", __func__); fallthrough; case AP_RESPONSE_MESSAGE_TOO_BIG: case AP_RESPONSE_REQ_FAC_NOT_INST: list_del_init(&ap_msg->list); aq->requestq_count--; ap_msg->rc = -EINVAL; ap_msg->receive(aq, ap_msg, NULL); return AP_SM_WAIT_AGAIN; default: aq->dev_state = AP_DEV_STATE_ERROR; aq->last_err_rc = status.response_code; AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return AP_SM_WAIT_NONE; } } /** * ap_sm_read_write(): Send and receive messages to/from an AP queue. * @aq: pointer to the AP queue * * Returns AP_SM_WAIT_NONE, AP_SM_WAIT_AGAIN, or AP_SM_WAIT_INTERRUPT */ static enum ap_sm_wait ap_sm_read_write(struct ap_queue *aq) { return min(ap_sm_read(aq), ap_sm_write(aq)); } /** * ap_sm_reset(): Reset an AP queue. * @aq: The AP queue * * Submit the Reset command to an AP queue. */ static enum ap_sm_wait ap_sm_reset(struct ap_queue *aq) { struct ap_queue_status status; status = ap_rapq(aq->qid, aq->rapq_fbit); if (status.async) return AP_SM_WAIT_NONE; switch (status.response_code) { case AP_RESPONSE_NORMAL: case AP_RESPONSE_RESET_IN_PROGRESS: aq->sm_state = AP_SM_STATE_RESET_WAIT; aq->rapq_fbit = 0; return AP_SM_WAIT_LOW_TIMEOUT; default: aq->dev_state = AP_DEV_STATE_ERROR; aq->last_err_rc = status.response_code; AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return AP_SM_WAIT_NONE; } } /** * ap_sm_reset_wait(): Test queue for completion of the reset operation * @aq: pointer to the AP queue * * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0. */ static enum ap_sm_wait ap_sm_reset_wait(struct ap_queue *aq) { struct ap_queue_status status; struct ap_tapq_hwinfo hwinfo; void *lsi_ptr; /* Get the status with TAPQ */ status = ap_test_queue(aq->qid, 1, &hwinfo); switch (status.response_code) { case AP_RESPONSE_NORMAL: aq->se_bstate = hwinfo.bs; lsi_ptr = ap_airq_ptr(); if (lsi_ptr && ap_queue_enable_irq(aq, lsi_ptr) == 0) aq->sm_state = AP_SM_STATE_SETIRQ_WAIT; else aq->sm_state = (aq->queue_count > 0) ? AP_SM_STATE_WORKING : AP_SM_STATE_IDLE; return AP_SM_WAIT_AGAIN; case AP_RESPONSE_BUSY: case AP_RESPONSE_RESET_IN_PROGRESS: return AP_SM_WAIT_LOW_TIMEOUT; case AP_RESPONSE_Q_NOT_AVAIL: case AP_RESPONSE_DECONFIGURED: case AP_RESPONSE_CHECKSTOPPED: default: aq->dev_state = AP_DEV_STATE_ERROR; aq->last_err_rc = status.response_code; AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return AP_SM_WAIT_NONE; } } /** * ap_sm_setirq_wait(): Test queue for completion of the irq enablement * @aq: pointer to the AP queue * * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0. */ static enum ap_sm_wait ap_sm_setirq_wait(struct ap_queue *aq) { struct ap_queue_status status; if (aq->queue_count > 0 && aq->reply) /* Try to read a completed message and get the status */ status = ap_sm_recv(aq); else /* Get the status with TAPQ */ status = ap_tapq(aq->qid, NULL); if (status.irq_enabled == 1) { /* Irqs are now enabled */ aq->sm_state = (aq->queue_count > 0) ? AP_SM_STATE_WORKING : AP_SM_STATE_IDLE; } switch (status.response_code) { case AP_RESPONSE_NORMAL: if (aq->queue_count > 0) return AP_SM_WAIT_AGAIN; fallthrough; case AP_RESPONSE_NO_PENDING_REPLY: return AP_SM_WAIT_LOW_TIMEOUT; default: aq->dev_state = AP_DEV_STATE_ERROR; aq->last_err_rc = status.response_code; AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return AP_SM_WAIT_NONE; } } /** * ap_sm_assoc_wait(): Test queue for completion of a pending * association request. * @aq: pointer to the AP queue */ static enum ap_sm_wait ap_sm_assoc_wait(struct ap_queue *aq) { struct ap_queue_status status; struct ap_tapq_hwinfo hwinfo; status = ap_test_queue(aq->qid, 1, &hwinfo); /* handle asynchronous error on this queue */ if (status.async && status.response_code) { aq->dev_state = AP_DEV_STATE_ERROR; aq->last_err_rc = status.response_code; AP_DBF_WARN("%s asynch RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return AP_SM_WAIT_NONE; } if (status.response_code > AP_RESPONSE_BUSY) { aq->dev_state = AP_DEV_STATE_ERROR; aq->last_err_rc = status.response_code; AP_DBF_WARN("%s RC 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return AP_SM_WAIT_NONE; } /* update queue's SE bind state */ aq->se_bstate = hwinfo.bs; /* check bs bits */ switch (hwinfo.bs) { case AP_BS_Q_USABLE: /* association is through */ aq->sm_state = AP_SM_STATE_IDLE; pr_debug("%s queue 0x%02x.%04x associated with %u\n", __func__, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid), aq->assoc_idx); return AP_SM_WAIT_NONE; case AP_BS_Q_USABLE_NO_SECURE_KEY: /* association still pending */ return AP_SM_WAIT_LOW_TIMEOUT; default: /* reset from 'outside' happened or no idea at all */ aq->assoc_idx = ASSOC_IDX_INVALID; aq->dev_state = AP_DEV_STATE_ERROR; aq->last_err_rc = status.response_code; AP_DBF_WARN("%s bs 0x%02x on 0x%02x.%04x -> AP_DEV_STATE_ERROR\n", __func__, hwinfo.bs, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return AP_SM_WAIT_NONE; } } /* * AP state machine jump table */ static ap_func_t *ap_jumptable[NR_AP_SM_STATES][NR_AP_SM_EVENTS] = { [AP_SM_STATE_RESET_START] = { [AP_SM_EVENT_POLL] = ap_sm_reset, [AP_SM_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_SM_STATE_RESET_WAIT] = { [AP_SM_EVENT_POLL] = ap_sm_reset_wait, [AP_SM_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_SM_STATE_SETIRQ_WAIT] = { [AP_SM_EVENT_POLL] = ap_sm_setirq_wait, [AP_SM_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_SM_STATE_IDLE] = { [AP_SM_EVENT_POLL] = ap_sm_write, [AP_SM_EVENT_TIMEOUT] = ap_sm_nop, }, [AP_SM_STATE_WORKING] = { [AP_SM_EVENT_POLL] = ap_sm_read_write, [AP_SM_EVENT_TIMEOUT] = ap_sm_reset, }, [AP_SM_STATE_QUEUE_FULL] = { [AP_SM_EVENT_POLL] = ap_sm_read, [AP_SM_EVENT_TIMEOUT] = ap_sm_reset, }, [AP_SM_STATE_ASSOC_WAIT] = { [AP_SM_EVENT_POLL] = ap_sm_assoc_wait, [AP_SM_EVENT_TIMEOUT] = ap_sm_reset, }, }; enum ap_sm_wait ap_sm_event(struct ap_queue *aq, enum ap_sm_event event) { if (aq->config && !aq->chkstop && aq->dev_state > AP_DEV_STATE_UNINITIATED) return ap_jumptable[aq->sm_state][event](aq); else return AP_SM_WAIT_NONE; } enum ap_sm_wait ap_sm_event_loop(struct ap_queue *aq, enum ap_sm_event event) { enum ap_sm_wait wait; while ((wait = ap_sm_event(aq, event)) == AP_SM_WAIT_AGAIN) ; return wait; } /* * AP queue related attributes. */ static ssize_t request_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); bool valid = false; u64 req_cnt; spin_lock_bh(&aq->lock); if (aq->dev_state > AP_DEV_STATE_UNINITIATED) { req_cnt = aq->total_request_count; valid = true; } spin_unlock_bh(&aq->lock); if (valid) return sysfs_emit(buf, "%llu\n", req_cnt); else return sysfs_emit(buf, "-\n"); } static ssize_t request_count_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ap_queue *aq = to_ap_queue(dev); spin_lock_bh(&aq->lock); aq->total_request_count = 0; spin_unlock_bh(&aq->lock); return count; } static DEVICE_ATTR_RW(request_count); static ssize_t requestq_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); unsigned int reqq_cnt = 0; spin_lock_bh(&aq->lock); if (aq->dev_state > AP_DEV_STATE_UNINITIATED) reqq_cnt = aq->requestq_count; spin_unlock_bh(&aq->lock); return sysfs_emit(buf, "%d\n", reqq_cnt); } static DEVICE_ATTR_RO(requestq_count); static ssize_t pendingq_count_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); unsigned int penq_cnt = 0; spin_lock_bh(&aq->lock); if (aq->dev_state > AP_DEV_STATE_UNINITIATED) penq_cnt = aq->pendingq_count; spin_unlock_bh(&aq->lock); return sysfs_emit(buf, "%d\n", penq_cnt); } static DEVICE_ATTR_RO(pendingq_count); static ssize_t reset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); int rc = 0; spin_lock_bh(&aq->lock); switch (aq->sm_state) { case AP_SM_STATE_RESET_START: case AP_SM_STATE_RESET_WAIT: rc = sysfs_emit(buf, "Reset in progress.\n"); break; case AP_SM_STATE_WORKING: case AP_SM_STATE_QUEUE_FULL: rc = sysfs_emit(buf, "Reset Timer armed.\n"); break; default: rc = sysfs_emit(buf, "No Reset Timer set.\n"); } spin_unlock_bh(&aq->lock); return rc; } static ssize_t reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ap_queue *aq = to_ap_queue(dev); spin_lock_bh(&aq->lock); __ap_flush_queue(aq); aq->sm_state = AP_SM_STATE_RESET_START; ap_wait(ap_sm_event(aq, AP_SM_EVENT_POLL)); spin_unlock_bh(&aq->lock); AP_DBF_INFO("%s reset queue=%02x.%04x triggered by user\n", __func__, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return count; } static DEVICE_ATTR_RW(reset); static ssize_t interrupt_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); struct ap_queue_status status; int rc = 0; spin_lock_bh(&aq->lock); if (aq->sm_state == AP_SM_STATE_SETIRQ_WAIT) { rc = sysfs_emit(buf, "Enable Interrupt pending.\n"); } else { status = ap_tapq(aq->qid, NULL); if (status.irq_enabled) rc = sysfs_emit(buf, "Interrupts enabled.\n"); else rc = sysfs_emit(buf, "Interrupts disabled.\n"); } spin_unlock_bh(&aq->lock); return rc; } static DEVICE_ATTR_RO(interrupt); static ssize_t config_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); int rc; spin_lock_bh(&aq->lock); rc = sysfs_emit(buf, "%d\n", aq->config ? 1 : 0); spin_unlock_bh(&aq->lock); return rc; } static DEVICE_ATTR_RO(config); static ssize_t chkstop_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); int rc; spin_lock_bh(&aq->lock); rc = sysfs_emit(buf, "%d\n", aq->chkstop ? 1 : 0); spin_unlock_bh(&aq->lock); return rc; } static DEVICE_ATTR_RO(chkstop); static ssize_t ap_functions_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); struct ap_queue_status status; struct ap_tapq_hwinfo hwinfo; status = ap_test_queue(aq->qid, 1, &hwinfo); if (status.response_code > AP_RESPONSE_BUSY) { pr_debug("%s RC 0x%02x on tapq(0x%02x.%04x)\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return -EIO; } return sysfs_emit(buf, "0x%08X\n", hwinfo.fac); } static DEVICE_ATTR_RO(ap_functions); #ifdef CONFIG_AP_DEBUG static ssize_t states_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); int rc = 0; spin_lock_bh(&aq->lock); /* queue device state */ switch (aq->dev_state) { case AP_DEV_STATE_UNINITIATED: rc = sysfs_emit(buf, "UNINITIATED\n"); break; case AP_DEV_STATE_OPERATING: rc = sysfs_emit(buf, "OPERATING"); break; case AP_DEV_STATE_SHUTDOWN: rc = sysfs_emit(buf, "SHUTDOWN"); break; case AP_DEV_STATE_ERROR: rc = sysfs_emit(buf, "ERROR"); break; default: rc = sysfs_emit(buf, "UNKNOWN"); } /* state machine state */ if (aq->dev_state) { switch (aq->sm_state) { case AP_SM_STATE_RESET_START: rc += sysfs_emit_at(buf, rc, " [RESET_START]\n"); break; case AP_SM_STATE_RESET_WAIT: rc += sysfs_emit_at(buf, rc, " [RESET_WAIT]\n"); break; case AP_SM_STATE_SETIRQ_WAIT: rc += sysfs_emit_at(buf, rc, " [SETIRQ_WAIT]\n"); break; case AP_SM_STATE_IDLE: rc += sysfs_emit_at(buf, rc, " [IDLE]\n"); break; case AP_SM_STATE_WORKING: rc += sysfs_emit_at(buf, rc, " [WORKING]\n"); break; case AP_SM_STATE_QUEUE_FULL: rc += sysfs_emit_at(buf, rc, " [FULL]\n"); break; case AP_SM_STATE_ASSOC_WAIT: rc += sysfs_emit_at(buf, rc, " [ASSOC_WAIT]\n"); break; default: rc += sysfs_emit_at(buf, rc, " [UNKNOWN]\n"); } } spin_unlock_bh(&aq->lock); return rc; } static DEVICE_ATTR_RO(states); static ssize_t last_err_rc_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); int rc; spin_lock_bh(&aq->lock); rc = aq->last_err_rc; spin_unlock_bh(&aq->lock); switch (rc) { case AP_RESPONSE_NORMAL: return sysfs_emit(buf, "NORMAL\n"); case AP_RESPONSE_Q_NOT_AVAIL: return sysfs_emit(buf, "Q_NOT_AVAIL\n"); case AP_RESPONSE_RESET_IN_PROGRESS: return sysfs_emit(buf, "RESET_IN_PROGRESS\n"); case AP_RESPONSE_DECONFIGURED: return sysfs_emit(buf, "DECONFIGURED\n"); case AP_RESPONSE_CHECKSTOPPED: return sysfs_emit(buf, "CHECKSTOPPED\n"); case AP_RESPONSE_BUSY: return sysfs_emit(buf, "BUSY\n"); case AP_RESPONSE_INVALID_ADDRESS: return sysfs_emit(buf, "INVALID_ADDRESS\n"); case AP_RESPONSE_OTHERWISE_CHANGED: return sysfs_emit(buf, "OTHERWISE_CHANGED\n"); case AP_RESPONSE_Q_FULL: return sysfs_emit(buf, "Q_FULL/NO_PENDING_REPLY\n"); case AP_RESPONSE_INDEX_TOO_BIG: return sysfs_emit(buf, "INDEX_TOO_BIG\n"); case AP_RESPONSE_NO_FIRST_PART: return sysfs_emit(buf, "NO_FIRST_PART\n"); case AP_RESPONSE_MESSAGE_TOO_BIG: return sysfs_emit(buf, "MESSAGE_TOO_BIG\n"); case AP_RESPONSE_REQ_FAC_NOT_INST: return sysfs_emit(buf, "REQ_FAC_NOT_INST\n"); default: return sysfs_emit(buf, "response code %d\n", rc); } } static DEVICE_ATTR_RO(last_err_rc); #endif static struct attribute *ap_queue_dev_attrs[] = { &dev_attr_request_count.attr, &dev_attr_requestq_count.attr, &dev_attr_pendingq_count.attr, &dev_attr_reset.attr, &dev_attr_interrupt.attr, &dev_attr_config.attr, &dev_attr_chkstop.attr, &dev_attr_ap_functions.attr, #ifdef CONFIG_AP_DEBUG &dev_attr_states.attr, &dev_attr_last_err_rc.attr, #endif NULL }; static struct attribute_group ap_queue_dev_attr_group = { .attrs = ap_queue_dev_attrs }; static const struct attribute_group *ap_queue_dev_attr_groups[] = { &ap_queue_dev_attr_group, NULL }; static struct device_type ap_queue_type = { .name = "ap_queue", .groups = ap_queue_dev_attr_groups, }; static ssize_t se_bind_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); struct ap_queue_status status; struct ap_tapq_hwinfo hwinfo; if (!ap_q_supports_bind(aq)) return sysfs_emit(buf, "-\n"); status = ap_test_queue(aq->qid, 1, &hwinfo); if (status.response_code > AP_RESPONSE_BUSY) { pr_debug("%s RC 0x%02x on tapq(0x%02x.%04x)\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return -EIO; } /* update queue's SE bind state */ spin_lock_bh(&aq->lock); aq->se_bstate = hwinfo.bs; spin_unlock_bh(&aq->lock); switch (hwinfo.bs) { case AP_BS_Q_USABLE: case AP_BS_Q_USABLE_NO_SECURE_KEY: return sysfs_emit(buf, "bound\n"); default: return sysfs_emit(buf, "unbound\n"); } } static ssize_t se_bind_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ap_queue *aq = to_ap_queue(dev); struct ap_queue_status status; struct ap_tapq_hwinfo hwinfo; bool value; int rc; if (!ap_q_supports_bind(aq)) return -EINVAL; /* only 0 (unbind) and 1 (bind) allowed */ rc = kstrtobool(buf, &value); if (rc) return rc; if (!value) { /* Unbind. Set F bit arg and trigger RAPQ */ spin_lock_bh(&aq->lock); __ap_flush_queue(aq); aq->rapq_fbit = 1; _ap_queue_init_state(aq); rc = count; goto out; } /* Bind. Check current SE bind state */ status = ap_test_queue(aq->qid, 1, &hwinfo); if (status.response_code) { AP_DBF_WARN("%s RC 0x%02x on tapq(0x%02x.%04x)\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return -EIO; } /* Update BS state */ spin_lock_bh(&aq->lock); aq->se_bstate = hwinfo.bs; if (hwinfo.bs != AP_BS_Q_AVAIL_FOR_BINDING) { AP_DBF_WARN("%s bind attempt with bs %d on queue 0x%02x.%04x\n", __func__, hwinfo.bs, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); rc = -EINVAL; goto out; } /* Check SM state */ if (aq->sm_state < AP_SM_STATE_IDLE) { rc = -EBUSY; goto out; } /* invoke BAPQ */ status = ap_bapq(aq->qid); if (status.response_code) { AP_DBF_WARN("%s RC 0x%02x on bapq(0x%02x.%04x)\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); rc = -EIO; goto out; } aq->assoc_idx = ASSOC_IDX_INVALID; /* verify SE bind state */ status = ap_test_queue(aq->qid, 1, &hwinfo); if (status.response_code) { AP_DBF_WARN("%s RC 0x%02x on tapq(0x%02x.%04x)\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); rc = -EIO; goto out; } aq->se_bstate = hwinfo.bs; if (!(hwinfo.bs == AP_BS_Q_USABLE || hwinfo.bs == AP_BS_Q_USABLE_NO_SECURE_KEY)) { AP_DBF_WARN("%s BAPQ success, but bs shows %d on queue 0x%02x.%04x\n", __func__, hwinfo.bs, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); rc = -EIO; goto out; } /* SE bind was successful */ AP_DBF_INFO("%s bapq(0x%02x.%04x) success\n", __func__, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); rc = count; out: spin_unlock_bh(&aq->lock); return rc; } static DEVICE_ATTR_RW(se_bind); static ssize_t se_associate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ap_queue *aq = to_ap_queue(dev); struct ap_queue_status status; struct ap_tapq_hwinfo hwinfo; if (!ap_q_supports_assoc(aq)) return sysfs_emit(buf, "-\n"); status = ap_test_queue(aq->qid, 1, &hwinfo); if (status.response_code > AP_RESPONSE_BUSY) { pr_debug("%s RC 0x%02x on tapq(0x%02x.%04x)\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return -EIO; } /* update queue's SE bind state */ spin_lock_bh(&aq->lock); aq->se_bstate = hwinfo.bs; spin_unlock_bh(&aq->lock); switch (hwinfo.bs) { case AP_BS_Q_USABLE: if (aq->assoc_idx == ASSOC_IDX_INVALID) { AP_DBF_WARN("%s AP_BS_Q_USABLE but invalid assoc_idx\n", __func__); return -EIO; } return sysfs_emit(buf, "associated %u\n", aq->assoc_idx); case AP_BS_Q_USABLE_NO_SECURE_KEY: if (aq->assoc_idx != ASSOC_IDX_INVALID) return sysfs_emit(buf, "association pending\n"); fallthrough; default: return sysfs_emit(buf, "unassociated\n"); } } static ssize_t se_associate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ap_queue *aq = to_ap_queue(dev); struct ap_queue_status status; struct ap_tapq_hwinfo hwinfo; unsigned int value; int rc; if (!ap_q_supports_assoc(aq)) return -EINVAL; /* association index needs to be >= 0 */ rc = kstrtouint(buf, 0, &value); if (rc) return rc; if (value >= ASSOC_IDX_INVALID) return -EINVAL; /* check current SE bind state */ status = ap_test_queue(aq->qid, 1, &hwinfo); if (status.response_code) { AP_DBF_WARN("%s RC 0x%02x on tapq(0x%02x.%04x)\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); return -EIO; } spin_lock_bh(&aq->lock); aq->se_bstate = hwinfo.bs; if (hwinfo.bs != AP_BS_Q_USABLE_NO_SECURE_KEY) { AP_DBF_WARN("%s association attempt with bs %d on queue 0x%02x.%04x\n", __func__, hwinfo.bs, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); rc = -EINVAL; goto out; } /* check SM state */ if (aq->sm_state != AP_SM_STATE_IDLE) { rc = -EBUSY; goto out; } /* trigger the asynchronous association request */ status = ap_aapq(aq->qid, value); switch (status.response_code) { case AP_RESPONSE_NORMAL: case AP_RESPONSE_STATE_CHANGE_IN_PROGRESS: aq->sm_state = AP_SM_STATE_ASSOC_WAIT; aq->assoc_idx = value; ap_wait(ap_sm_event(aq, AP_SM_EVENT_POLL)); break; default: AP_DBF_WARN("%s RC 0x%02x on aapq(0x%02x.%04x)\n", __func__, status.response_code, AP_QID_CARD(aq->qid), AP_QID_QUEUE(aq->qid)); rc = -EIO; goto out; } rc = count; out: spin_unlock_bh(&aq->lock); return rc; } static DEVICE_ATTR_RW(se_associate); static struct attribute *ap_queue_dev_sb_attrs[] = { &dev_attr_se_bind.attr, &dev_attr_se_associate.attr, NULL }; static struct attribute_group ap_queue_dev_sb_attr_group = { .attrs = ap_queue_dev_sb_attrs }; static const struct attribute_group *ap_queue_dev_sb_attr_groups[] = { &ap_queue_dev_sb_attr_group, NULL }; static void ap_queue_device_release(struct device *dev) { struct ap_queue *aq = to_ap_queue(dev); spin_lock_bh(&ap_queues_lock); hash_del(&aq->hnode); spin_unlock_bh(&ap_queues_lock); kfree(aq); } struct ap_queue *ap_queue_create(ap_qid_t qid, int device_type) { struct ap_queue *aq; aq = kzalloc(sizeof(*aq), GFP_KERNEL); if (!aq) return NULL; aq->ap_dev.device.release = ap_queue_device_release; aq->ap_dev.device.type = &ap_queue_type; aq->ap_dev.device_type = device_type; // add optional SE secure binding attributes group if (ap_sb_available() && is_prot_virt_guest()) aq->ap_dev.device.groups = ap_queue_dev_sb_attr_groups; aq->qid = qid; spin_lock_init(&aq->lock); INIT_LIST_HEAD(&aq->pendingq); INIT_LIST_HEAD(&aq->requestq); timer_setup(&aq->timeout, ap_request_timeout, 0); return aq; } void ap_queue_init_reply(struct ap_queue *aq, struct ap_message *reply) { aq->reply = reply; spin_lock_bh(&aq->lock); ap_wait(ap_sm_event(aq, AP_SM_EVENT_POLL)); spin_unlock_bh(&aq->lock); } EXPORT_SYMBOL(ap_queue_init_reply); /** * ap_queue_message(): Queue a request to an AP device. * @aq: The AP device to queue the message to * @ap_msg: The message that is to be added */ int ap_queue_message(struct ap_queue *aq, struct ap_message *ap_msg) { int rc = 0; /* msg needs to have a valid receive-callback */ BUG_ON(!ap_msg->receive); spin_lock_bh(&aq->lock); /* only allow to queue new messages if device state is ok */ if (aq->dev_state == AP_DEV_STATE_OPERATING) { list_add_tail(&ap_msg->list, &aq->requestq); aq->requestq_count++; aq->total_request_count++; atomic64_inc(&aq->card->total_request_count); } else { rc = -ENODEV; } /* Send/receive as many request from the queue as possible. */ ap_wait(ap_sm_event_loop(aq, AP_SM_EVENT_POLL)); spin_unlock_bh(&aq->lock); return rc; } EXPORT_SYMBOL(ap_queue_message); /** * ap_queue_usable(): Check if queue is usable just now. * @aq: The AP queue device to test for usability. * This function is intended for the scheduler to query if it makes * sense to enqueue a message into this AP queue device by calling * ap_queue_message(). The perspective is very short-term as the * state machine and device state(s) may change at any time. */ bool ap_queue_usable(struct ap_queue *aq) { bool rc = true; spin_lock_bh(&aq->lock); /* check for not configured or checkstopped */ if (!aq->config || aq->chkstop) { rc = false; goto unlock_and_out; } /* device state needs to be ok */ if (aq->dev_state != AP_DEV_STATE_OPERATING) { rc = false; goto unlock_and_out; } /* SE guest's queues additionally need to be bound */ if (ap_q_needs_bind(aq) && !(aq->se_bstate == AP_BS_Q_USABLE || aq->se_bstate == AP_BS_Q_USABLE_NO_SECURE_KEY)) rc = false; unlock_and_out: spin_unlock_bh(&aq->lock); return rc; } EXPORT_SYMBOL(ap_queue_usable); /** * ap_cancel_message(): Cancel a crypto request. * @aq: The AP device that has the message queued * @ap_msg: The message that is to be removed * * Cancel a crypto request. This is done by removing the request * from the device pending or request queue. Note that the * request stays on the AP queue. When it finishes the message * reply will be discarded because the psmid can't be found. */ void ap_cancel_message(struct ap_queue *aq, struct ap_message *ap_msg) { struct ap_message *tmp; spin_lock_bh(&aq->lock); if (!list_empty(&ap_msg->list)) { list_for_each_entry(tmp, &aq->pendingq, list) if (tmp->psmid == ap_msg->psmid) { aq->pendingq_count--; goto found; } aq->requestq_count--; found: list_del_init(&ap_msg->list); } spin_unlock_bh(&aq->lock); } EXPORT_SYMBOL(ap_cancel_message); /** * __ap_flush_queue(): Flush requests. * @aq: Pointer to the AP queue * * Flush all requests from the request/pending queue of an AP device. */ static void __ap_flush_queue(struct ap_queue *aq) { struct ap_message *ap_msg, *next; list_for_each_entry_safe(ap_msg, next, &aq->pendingq, list) { list_del_init(&ap_msg->list); aq->pendingq_count--; ap_msg->rc = -EAGAIN; ap_msg->receive(aq, ap_msg, NULL); } list_for_each_entry_safe(ap_msg, next, &aq->requestq, list) { list_del_init(&ap_msg->list); aq->requestq_count--; ap_msg->rc = -EAGAIN; ap_msg->receive(aq, ap_msg, NULL); } aq->queue_count = 0; } void ap_flush_queue(struct ap_queue *aq) { spin_lock_bh(&aq->lock); __ap_flush_queue(aq); spin_unlock_bh(&aq->lock); } EXPORT_SYMBOL(ap_flush_queue); void ap_queue_prepare_remove(struct ap_queue *aq) { spin_lock_bh(&aq->lock); /* flush queue */ __ap_flush_queue(aq); /* move queue device state to SHUTDOWN in progress */ aq->dev_state = AP_DEV_STATE_SHUTDOWN; spin_unlock_bh(&aq->lock); del_timer_sync(&aq->timeout); } void ap_queue_remove(struct ap_queue *aq) { /* * all messages have been flushed and the device state * is SHUTDOWN. Now reset with zero which also clears * the irq registration and move the device state * to the initial value AP_DEV_STATE_UNINITIATED. */ spin_lock_bh(&aq->lock); ap_zapq(aq->qid, 0); aq->dev_state = AP_DEV_STATE_UNINITIATED; spin_unlock_bh(&aq->lock); } void _ap_queue_init_state(struct ap_queue *aq) { aq->dev_state = AP_DEV_STATE_OPERATING; aq->sm_state = AP_SM_STATE_RESET_START; aq->last_err_rc = 0; aq->assoc_idx = ASSOC_IDX_INVALID; ap_wait(ap_sm_event(aq, AP_SM_EVENT_POLL)); } void ap_queue_init_state(struct ap_queue *aq) { spin_lock_bh(&aq->lock); _ap_queue_init_state(aq); spin_unlock_bh(&aq->lock); } EXPORT_SYMBOL(ap_queue_init_state);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1