Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew R. Ochs | 5364 | 96.46% | 18 | 64.29% |
Uma Krishnan | 171 | 3.07% | 2 | 7.14% |
Arnd Bergmann | 10 | 0.18% | 1 | 3.57% |
Lee Jones | 4 | 0.07% | 1 | 3.57% |
Christoph Hellwig | 4 | 0.07% | 1 | 3.57% |
Michael Christie | 3 | 0.05% | 1 | 3.57% |
Thomas Gleixner | 2 | 0.04% | 1 | 3.57% |
Manoj N. Kumar | 2 | 0.04% | 2 | 7.14% |
Geert Uytterhoeven | 1 | 0.02% | 1 | 3.57% |
Total | 5561 | 28 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * CXL Flash Device Driver * * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation * * Copyright (C) 2015 IBM Corporation */ #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/syscalls.h> #include <asm/unaligned.h> #include <asm/bitsperlong.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_host.h> #include <uapi/scsi/cxlflash_ioctl.h> #include "sislite.h" #include "common.h" #include "vlun.h" #include "superpipe.h" /** * marshal_virt_to_resize() - translate uvirtual to resize structure * @virt: Source structure from which to translate/copy. * @resize: Destination structure for the translate/copy. */ static void marshal_virt_to_resize(struct dk_cxlflash_uvirtual *virt, struct dk_cxlflash_resize *resize) { resize->hdr = virt->hdr; resize->context_id = virt->context_id; resize->rsrc_handle = virt->rsrc_handle; resize->req_size = virt->lun_size; resize->last_lba = virt->last_lba; } /** * marshal_clone_to_rele() - translate clone to release structure * @clone: Source structure from which to translate/copy. * @release: Destination structure for the translate/copy. */ static void marshal_clone_to_rele(struct dk_cxlflash_clone *clone, struct dk_cxlflash_release *release) { release->hdr = clone->hdr; release->context_id = clone->context_id_dst; } /** * ba_init() - initializes a block allocator * @ba_lun: Block allocator to initialize. * * Return: 0 on success, -errno on failure */ static int ba_init(struct ba_lun *ba_lun) { struct ba_lun_info *bali = NULL; int lun_size_au = 0, i = 0; int last_word_underflow = 0; u64 *lam; pr_debug("%s: Initializing LUN: lun_id=%016llx " "ba_lun->lsize=%lx ba_lun->au_size=%lX\n", __func__, ba_lun->lun_id, ba_lun->lsize, ba_lun->au_size); /* Calculate bit map size */ lun_size_au = ba_lun->lsize / ba_lun->au_size; if (lun_size_au == 0) { pr_debug("%s: Requested LUN size of 0!\n", __func__); return -EINVAL; } /* Allocate lun information container */ bali = kzalloc(sizeof(struct ba_lun_info), GFP_KERNEL); if (unlikely(!bali)) { pr_err("%s: Failed to allocate lun_info lun_id=%016llx\n", __func__, ba_lun->lun_id); return -ENOMEM; } bali->total_aus = lun_size_au; bali->lun_bmap_size = lun_size_au / BITS_PER_LONG; if (lun_size_au % BITS_PER_LONG) bali->lun_bmap_size++; /* Allocate bitmap space */ bali->lun_alloc_map = kzalloc((bali->lun_bmap_size * sizeof(u64)), GFP_KERNEL); if (unlikely(!bali->lun_alloc_map)) { pr_err("%s: Failed to allocate lun allocation map: " "lun_id=%016llx\n", __func__, ba_lun->lun_id); kfree(bali); return -ENOMEM; } /* Initialize the bit map size and set all bits to '1' */ bali->free_aun_cnt = lun_size_au; for (i = 0; i < bali->lun_bmap_size; i++) bali->lun_alloc_map[i] = 0xFFFFFFFFFFFFFFFFULL; /* If the last word not fully utilized, mark extra bits as allocated */ last_word_underflow = (bali->lun_bmap_size * BITS_PER_LONG); last_word_underflow -= bali->free_aun_cnt; if (last_word_underflow > 0) { lam = &bali->lun_alloc_map[bali->lun_bmap_size - 1]; for (i = (HIBIT - last_word_underflow + 1); i < BITS_PER_LONG; i++) clear_bit(i, (ulong *)lam); } /* Initialize high elevator index, low/curr already at 0 from kzalloc */ bali->free_high_idx = bali->lun_bmap_size; /* Allocate clone map */ bali->aun_clone_map = kzalloc((bali->total_aus * sizeof(u8)), GFP_KERNEL); if (unlikely(!bali->aun_clone_map)) { pr_err("%s: Failed to allocate clone map: lun_id=%016llx\n", __func__, ba_lun->lun_id); kfree(bali->lun_alloc_map); kfree(bali); return -ENOMEM; } /* Pass the allocated LUN info as a handle to the user */ ba_lun->ba_lun_handle = bali; pr_debug("%s: Successfully initialized the LUN: " "lun_id=%016llx bitmap size=%x, free_aun_cnt=%llx\n", __func__, ba_lun->lun_id, bali->lun_bmap_size, bali->free_aun_cnt); return 0; } /** * find_free_range() - locates a free bit within the block allocator * @low: First word in block allocator to start search. * @high: Last word in block allocator to search. * @bali: LUN information structure owning the block allocator to search. * @bit_word: Passes back the word in the block allocator owning the free bit. * * Return: The bit position within the passed back word, -1 on failure */ static int find_free_range(u32 low, u32 high, struct ba_lun_info *bali, int *bit_word) { int i; u64 bit_pos = -1; ulong *lam, num_bits; for (i = low; i < high; i++) if (bali->lun_alloc_map[i] != 0) { lam = (ulong *)&bali->lun_alloc_map[i]; num_bits = (sizeof(*lam) * BITS_PER_BYTE); bit_pos = find_first_bit(lam, num_bits); pr_devel("%s: Found free bit %llu in LUN " "map entry %016llx at bitmap index = %d\n", __func__, bit_pos, bali->lun_alloc_map[i], i); *bit_word = i; bali->free_aun_cnt--; clear_bit(bit_pos, lam); break; } return bit_pos; } /** * ba_alloc() - allocates a block from the block allocator * @ba_lun: Block allocator from which to allocate a block. * * Return: The allocated block, -1 on failure */ static u64 ba_alloc(struct ba_lun *ba_lun) { u64 bit_pos = -1; int bit_word = 0; struct ba_lun_info *bali = NULL; bali = ba_lun->ba_lun_handle; pr_debug("%s: Received block allocation request: " "lun_id=%016llx free_aun_cnt=%llx\n", __func__, ba_lun->lun_id, bali->free_aun_cnt); if (bali->free_aun_cnt == 0) { pr_debug("%s: No space left on LUN: lun_id=%016llx\n", __func__, ba_lun->lun_id); return -1ULL; } /* Search to find a free entry, curr->high then low->curr */ bit_pos = find_free_range(bali->free_curr_idx, bali->free_high_idx, bali, &bit_word); if (bit_pos == -1) { bit_pos = find_free_range(bali->free_low_idx, bali->free_curr_idx, bali, &bit_word); if (bit_pos == -1) { pr_debug("%s: Could not find an allocation unit on LUN:" " lun_id=%016llx\n", __func__, ba_lun->lun_id); return -1ULL; } } /* Update the free_curr_idx */ if (bit_pos == HIBIT) bali->free_curr_idx = bit_word + 1; else bali->free_curr_idx = bit_word; pr_debug("%s: Allocating AU number=%llx lun_id=%016llx " "free_aun_cnt=%llx\n", __func__, ((bit_word * BITS_PER_LONG) + bit_pos), ba_lun->lun_id, bali->free_aun_cnt); return (u64) ((bit_word * BITS_PER_LONG) + bit_pos); } /** * validate_alloc() - validates the specified block has been allocated * @bali: LUN info owning the block allocator. * @aun: Block to validate. * * Return: 0 on success, -1 on failure */ static int validate_alloc(struct ba_lun_info *bali, u64 aun) { int idx = 0, bit_pos = 0; idx = aun / BITS_PER_LONG; bit_pos = aun % BITS_PER_LONG; if (test_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx])) return -1; return 0; } /** * ba_free() - frees a block from the block allocator * @ba_lun: Block allocator from which to allocate a block. * @to_free: Block to free. * * Return: 0 on success, -1 on failure */ static int ba_free(struct ba_lun *ba_lun, u64 to_free) { int idx = 0, bit_pos = 0; struct ba_lun_info *bali = NULL; bali = ba_lun->ba_lun_handle; if (validate_alloc(bali, to_free)) { pr_debug("%s: AUN %llx is not allocated on lun_id=%016llx\n", __func__, to_free, ba_lun->lun_id); return -1; } pr_debug("%s: Received a request to free AU=%llx lun_id=%016llx " "free_aun_cnt=%llx\n", __func__, to_free, ba_lun->lun_id, bali->free_aun_cnt); if (bali->aun_clone_map[to_free] > 0) { pr_debug("%s: AUN %llx lun_id=%016llx cloned. Clone count=%x\n", __func__, to_free, ba_lun->lun_id, bali->aun_clone_map[to_free]); bali->aun_clone_map[to_free]--; return 0; } idx = to_free / BITS_PER_LONG; bit_pos = to_free % BITS_PER_LONG; set_bit(bit_pos, (ulong *)&bali->lun_alloc_map[idx]); bali->free_aun_cnt++; if (idx < bali->free_low_idx) bali->free_low_idx = idx; else if (idx > bali->free_high_idx) bali->free_high_idx = idx; pr_debug("%s: Successfully freed AU bit_pos=%x bit map index=%x " "lun_id=%016llx free_aun_cnt=%llx\n", __func__, bit_pos, idx, ba_lun->lun_id, bali->free_aun_cnt); return 0; } /** * ba_clone() - Clone a chunk of the block allocation table * @ba_lun: Block allocator from which to allocate a block. * @to_clone: Block to clone. * * Return: 0 on success, -1 on failure */ static int ba_clone(struct ba_lun *ba_lun, u64 to_clone) { struct ba_lun_info *bali = ba_lun->ba_lun_handle; if (validate_alloc(bali, to_clone)) { pr_debug("%s: AUN=%llx not allocated on lun_id=%016llx\n", __func__, to_clone, ba_lun->lun_id); return -1; } pr_debug("%s: Received a request to clone AUN %llx on lun_id=%016llx\n", __func__, to_clone, ba_lun->lun_id); if (bali->aun_clone_map[to_clone] == MAX_AUN_CLONE_CNT) { pr_debug("%s: AUN %llx on lun_id=%016llx hit max clones already\n", __func__, to_clone, ba_lun->lun_id); return -1; } bali->aun_clone_map[to_clone]++; return 0; } /** * ba_space() - returns the amount of free space left in the block allocator * @ba_lun: Block allocator. * * Return: Amount of free space in block allocator */ static u64 ba_space(struct ba_lun *ba_lun) { struct ba_lun_info *bali = ba_lun->ba_lun_handle; return bali->free_aun_cnt; } /** * cxlflash_ba_terminate() - frees resources associated with the block allocator * @ba_lun: Block allocator. * * Safe to call in a partially allocated state. */ void cxlflash_ba_terminate(struct ba_lun *ba_lun) { struct ba_lun_info *bali = ba_lun->ba_lun_handle; if (bali) { kfree(bali->aun_clone_map); kfree(bali->lun_alloc_map); kfree(bali); ba_lun->ba_lun_handle = NULL; } } /** * init_vlun() - initializes a LUN for virtual use * @lli: LUN information structure that owns the block allocator. * * Return: 0 on success, -errno on failure */ static int init_vlun(struct llun_info *lli) { int rc = 0; struct glun_info *gli = lli->parent; struct blka *blka = &gli->blka; memset(blka, 0, sizeof(*blka)); mutex_init(&blka->mutex); /* LUN IDs are unique per port, save the index instead */ blka->ba_lun.lun_id = lli->lun_index; blka->ba_lun.lsize = gli->max_lba + 1; blka->ba_lun.lba_size = gli->blk_len; blka->ba_lun.au_size = MC_CHUNK_SIZE; blka->nchunk = blka->ba_lun.lsize / MC_CHUNK_SIZE; rc = ba_init(&blka->ba_lun); if (unlikely(rc)) pr_debug("%s: cannot init block_alloc, rc=%d\n", __func__, rc); pr_debug("%s: returning rc=%d lli=%p\n", __func__, rc, lli); return rc; } /** * write_same16() - sends a SCSI WRITE_SAME16 (0) command to specified LUN * @sdev: SCSI device associated with LUN. * @lba: Logical block address to start write same. * @nblks: Number of logical blocks to write same. * * The SCSI WRITE_SAME16 can take quite a while to complete. Should an EEH occur * while in scsi_execute_cmd(), the EEH handler will attempt to recover. As * part of the recovery, the handler drains all currently running ioctls, * waiting until they have completed before proceeding with a reset. As this * routine is used on the ioctl path, this can create a condition where the * EEH handler becomes stuck, infinitely waiting for this ioctl thread. To * avoid this behavior, temporarily unmark this thread as an ioctl thread by * releasing the ioctl read semaphore. This will allow the EEH handler to * proceed with a recovery while this thread is still running. Once the * scsi_execute_cmd() returns, reacquire the ioctl read semaphore and check the * adapter state in case it changed while inside of scsi_execute_cmd(). The * state check will wait if the adapter is still being recovered or return a * failure if the recovery failed. In the event that the adapter reset failed, * simply return the failure as the ioctl would be unable to continue. * * Note that the above puts a requirement on this routine to only be called on * an ioctl thread. * * Return: 0 on success, -errno on failure */ static int write_same16(struct scsi_device *sdev, u64 lba, u32 nblks) { u8 *cmd_buf = NULL; u8 *scsi_cmd = NULL; int rc = 0; int result = 0; u64 offset = lba; int left = nblks; struct cxlflash_cfg *cfg = shost_priv(sdev->host); struct device *dev = &cfg->dev->dev; const u32 s = ilog2(sdev->sector_size) - 9; const u32 to = sdev->request_queue->rq_timeout; const u32 ws_limit = sdev->request_queue->limits.max_write_zeroes_sectors >> s; cmd_buf = kzalloc(CMD_BUFSIZE, GFP_KERNEL); scsi_cmd = kzalloc(MAX_COMMAND_SIZE, GFP_KERNEL); if (unlikely(!cmd_buf || !scsi_cmd)) { rc = -ENOMEM; goto out; } while (left > 0) { scsi_cmd[0] = WRITE_SAME_16; scsi_cmd[1] = cfg->ws_unmap ? 0x8 : 0; put_unaligned_be64(offset, &scsi_cmd[2]); put_unaligned_be32(ws_limit < left ? ws_limit : left, &scsi_cmd[10]); /* Drop the ioctl read semaphore across lengthy call */ up_read(&cfg->ioctl_rwsem); result = scsi_execute_cmd(sdev, scsi_cmd, REQ_OP_DRV_OUT, cmd_buf, CMD_BUFSIZE, to, CMD_RETRIES, NULL); down_read(&cfg->ioctl_rwsem); rc = check_state(cfg); if (rc) { dev_err(dev, "%s: Failed state result=%08x\n", __func__, result); rc = -ENODEV; goto out; } if (result) { dev_err_ratelimited(dev, "%s: command failed for " "offset=%lld result=%08x\n", __func__, offset, result); rc = -EIO; goto out; } left -= ws_limit; offset += ws_limit; } out: kfree(cmd_buf); kfree(scsi_cmd); dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * grow_lxt() - expands the translation table associated with the specified RHTE * @afu: AFU associated with the host. * @sdev: SCSI device associated with LUN. * @ctxid: Context ID of context owning the RHTE. * @rhndl: Resource handle associated with the RHTE. * @rhte: Resource handle entry (RHTE). * @new_size: Number of translation entries associated with RHTE. * * By design, this routine employs a 'best attempt' allocation and will * truncate the requested size down if there is not sufficient space in * the block allocator to satisfy the request but there does exist some * amount of space. The user is made aware of this by returning the size * allocated. * * Return: 0 on success, -errno on failure */ static int grow_lxt(struct afu *afu, struct scsi_device *sdev, ctx_hndl_t ctxid, res_hndl_t rhndl, struct sisl_rht_entry *rhte, u64 *new_size) { struct cxlflash_cfg *cfg = shost_priv(sdev->host); struct device *dev = &cfg->dev->dev; struct sisl_lxt_entry *lxt = NULL, *lxt_old = NULL; struct llun_info *lli = sdev->hostdata; struct glun_info *gli = lli->parent; struct blka *blka = &gli->blka; u32 av_size; u32 ngrps, ngrps_old; u64 aun; /* chunk# allocated by block allocator */ u64 delta = *new_size - rhte->lxt_cnt; u64 my_new_size; int i, rc = 0; /* * Check what is available in the block allocator before re-allocating * LXT array. This is done up front under the mutex which must not be * released until after allocation is complete. */ mutex_lock(&blka->mutex); av_size = ba_space(&blka->ba_lun); if (unlikely(av_size <= 0)) { dev_dbg(dev, "%s: ba_space error av_size=%d\n", __func__, av_size); mutex_unlock(&blka->mutex); rc = -ENOSPC; goto out; } if (av_size < delta) delta = av_size; lxt_old = rhte->lxt_start; ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt + delta); if (ngrps != ngrps_old) { /* reallocate to fit new size */ lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), GFP_KERNEL); if (unlikely(!lxt)) { mutex_unlock(&blka->mutex); rc = -ENOMEM; goto out; } /* copy over all old entries */ memcpy(lxt, lxt_old, (sizeof(*lxt) * rhte->lxt_cnt)); } else lxt = lxt_old; /* nothing can fail from now on */ my_new_size = rhte->lxt_cnt + delta; /* add new entries to the end */ for (i = rhte->lxt_cnt; i < my_new_size; i++) { /* * Due to the earlier check of available space, ba_alloc * cannot fail here. If it did due to internal error, * leave a rlba_base of -1u which will likely be a * invalid LUN (too large). */ aun = ba_alloc(&blka->ba_lun); if ((aun == -1ULL) || (aun >= blka->nchunk)) dev_dbg(dev, "%s: ba_alloc error allocated chunk=%llu " "max=%llu\n", __func__, aun, blka->nchunk - 1); /* select both ports, use r/w perms from RHT */ lxt[i].rlba_base = ((aun << MC_CHUNK_SHIFT) | (lli->lun_index << LXT_LUNIDX_SHIFT) | (RHT_PERM_RW << LXT_PERM_SHIFT | lli->port_sel)); } mutex_unlock(&blka->mutex); /* * The following sequence is prescribed in the SISlite spec * for syncing up with the AFU when adding LXT entries. */ dma_wmb(); /* Make LXT updates are visible */ rhte->lxt_start = lxt; dma_wmb(); /* Make RHT entry's LXT table update visible */ rhte->lxt_cnt = my_new_size; dma_wmb(); /* Make RHT entry's LXT table size update visible */ rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); if (unlikely(rc)) rc = -EAGAIN; /* free old lxt if reallocated */ if (lxt != lxt_old) kfree(lxt_old); *new_size = my_new_size; out: dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * shrink_lxt() - reduces translation table associated with the specified RHTE * @afu: AFU associated with the host. * @sdev: SCSI device associated with LUN. * @rhndl: Resource handle associated with the RHTE. * @rhte: Resource handle entry (RHTE). * @ctxi: Context owning resources. * @new_size: Number of translation entries associated with RHTE. * * Return: 0 on success, -errno on failure */ static int shrink_lxt(struct afu *afu, struct scsi_device *sdev, res_hndl_t rhndl, struct sisl_rht_entry *rhte, struct ctx_info *ctxi, u64 *new_size) { struct cxlflash_cfg *cfg = shost_priv(sdev->host); struct device *dev = &cfg->dev->dev; struct sisl_lxt_entry *lxt, *lxt_old; struct llun_info *lli = sdev->hostdata; struct glun_info *gli = lli->parent; struct blka *blka = &gli->blka; ctx_hndl_t ctxid = DECODE_CTXID(ctxi->ctxid); bool needs_ws = ctxi->rht_needs_ws[rhndl]; bool needs_sync = !ctxi->err_recovery_active; u32 ngrps, ngrps_old; u64 aun; /* chunk# allocated by block allocator */ u64 delta = rhte->lxt_cnt - *new_size; u64 my_new_size; int i, rc = 0; lxt_old = rhte->lxt_start; ngrps_old = LXT_NUM_GROUPS(rhte->lxt_cnt); ngrps = LXT_NUM_GROUPS(rhte->lxt_cnt - delta); if (ngrps != ngrps_old) { /* Reallocate to fit new size unless new size is 0 */ if (ngrps) { lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), GFP_KERNEL); if (unlikely(!lxt)) { rc = -ENOMEM; goto out; } /* Copy over old entries that will remain */ memcpy(lxt, lxt_old, (sizeof(*lxt) * (rhte->lxt_cnt - delta))); } else lxt = NULL; } else lxt = lxt_old; /* Nothing can fail from now on */ my_new_size = rhte->lxt_cnt - delta; /* * The following sequence is prescribed in the SISlite spec * for syncing up with the AFU when removing LXT entries. */ rhte->lxt_cnt = my_new_size; dma_wmb(); /* Make RHT entry's LXT table size update visible */ rhte->lxt_start = lxt; dma_wmb(); /* Make RHT entry's LXT table update visible */ if (needs_sync) { rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); if (unlikely(rc)) rc = -EAGAIN; } if (needs_ws) { /* * Mark the context as unavailable, so that we can release * the mutex safely. */ ctxi->unavail = true; mutex_unlock(&ctxi->mutex); } /* Free LBAs allocated to freed chunks */ mutex_lock(&blka->mutex); for (i = delta - 1; i >= 0; i--) { aun = lxt_old[my_new_size + i].rlba_base >> MC_CHUNK_SHIFT; if (needs_ws) write_same16(sdev, aun, MC_CHUNK_SIZE); ba_free(&blka->ba_lun, aun); } mutex_unlock(&blka->mutex); if (needs_ws) { /* Make the context visible again */ mutex_lock(&ctxi->mutex); ctxi->unavail = false; } /* Free old lxt if reallocated */ if (lxt != lxt_old) kfree(lxt_old); *new_size = my_new_size; out: dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * _cxlflash_vlun_resize() - changes the size of a virtual LUN * @sdev: SCSI device associated with LUN owning virtual LUN. * @ctxi: Context owning resources. * @resize: Resize ioctl data structure. * * On successful return, the user is informed of the new size (in blocks) * of the virtual LUN in last LBA format. When the size of the virtual * LUN is zero, the last LBA is reflected as -1. See comment in the * prologue for _cxlflash_disk_release() regarding AFU syncs and contexts * on the error recovery list. * * Return: 0 on success, -errno on failure */ int _cxlflash_vlun_resize(struct scsi_device *sdev, struct ctx_info *ctxi, struct dk_cxlflash_resize *resize) { struct cxlflash_cfg *cfg = shost_priv(sdev->host); struct device *dev = &cfg->dev->dev; struct llun_info *lli = sdev->hostdata; struct glun_info *gli = lli->parent; struct afu *afu = cfg->afu; bool put_ctx = false; res_hndl_t rhndl = resize->rsrc_handle; u64 new_size; u64 nsectors; u64 ctxid = DECODE_CTXID(resize->context_id), rctxid = resize->context_id; struct sisl_rht_entry *rhte; int rc = 0; /* * The requested size (req_size) is always assumed to be in 4k blocks, * so we have to convert it here from 4k to chunk size. */ nsectors = (resize->req_size * CXLFLASH_BLOCK_SIZE) / gli->blk_len; new_size = DIV_ROUND_UP(nsectors, MC_CHUNK_SIZE); dev_dbg(dev, "%s: ctxid=%llu rhndl=%llu req_size=%llu new_size=%llu\n", __func__, ctxid, resize->rsrc_handle, resize->req_size, new_size); if (unlikely(gli->mode != MODE_VIRTUAL)) { dev_dbg(dev, "%s: LUN mode does not support resize mode=%d\n", __func__, gli->mode); rc = -EINVAL; goto out; } if (!ctxi) { ctxi = get_context(cfg, rctxid, lli, CTX_CTRL_ERR_FALLBACK); if (unlikely(!ctxi)) { dev_dbg(dev, "%s: Bad context ctxid=%llu\n", __func__, ctxid); rc = -EINVAL; goto out; } put_ctx = true; } rhte = get_rhte(ctxi, rhndl, lli); if (unlikely(!rhte)) { dev_dbg(dev, "%s: Bad resource handle rhndl=%u\n", __func__, rhndl); rc = -EINVAL; goto out; } if (new_size > rhte->lxt_cnt) rc = grow_lxt(afu, sdev, ctxid, rhndl, rhte, &new_size); else if (new_size < rhte->lxt_cnt) rc = shrink_lxt(afu, sdev, rhndl, rhte, ctxi, &new_size); else { /* * Rare case where there is already sufficient space, just * need to perform a translation sync with the AFU. This * scenario likely follows a previous sync failure during * a resize operation. Accordingly, perform the heavyweight * form of translation sync as it is unknown which type of * resize failed previously. */ rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_HW_SYNC); if (unlikely(rc)) { rc = -EAGAIN; goto out; } } resize->hdr.return_flags = 0; resize->last_lba = (new_size * MC_CHUNK_SIZE * gli->blk_len); resize->last_lba /= CXLFLASH_BLOCK_SIZE; resize->last_lba--; out: if (put_ctx) put_context(ctxi); dev_dbg(dev, "%s: resized to %llu returning rc=%d\n", __func__, resize->last_lba, rc); return rc; } int cxlflash_vlun_resize(struct scsi_device *sdev, void *resize) { return _cxlflash_vlun_resize(sdev, NULL, resize); } /** * cxlflash_restore_luntable() - Restore LUN table to prior state * @cfg: Internal structure associated with the host. */ void cxlflash_restore_luntable(struct cxlflash_cfg *cfg) { struct llun_info *lli, *temp; u32 lind; int k; struct device *dev = &cfg->dev->dev; __be64 __iomem *fc_port_luns; mutex_lock(&global.mutex); list_for_each_entry_safe(lli, temp, &cfg->lluns, list) { if (!lli->in_table) continue; lind = lli->lun_index; dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); for (k = 0; k < cfg->num_fc_ports; k++) if (lli->port_sel & (1 << k)) { fc_port_luns = get_fc_port_luns(cfg, k); writeq_be(lli->lun_id[k], &fc_port_luns[lind]); dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); } } mutex_unlock(&global.mutex); } /** * get_num_ports() - compute number of ports from port selection mask * @psm: Port selection mask. * * Return: Population count of port selection mask */ static inline u8 get_num_ports(u32 psm) { static const u8 bits[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 }; return bits[psm & 0xf]; } /** * init_luntable() - write an entry in the LUN table * @cfg: Internal structure associated with the host. * @lli: Per adapter LUN information structure. * * On successful return, a LUN table entry is created: * - at the top for LUNs visible on multiple ports. * - at the bottom for LUNs visible only on one port. * * Return: 0 on success, -errno on failure */ static int init_luntable(struct cxlflash_cfg *cfg, struct llun_info *lli) { u32 chan; u32 lind; u32 nports; int rc = 0; int k; struct device *dev = &cfg->dev->dev; __be64 __iomem *fc_port_luns; mutex_lock(&global.mutex); if (lli->in_table) goto out; nports = get_num_ports(lli->port_sel); if (nports == 0 || nports > cfg->num_fc_ports) { WARN(1, "Unsupported port configuration nports=%u", nports); rc = -EIO; goto out; } if (nports > 1) { /* * When LUN is visible from multiple ports, we will put * it in the top half of the LUN table. */ for (k = 0; k < cfg->num_fc_ports; k++) { if (!(lli->port_sel & (1 << k))) continue; if (cfg->promote_lun_index == cfg->last_lun_index[k]) { rc = -ENOSPC; goto out; } } lind = lli->lun_index = cfg->promote_lun_index; dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n", __func__, lind); for (k = 0; k < cfg->num_fc_ports; k++) { if (!(lli->port_sel & (1 << k))) continue; fc_port_luns = get_fc_port_luns(cfg, k); writeq_be(lli->lun_id[k], &fc_port_luns[lind]); dev_dbg(dev, "\t%d=%llx\n", k, lli->lun_id[k]); } cfg->promote_lun_index++; } else { /* * When LUN is visible only from one port, we will put * it in the bottom half of the LUN table. */ chan = PORTMASK2CHAN(lli->port_sel); if (cfg->promote_lun_index == cfg->last_lun_index[chan]) { rc = -ENOSPC; goto out; } lind = lli->lun_index = cfg->last_lun_index[chan]; fc_port_luns = get_fc_port_luns(cfg, chan); writeq_be(lli->lun_id[chan], &fc_port_luns[lind]); cfg->last_lun_index[chan]--; dev_dbg(dev, "%s: Virtual LUNs on slot %d:\n\t%d=%llx\n", __func__, lind, chan, lli->lun_id[chan]); } lli->in_table = true; out: mutex_unlock(&global.mutex); dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; } /** * cxlflash_disk_virtual_open() - open a virtual disk of specified size * @sdev: SCSI device associated with LUN owning virtual LUN. * @arg: UVirtual ioctl data structure. * * On successful return, the user is informed of the resource handle * to be used to identify the virtual LUN and the size (in blocks) of * the virtual LUN in last LBA format. When the size of the virtual LUN * is zero, the last LBA is reflected as -1. * * Return: 0 on success, -errno on failure */ int cxlflash_disk_virtual_open(struct scsi_device *sdev, void *arg) { struct cxlflash_cfg *cfg = shost_priv(sdev->host); struct device *dev = &cfg->dev->dev; struct llun_info *lli = sdev->hostdata; struct glun_info *gli = lli->parent; struct dk_cxlflash_uvirtual *virt = (struct dk_cxlflash_uvirtual *)arg; struct dk_cxlflash_resize resize; u64 ctxid = DECODE_CTXID(virt->context_id), rctxid = virt->context_id; u64 lun_size = virt->lun_size; u64 last_lba = 0; u64 rsrc_handle = -1; int rc = 0; struct ctx_info *ctxi = NULL; struct sisl_rht_entry *rhte = NULL; dev_dbg(dev, "%s: ctxid=%llu ls=%llu\n", __func__, ctxid, lun_size); /* Setup the LUNs block allocator on first call */ mutex_lock(&gli->mutex); if (gli->mode == MODE_NONE) { rc = init_vlun(lli); if (rc) { dev_err(dev, "%s: init_vlun failed rc=%d\n", __func__, rc); rc = -ENOMEM; goto err0; } } rc = cxlflash_lun_attach(gli, MODE_VIRTUAL, true); if (unlikely(rc)) { dev_err(dev, "%s: Failed attach to LUN (VIRTUAL)\n", __func__); goto err0; } mutex_unlock(&gli->mutex); rc = init_luntable(cfg, lli); if (rc) { dev_err(dev, "%s: init_luntable failed rc=%d\n", __func__, rc); goto err1; } ctxi = get_context(cfg, rctxid, lli, 0); if (unlikely(!ctxi)) { dev_err(dev, "%s: Bad context ctxid=%llu\n", __func__, ctxid); rc = -EINVAL; goto err1; } rhte = rhte_checkout(ctxi, lli); if (unlikely(!rhte)) { dev_err(dev, "%s: too many opens ctxid=%llu\n", __func__, ctxid); rc = -EMFILE; /* too many opens */ goto err1; } rsrc_handle = (rhte - ctxi->rht_start); /* Populate RHT format 0 */ rhte->nmask = MC_RHT_NMASK; rhte->fp = SISL_RHT_FP(0U, ctxi->rht_perms); /* Resize even if requested size is 0 */ marshal_virt_to_resize(virt, &resize); resize.rsrc_handle = rsrc_handle; rc = _cxlflash_vlun_resize(sdev, ctxi, &resize); if (rc) { dev_err(dev, "%s: resize failed rc=%d\n", __func__, rc); goto err2; } last_lba = resize.last_lba; if (virt->hdr.flags & DK_CXLFLASH_UVIRTUAL_NEED_WRITE_SAME) ctxi->rht_needs_ws[rsrc_handle] = true; virt->hdr.return_flags = 0; virt->last_lba = last_lba; virt->rsrc_handle = rsrc_handle; if (get_num_ports(lli->port_sel) > 1) virt->hdr.return_flags |= DK_CXLFLASH_ALL_PORTS_ACTIVE; out: if (likely(ctxi)) put_context(ctxi); dev_dbg(dev, "%s: returning handle=%llu rc=%d llba=%llu\n", __func__, rsrc_handle, rc, last_lba); return rc; err2: rhte_checkin(ctxi, rhte); err1: cxlflash_lun_detach(gli); goto out; err0: /* Special common cleanup prior to successful LUN attach */ cxlflash_ba_terminate(&gli->blka.ba_lun); mutex_unlock(&gli->mutex); goto out; } /** * clone_lxt() - copies translation tables from source to destination RHTE * @afu: AFU associated with the host. * @blka: Block allocator associated with LUN. * @ctxid: Context ID of context owning the RHTE. * @rhndl: Resource handle associated with the RHTE. * @rhte: Destination resource handle entry (RHTE). * @rhte_src: Source resource handle entry (RHTE). * * Return: 0 on success, -errno on failure */ static int clone_lxt(struct afu *afu, struct blka *blka, ctx_hndl_t ctxid, res_hndl_t rhndl, struct sisl_rht_entry *rhte, struct sisl_rht_entry *rhte_src) { struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; struct sisl_lxt_entry *lxt = NULL; bool locked = false; u32 ngrps; u64 aun; /* chunk# allocated by block allocator */ int j; int i = 0; int rc = 0; ngrps = LXT_NUM_GROUPS(rhte_src->lxt_cnt); if (ngrps) { /* allocate new LXTs for clone */ lxt = kzalloc((sizeof(*lxt) * LXT_GROUP_SIZE * ngrps), GFP_KERNEL); if (unlikely(!lxt)) { rc = -ENOMEM; goto out; } /* copy over */ memcpy(lxt, rhte_src->lxt_start, (sizeof(*lxt) * rhte_src->lxt_cnt)); /* clone the LBAs in block allocator via ref_cnt, note that the * block allocator mutex must be held until it is established * that this routine will complete without the need for a * cleanup. */ mutex_lock(&blka->mutex); locked = true; for (i = 0; i < rhte_src->lxt_cnt; i++) { aun = (lxt[i].rlba_base >> MC_CHUNK_SHIFT); if (ba_clone(&blka->ba_lun, aun) == -1ULL) { rc = -EIO; goto err; } } } /* * The following sequence is prescribed in the SISlite spec * for syncing up with the AFU when adding LXT entries. */ dma_wmb(); /* Make LXT updates are visible */ rhte->lxt_start = lxt; dma_wmb(); /* Make RHT entry's LXT table update visible */ rhte->lxt_cnt = rhte_src->lxt_cnt; dma_wmb(); /* Make RHT entry's LXT table size update visible */ rc = cxlflash_afu_sync(afu, ctxid, rhndl, AFU_LW_SYNC); if (unlikely(rc)) { rc = -EAGAIN; goto err2; } out: if (locked) mutex_unlock(&blka->mutex); dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; err2: /* Reset the RHTE */ rhte->lxt_cnt = 0; dma_wmb(); rhte->lxt_start = NULL; dma_wmb(); err: /* free the clones already made */ for (j = 0; j < i; j++) { aun = (lxt[j].rlba_base >> MC_CHUNK_SHIFT); ba_free(&blka->ba_lun, aun); } kfree(lxt); goto out; } /** * cxlflash_disk_clone() - clone a context by making snapshot of another * @sdev: SCSI device associated with LUN owning virtual LUN. * @arg: Clone ioctl data structure. * * This routine effectively performs cxlflash_disk_open operation for each * in-use virtual resource in the source context. Note that the destination * context must be in pristine state and cannot have any resource handles * open at the time of the clone. * * Return: 0 on success, -errno on failure */ int cxlflash_disk_clone(struct scsi_device *sdev, void *arg) { struct dk_cxlflash_clone *clone = arg; struct cxlflash_cfg *cfg = shost_priv(sdev->host); struct device *dev = &cfg->dev->dev; struct llun_info *lli = sdev->hostdata; struct glun_info *gli = lli->parent; struct blka *blka = &gli->blka; struct afu *afu = cfg->afu; struct dk_cxlflash_release release = { { 0 }, 0 }; struct ctx_info *ctxi_src = NULL, *ctxi_dst = NULL; struct lun_access *lun_access_src, *lun_access_dst; u32 perms; u64 ctxid_src = DECODE_CTXID(clone->context_id_src), ctxid_dst = DECODE_CTXID(clone->context_id_dst), rctxid_src = clone->context_id_src, rctxid_dst = clone->context_id_dst; int i, j; int rc = 0; bool found; LIST_HEAD(sidecar); dev_dbg(dev, "%s: ctxid_src=%llu ctxid_dst=%llu\n", __func__, ctxid_src, ctxid_dst); /* Do not clone yourself */ if (unlikely(rctxid_src == rctxid_dst)) { rc = -EINVAL; goto out; } if (unlikely(gli->mode != MODE_VIRTUAL)) { rc = -EINVAL; dev_dbg(dev, "%s: Only supported on virtual LUNs mode=%u\n", __func__, gli->mode); goto out; } ctxi_src = get_context(cfg, rctxid_src, lli, CTX_CTRL_CLONE); ctxi_dst = get_context(cfg, rctxid_dst, lli, 0); if (unlikely(!ctxi_src || !ctxi_dst)) { dev_dbg(dev, "%s: Bad context ctxid_src=%llu ctxid_dst=%llu\n", __func__, ctxid_src, ctxid_dst); rc = -EINVAL; goto out; } /* Verify there is no open resource handle in the destination context */ for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) if (ctxi_dst->rht_start[i].nmask != 0) { rc = -EINVAL; goto out; } /* Clone LUN access list */ list_for_each_entry(lun_access_src, &ctxi_src->luns, list) { found = false; list_for_each_entry(lun_access_dst, &ctxi_dst->luns, list) if (lun_access_dst->sdev == lun_access_src->sdev) { found = true; break; } if (!found) { lun_access_dst = kzalloc(sizeof(*lun_access_dst), GFP_KERNEL); if (unlikely(!lun_access_dst)) { dev_err(dev, "%s: lun_access allocation fail\n", __func__); rc = -ENOMEM; goto out; } *lun_access_dst = *lun_access_src; list_add(&lun_access_dst->list, &sidecar); } } if (unlikely(!ctxi_src->rht_out)) { dev_dbg(dev, "%s: Nothing to clone\n", __func__); goto out_success; } /* User specified permission on attach */ perms = ctxi_dst->rht_perms; /* * Copy over checked-out RHT (and their associated LXT) entries by * hand, stopping after we've copied all outstanding entries and * cleaning up if the clone fails. * * Note: This loop is equivalent to performing cxlflash_disk_open and * cxlflash_vlun_resize. As such, LUN accounting needs to be taken into * account by attaching after each successful RHT entry clone. In the * event that a clone failure is experienced, the LUN detach is handled * via the cleanup performed by _cxlflash_disk_release. */ for (i = 0; i < MAX_RHT_PER_CONTEXT; i++) { if (ctxi_src->rht_out == ctxi_dst->rht_out) break; if (ctxi_src->rht_start[i].nmask == 0) continue; /* Consume a destination RHT entry */ ctxi_dst->rht_out++; ctxi_dst->rht_start[i].nmask = ctxi_src->rht_start[i].nmask; ctxi_dst->rht_start[i].fp = SISL_RHT_FP_CLONE(ctxi_src->rht_start[i].fp, perms); ctxi_dst->rht_lun[i] = ctxi_src->rht_lun[i]; rc = clone_lxt(afu, blka, ctxid_dst, i, &ctxi_dst->rht_start[i], &ctxi_src->rht_start[i]); if (rc) { marshal_clone_to_rele(clone, &release); for (j = 0; j < i; j++) { release.rsrc_handle = j; _cxlflash_disk_release(sdev, ctxi_dst, &release); } /* Put back the one we failed on */ rhte_checkin(ctxi_dst, &ctxi_dst->rht_start[i]); goto err; } cxlflash_lun_attach(gli, gli->mode, false); } out_success: list_splice(&sidecar, &ctxi_dst->luns); /* fall through */ out: if (ctxi_src) put_context(ctxi_src); if (ctxi_dst) put_context(ctxi_dst); dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc); return rc; err: list_for_each_entry_safe(lun_access_src, lun_access_dst, &sidecar, list) kfree(lun_access_src); goto out; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1