Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Adam Radford | 1971 | 46.46% | 6 | 9.84% |
Sumit Saxena | 734 | 17.30% | 12 | 19.67% |
Sasikumar Chandrasekaran | 726 | 17.11% | 5 | 8.20% |
Shivasharan S | 441 | 10.40% | 18 | 29.51% |
Christoph Hellwig | 140 | 3.30% | 1 | 1.64% |
Bo Yang | 59 | 1.39% | 4 | 6.56% |
Anand Lodnoor | 51 | 1.20% | 2 | 3.28% |
Sreenivas Bagalkote | 45 | 1.06% | 1 | 1.64% |
Chandrakanth Patil | 44 | 1.04% | 3 | 4.92% |
Kees Cook | 12 | 0.28% | 1 | 1.64% |
Kashyap Desai | 6 | 0.14% | 1 | 1.64% |
Baoyou Xie | 6 | 0.14% | 1 | 1.64% |
Gustavo A. R. Silva | 4 | 0.09% | 4 | 6.56% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.64% |
Matthias Schid | 1 | 0.02% | 1 | 1.64% |
Total | 4242 | 61 |
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Linux MegaRAID driver for SAS based RAID controllers * * Copyright (c) 2009-2013 LSI Corporation * Copyright (c) 2013-2016 Avago Technologies * Copyright (c) 2016-2018 Broadcom Inc. * * FILE: megaraid_sas_fusion.h * * Authors: Broadcom Inc. * Manoj Jose * Sumant Patro * Kashyap Desai <kashyap.desai@broadcom.com> * Sumit Saxena <sumit.saxena@broadcom.com> * * Send feedback to: megaraidlinux.pdl@broadcom.com */ #ifndef _MEGARAID_SAS_FUSION_H_ #define _MEGARAID_SAS_FUSION_H_ /* Fusion defines */ #define MEGASAS_CHAIN_FRAME_SZ_MIN 1024 #define MFI_FUSION_ENABLE_INTERRUPT_MASK (0x00000009) #define MEGASAS_MAX_CHAIN_SHIFT 5 #define MEGASAS_MAX_CHAIN_SIZE_UNITS_MASK 0x400000 #define MEGASAS_MAX_CHAIN_SIZE_MASK 0x3E0 #define MEGASAS_256K_IO 128 #define MEGASAS_1MB_IO (MEGASAS_256K_IO * 4) #define MEGA_MPI2_RAID_DEFAULT_IO_FRAME_SIZE 256 #define MEGASAS_MPI2_FUNCTION_PASSTHRU_IO_REQUEST 0xF0 #define MEGASAS_MPI2_FUNCTION_LD_IO_REQUEST 0xF1 #define MEGASAS_LOAD_BALANCE_FLAG 0x1 #define MEGASAS_DCMD_MBOX_PEND_FLAG 0x1 #define HOST_DIAG_WRITE_ENABLE 0x80 #define HOST_DIAG_RESET_ADAPTER 0x4 #define MEGASAS_FUSION_MAX_RESET_TRIES 3 #define MAX_MSIX_QUEUES_FUSION 128 #define RDPQ_MAX_INDEX_IN_ONE_CHUNK 16 #define RDPQ_MAX_CHUNK_COUNT (MAX_MSIX_QUEUES_FUSION / RDPQ_MAX_INDEX_IN_ONE_CHUNK) /* Invader defines */ #define MPI2_TYPE_CUDA 0x2 #define MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH 0x4000 #define MR_RL_FLAGS_GRANT_DESTINATION_CPU0 0x00 #define MR_RL_FLAGS_GRANT_DESTINATION_CPU1 0x10 #define MR_RL_FLAGS_GRANT_DESTINATION_CUDA 0x80 #define MR_RL_FLAGS_SEQ_NUM_ENABLE 0x8 #define MR_RL_WRITE_THROUGH_MODE 0x00 #define MR_RL_WRITE_BACK_MODE 0x01 /* T10 PI defines */ #define MR_PROT_INFO_TYPE_CONTROLLER 0x8 #define MEGASAS_SCSI_VARIABLE_LENGTH_CMD 0x7f #define MEGASAS_SCSI_SERVICE_ACTION_READ32 0x9 #define MEGASAS_SCSI_SERVICE_ACTION_WRITE32 0xB #define MEGASAS_SCSI_ADDL_CDB_LEN 0x18 #define MEGASAS_RD_WR_PROTECT_CHECK_ALL 0x20 #define MEGASAS_RD_WR_PROTECT_CHECK_NONE 0x60 #define MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET (0x0000030C) #define MPI2_REPLY_POST_HOST_INDEX_OFFSET (0x0000006C) /* * Raid context flags */ #define MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_SHIFT 0x4 #define MR_RAID_CTX_RAID_FLAGS_IO_SUB_TYPE_MASK 0x30 enum MR_RAID_FLAGS_IO_SUB_TYPE { MR_RAID_FLAGS_IO_SUB_TYPE_NONE = 0, MR_RAID_FLAGS_IO_SUB_TYPE_SYSTEM_PD = 1, MR_RAID_FLAGS_IO_SUB_TYPE_RMW_DATA = 2, MR_RAID_FLAGS_IO_SUB_TYPE_RMW_P = 3, MR_RAID_FLAGS_IO_SUB_TYPE_RMW_Q = 4, MR_RAID_FLAGS_IO_SUB_TYPE_CACHE_BYPASS = 6, MR_RAID_FLAGS_IO_SUB_TYPE_LDIO_BW_LIMIT = 7, MR_RAID_FLAGS_IO_SUB_TYPE_R56_DIV_OFFLOAD = 8 }; /* * Request descriptor types */ #define MEGASAS_REQ_DESCRIPT_FLAGS_LD_IO 0x7 #define MEGASAS_REQ_DESCRIPT_FLAGS_MFA 0x1 #define MEGASAS_REQ_DESCRIPT_FLAGS_NO_LOCK 0x2 #define MEGASAS_REQ_DESCRIPT_FLAGS_TYPE_SHIFT 1 #define MEGASAS_FP_CMD_LEN 16 #define MEGASAS_FUSION_IN_RESET 0 #define MEGASAS_FUSION_OCR_NOT_POSSIBLE 1 #define RAID_1_PEER_CMDS 2 #define JBOD_MAPS_COUNT 2 #define MEGASAS_REDUCE_QD_COUNT 64 #define IOC_INIT_FRAME_SIZE 4096 /* * Raid Context structure which describes MegaRAID specific IO Parameters * This resides at offset 0x60 where the SGL normally starts in MPT IO Frames */ struct RAID_CONTEXT { #if defined(__BIG_ENDIAN_BITFIELD) u8 nseg:4; u8 type:4; #else u8 type:4; u8 nseg:4; #endif u8 resvd0; __le16 timeout_value; u8 reg_lock_flags; u8 resvd1; __le16 virtual_disk_tgt_id; __le64 reg_lock_row_lba; __le32 reg_lock_length; __le16 next_lmid; u8 ex_status; u8 status; u8 raid_flags; u8 num_sge; __le16 config_seq_num; u8 span_arm; u8 priority; u8 num_sge_ext; u8 resvd2; }; /* * Raid Context structure which describes ventura MegaRAID specific * IO Paramenters ,This resides at offset 0x60 where the SGL normally * starts in MPT IO Frames */ struct RAID_CONTEXT_G35 { #define RAID_CONTEXT_NSEG_MASK 0x00F0 #define RAID_CONTEXT_NSEG_SHIFT 4 #define RAID_CONTEXT_TYPE_MASK 0x000F #define RAID_CONTEXT_TYPE_SHIFT 0 u16 nseg_type; u16 timeout_value; /* 0x02 -0x03 */ u16 routing_flags; // 0x04 -0x05 routing flags u16 virtual_disk_tgt_id; /* 0x06 -0x07 */ __le64 reg_lock_row_lba; /* 0x08 - 0x0F */ u32 reg_lock_length; /* 0x10 - 0x13 */ union { // flow specific u16 rmw_op_index; /* 0x14 - 0x15, R5/6 RMW: rmw operation index*/ u16 peer_smid; /* 0x14 - 0x15, R1 Write: peer smid*/ u16 r56_arm_map; /* 0x14 - 0x15, Unused [15], LogArm[14:10], P-Arm[9:5], Q-Arm[4:0] */ } flow_specific; u8 ex_status; /* 0x16 : OUT */ u8 status; /* 0x17 status */ u8 raid_flags; /* 0x18 resvd[7:6], ioSubType[5:4], * resvd[3:1], preferredCpu[0] */ u8 span_arm; /* 0x1C span[7:5], arm[4:0] */ u16 config_seq_num; /* 0x1A -0x1B */ union { /* * Bit format: * --------------------------------- * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | * --------------------------------- * Byte0 | numSGE[7]- numSGE[0] | * --------------------------------- * Byte1 |SD | resvd | numSGE 8-11 | * -------------------------------- */ #define NUM_SGE_MASK_LOWER 0xFF #define NUM_SGE_MASK_UPPER 0x0F #define NUM_SGE_SHIFT_UPPER 8 #define STREAM_DETECT_SHIFT 7 #define STREAM_DETECT_MASK 0x80 struct { #if defined(__BIG_ENDIAN_BITFIELD) /* 0x1C - 0x1D */ u16 stream_detected:1; u16 reserved:3; u16 num_sge:12; #else u16 num_sge:12; u16 reserved:3; u16 stream_detected:1; #endif } bits; u8 bytes[2]; } u; u8 resvd2[2]; /* 0x1E-0x1F */ }; #define MR_RAID_CTX_ROUTINGFLAGS_SLD_SHIFT 1 #define MR_RAID_CTX_ROUTINGFLAGS_C2D_SHIFT 2 #define MR_RAID_CTX_ROUTINGFLAGS_FWD_SHIFT 3 #define MR_RAID_CTX_ROUTINGFLAGS_SQN_SHIFT 4 #define MR_RAID_CTX_ROUTINGFLAGS_SBS_SHIFT 5 #define MR_RAID_CTX_ROUTINGFLAGS_RW_SHIFT 6 #define MR_RAID_CTX_ROUTINGFLAGS_LOG_SHIFT 7 #define MR_RAID_CTX_ROUTINGFLAGS_CPUSEL_SHIFT 8 #define MR_RAID_CTX_ROUTINGFLAGS_CPUSEL_MASK 0x0F00 #define MR_RAID_CTX_ROUTINGFLAGS_SETDIVERT_SHIFT 12 #define MR_RAID_CTX_ROUTINGFLAGS_SETDIVERT_MASK 0xF000 static inline void set_num_sge(struct RAID_CONTEXT_G35 *rctx_g35, u16 sge_count) { rctx_g35->u.bytes[0] = (u8)(sge_count & NUM_SGE_MASK_LOWER); rctx_g35->u.bytes[1] |= (u8)((sge_count >> NUM_SGE_SHIFT_UPPER) & NUM_SGE_MASK_UPPER); } static inline u16 get_num_sge(struct RAID_CONTEXT_G35 *rctx_g35) { u16 sge_count; sge_count = (u16)(((rctx_g35->u.bytes[1] & NUM_SGE_MASK_UPPER) << NUM_SGE_SHIFT_UPPER) | (rctx_g35->u.bytes[0])); return sge_count; } #define SET_STREAM_DETECTED(rctx_g35) \ (rctx_g35.u.bytes[1] |= STREAM_DETECT_MASK) #define CLEAR_STREAM_DETECTED(rctx_g35) \ (rctx_g35.u.bytes[1] &= ~(STREAM_DETECT_MASK)) static inline bool is_stream_detected(struct RAID_CONTEXT_G35 *rctx_g35) { return ((rctx_g35->u.bytes[1] & STREAM_DETECT_MASK)); } union RAID_CONTEXT_UNION { struct RAID_CONTEXT raid_context; struct RAID_CONTEXT_G35 raid_context_g35; }; #define RAID_CTX_SPANARM_ARM_SHIFT (0) #define RAID_CTX_SPANARM_ARM_MASK (0x1f) #define RAID_CTX_SPANARM_SPAN_SHIFT (5) #define RAID_CTX_SPANARM_SPAN_MASK (0xE0) /* LogArm[14:10], P-Arm[9:5], Q-Arm[4:0] */ #define RAID_CTX_R56_Q_ARM_MASK (0x1F) #define RAID_CTX_R56_P_ARM_SHIFT (5) #define RAID_CTX_R56_P_ARM_MASK (0x3E0) #define RAID_CTX_R56_LOG_ARM_SHIFT (10) #define RAID_CTX_R56_LOG_ARM_MASK (0x7C00) /* number of bits per index in U32 TrackStream */ #define BITS_PER_INDEX_STREAM 4 #define INVALID_STREAM_NUM 16 #define MR_STREAM_BITMAP 0x76543210 #define STREAM_MASK ((1 << BITS_PER_INDEX_STREAM) - 1) #define ZERO_LAST_STREAM 0x0fffffff #define MAX_STREAMS_TRACKED 8 /* * define region lock types */ enum REGION_TYPE { REGION_TYPE_UNUSED = 0, REGION_TYPE_SHARED_READ = 1, REGION_TYPE_SHARED_WRITE = 2, REGION_TYPE_EXCLUSIVE = 3, }; /* MPI2 defines */ #define MPI2_FUNCTION_IOC_INIT (0x02) /* IOC Init */ #define MPI2_WHOINIT_HOST_DRIVER (0x04) #define MPI2_VERSION_MAJOR (0x02) #define MPI2_VERSION_MINOR (0x00) #define MPI2_VERSION_MAJOR_MASK (0xFF00) #define MPI2_VERSION_MAJOR_SHIFT (8) #define MPI2_VERSION_MINOR_MASK (0x00FF) #define MPI2_VERSION_MINOR_SHIFT (0) #define MPI2_VERSION ((MPI2_VERSION_MAJOR << MPI2_VERSION_MAJOR_SHIFT) | \ MPI2_VERSION_MINOR) #define MPI2_HEADER_VERSION_UNIT (0x10) #define MPI2_HEADER_VERSION_DEV (0x00) #define MPI2_HEADER_VERSION_UNIT_MASK (0xFF00) #define MPI2_HEADER_VERSION_UNIT_SHIFT (8) #define MPI2_HEADER_VERSION_DEV_MASK (0x00FF) #define MPI2_HEADER_VERSION_DEV_SHIFT (0) #define MPI2_HEADER_VERSION ((MPI2_HEADER_VERSION_UNIT << 8) | \ MPI2_HEADER_VERSION_DEV) #define MPI2_IEEE_SGE_FLAGS_IOCPLBNTA_ADDR (0x03) #define MPI2_SCSIIO_EEDPFLAGS_INC_PRI_REFTAG (0x8000) #define MPI2_SCSIIO_EEDPFLAGS_CHECK_REFTAG (0x0400) #define MPI2_SCSIIO_EEDPFLAGS_CHECK_REMOVE_OP (0x0003) #define MPI2_SCSIIO_EEDPFLAGS_CHECK_APPTAG (0x0200) #define MPI2_SCSIIO_EEDPFLAGS_CHECK_GUARD (0x0100) #define MPI2_SCSIIO_EEDPFLAGS_INSERT_OP (0x0004) /* EEDP escape mode */ #define MPI25_SCSIIO_EEDPFLAGS_DO_NOT_DISABLE_MODE (0x0040) #define MPI2_FUNCTION_SCSI_IO_REQUEST (0x00) /* SCSI IO */ #define MPI2_FUNCTION_SCSI_TASK_MGMT (0x01) #define MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY (0x03) #define MPI2_REQ_DESCRIPT_FLAGS_FP_IO (0x06) #define MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO (0x00) #define MPI2_SGE_FLAGS_64_BIT_ADDRESSING (0x02) #define MPI2_SCSIIO_CONTROL_WRITE (0x01000000) #define MPI2_SCSIIO_CONTROL_READ (0x02000000) #define MPI2_REQ_DESCRIPT_FLAGS_TYPE_MASK (0x0E) #define MPI2_RPY_DESCRIPT_FLAGS_UNUSED (0x0F) #define MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS (0x00) #define MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK (0x0F) #define MPI2_WRSEQ_FLUSH_KEY_VALUE (0x0) #define MPI2_WRITE_SEQUENCE_OFFSET (0x00000004) #define MPI2_WRSEQ_1ST_KEY_VALUE (0xF) #define MPI2_WRSEQ_2ND_KEY_VALUE (0x4) #define MPI2_WRSEQ_3RD_KEY_VALUE (0xB) #define MPI2_WRSEQ_4TH_KEY_VALUE (0x2) #define MPI2_WRSEQ_5TH_KEY_VALUE (0x7) #define MPI2_WRSEQ_6TH_KEY_VALUE (0xD) struct MPI25_IEEE_SGE_CHAIN64 { __le64 Address; __le32 Length; __le16 Reserved1; u8 NextChainOffset; u8 Flags; }; struct MPI2_SGE_SIMPLE_UNION { __le32 FlagsLength; union { __le32 Address32; __le64 Address64; } u; }; struct MPI2_SCSI_IO_CDB_EEDP32 { u8 CDB[20]; /* 0x00 */ __be32 PrimaryReferenceTag; /* 0x14 */ __be16 PrimaryApplicationTag; /* 0x18 */ __be16 PrimaryApplicationTagMask; /* 0x1A */ __le32 TransferLength; /* 0x1C */ }; struct MPI2_SGE_CHAIN_UNION { __le16 Length; u8 NextChainOffset; u8 Flags; union { __le32 Address32; __le64 Address64; } u; }; struct MPI2_IEEE_SGE_SIMPLE32 { __le32 Address; __le32 FlagsLength; }; struct MPI2_IEEE_SGE_CHAIN32 { __le32 Address; __le32 FlagsLength; }; struct MPI2_IEEE_SGE_SIMPLE64 { __le64 Address; __le32 Length; __le16 Reserved1; u8 Reserved2; u8 Flags; }; struct MPI2_IEEE_SGE_CHAIN64 { __le64 Address; __le32 Length; __le16 Reserved1; u8 Reserved2; u8 Flags; }; union MPI2_IEEE_SGE_SIMPLE_UNION { struct MPI2_IEEE_SGE_SIMPLE32 Simple32; struct MPI2_IEEE_SGE_SIMPLE64 Simple64; }; union MPI2_IEEE_SGE_CHAIN_UNION { struct MPI2_IEEE_SGE_CHAIN32 Chain32; struct MPI2_IEEE_SGE_CHAIN64 Chain64; }; union MPI2_SGE_IO_UNION { struct MPI2_SGE_SIMPLE_UNION MpiSimple; struct MPI2_SGE_CHAIN_UNION MpiChain; union MPI2_IEEE_SGE_SIMPLE_UNION IeeeSimple; union MPI2_IEEE_SGE_CHAIN_UNION IeeeChain; }; union MPI2_SCSI_IO_CDB_UNION { u8 CDB32[32]; struct MPI2_SCSI_IO_CDB_EEDP32 EEDP32; struct MPI2_SGE_SIMPLE_UNION SGE; }; /**************************************************************************** * SCSI Task Management messages ****************************************************************************/ /*SCSI Task Management Request Message */ struct MPI2_SCSI_TASK_MANAGE_REQUEST { u16 DevHandle; /*0x00 */ u8 ChainOffset; /*0x02 */ u8 Function; /*0x03 */ u8 Reserved1; /*0x04 */ u8 TaskType; /*0x05 */ u8 Reserved2; /*0x06 */ u8 MsgFlags; /*0x07 */ u8 VP_ID; /*0x08 */ u8 VF_ID; /*0x09 */ u16 Reserved3; /*0x0A */ u8 LUN[8]; /*0x0C */ u32 Reserved4[7]; /*0x14 */ u16 TaskMID; /*0x30 */ u16 Reserved5; /*0x32 */ }; /*SCSI Task Management Reply Message */ struct MPI2_SCSI_TASK_MANAGE_REPLY { u16 DevHandle; /*0x00 */ u8 MsgLength; /*0x02 */ u8 Function; /*0x03 */ u8 ResponseCode; /*0x04 */ u8 TaskType; /*0x05 */ u8 Reserved1; /*0x06 */ u8 MsgFlags; /*0x07 */ u8 VP_ID; /*0x08 */ u8 VF_ID; /*0x09 */ u16 Reserved2; /*0x0A */ u16 Reserved3; /*0x0C */ u16 IOCStatus; /*0x0E */ u32 IOCLogInfo; /*0x10 */ u32 TerminationCount; /*0x14 */ u32 ResponseInfo; /*0x18 */ }; struct MR_TM_REQUEST { char request[128]; }; struct MR_TM_REPLY { char reply[128]; }; /* SCSI Task Management Request Message */ struct MR_TASK_MANAGE_REQUEST { /*To be type casted to struct MPI2_SCSI_TASK_MANAGE_REQUEST */ struct MR_TM_REQUEST TmRequest; union { struct { #if defined(__BIG_ENDIAN_BITFIELD) u32 reserved1:30; u32 isTMForPD:1; u32 isTMForLD:1; #else u32 isTMForLD:1; u32 isTMForPD:1; u32 reserved1:30; #endif u32 reserved2; } tmReqFlags; struct MR_TM_REPLY TMReply; }; }; /* TaskType values */ #define MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK (0x01) #define MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET (0x02) #define MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET (0x03) #define MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET (0x05) #define MPI2_SCSITASKMGMT_TASKTYPE_CLEAR_TASK_SET (0x06) #define MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK (0x07) #define MPI2_SCSITASKMGMT_TASKTYPE_CLR_ACA (0x08) #define MPI2_SCSITASKMGMT_TASKTYPE_QRY_TASK_SET (0x09) #define MPI2_SCSITASKMGMT_TASKTYPE_QRY_ASYNC_EVENT (0x0A) /* ResponseCode values */ #define MPI2_SCSITASKMGMT_RSP_TM_COMPLETE (0x00) #define MPI2_SCSITASKMGMT_RSP_INVALID_FRAME (0x02) #define MPI2_SCSITASKMGMT_RSP_TM_NOT_SUPPORTED (0x04) #define MPI2_SCSITASKMGMT_RSP_TM_FAILED (0x05) #define MPI2_SCSITASKMGMT_RSP_TM_SUCCEEDED (0x08) #define MPI2_SCSITASKMGMT_RSP_TM_INVALID_LUN (0x09) #define MPI2_SCSITASKMGMT_RSP_TM_OVERLAPPED_TAG (0x0A) #define MPI2_SCSITASKMGMT_RSP_IO_QUEUED_ON_IOC (0x80) /* * RAID SCSI IO Request Message * Total SGE count will be one less than _MPI2_SCSI_IO_REQUEST */ struct MPI2_RAID_SCSI_IO_REQUEST { __le16 DevHandle; /* 0x00 */ u8 ChainOffset; /* 0x02 */ u8 Function; /* 0x03 */ __le16 Reserved1; /* 0x04 */ u8 Reserved2; /* 0x06 */ u8 MsgFlags; /* 0x07 */ u8 VP_ID; /* 0x08 */ u8 VF_ID; /* 0x09 */ __le16 Reserved3; /* 0x0A */ __le32 SenseBufferLowAddress; /* 0x0C */ __le16 SGLFlags; /* 0x10 */ u8 SenseBufferLength; /* 0x12 */ u8 Reserved4; /* 0x13 */ u8 SGLOffset0; /* 0x14 */ u8 SGLOffset1; /* 0x15 */ u8 SGLOffset2; /* 0x16 */ u8 SGLOffset3; /* 0x17 */ __le32 SkipCount; /* 0x18 */ __le32 DataLength; /* 0x1C */ __le32 BidirectionalDataLength; /* 0x20 */ __le16 IoFlags; /* 0x24 */ __le16 EEDPFlags; /* 0x26 */ __le32 EEDPBlockSize; /* 0x28 */ __le32 SecondaryReferenceTag; /* 0x2C */ __le16 SecondaryApplicationTag; /* 0x30 */ __le16 ApplicationTagTranslationMask; /* 0x32 */ u8 LUN[8]; /* 0x34 */ __le32 Control; /* 0x3C */ union MPI2_SCSI_IO_CDB_UNION CDB; /* 0x40 */ union RAID_CONTEXT_UNION RaidContext; /* 0x60 */ union { union MPI2_SGE_IO_UNION SGL; /* 0x80 */ DECLARE_FLEX_ARRAY(union MPI2_SGE_IO_UNION, SGLs); }; }; /* * MPT RAID MFA IO Descriptor. */ struct MEGASAS_RAID_MFA_IO_REQUEST_DESCRIPTOR { u32 RequestFlags:8; u32 MessageAddress1:24; u32 MessageAddress2; }; /* Default Request Descriptor */ struct MPI2_DEFAULT_REQUEST_DESCRIPTOR { u8 RequestFlags; /* 0x00 */ u8 MSIxIndex; /* 0x01 */ __le16 SMID; /* 0x02 */ __le16 LMID; /* 0x04 */ __le16 DescriptorTypeDependent; /* 0x06 */ }; /* High Priority Request Descriptor */ struct MPI2_HIGH_PRIORITY_REQUEST_DESCRIPTOR { u8 RequestFlags; /* 0x00 */ u8 MSIxIndex; /* 0x01 */ __le16 SMID; /* 0x02 */ __le16 LMID; /* 0x04 */ __le16 Reserved1; /* 0x06 */ }; /* SCSI IO Request Descriptor */ struct MPI2_SCSI_IO_REQUEST_DESCRIPTOR { u8 RequestFlags; /* 0x00 */ u8 MSIxIndex; /* 0x01 */ __le16 SMID; /* 0x02 */ __le16 LMID; /* 0x04 */ __le16 DevHandle; /* 0x06 */ }; /* SCSI Target Request Descriptor */ struct MPI2_SCSI_TARGET_REQUEST_DESCRIPTOR { u8 RequestFlags; /* 0x00 */ u8 MSIxIndex; /* 0x01 */ __le16 SMID; /* 0x02 */ __le16 LMID; /* 0x04 */ __le16 IoIndex; /* 0x06 */ }; /* RAID Accelerator Request Descriptor */ struct MPI2_RAID_ACCEL_REQUEST_DESCRIPTOR { u8 RequestFlags; /* 0x00 */ u8 MSIxIndex; /* 0x01 */ __le16 SMID; /* 0x02 */ __le16 LMID; /* 0x04 */ __le16 Reserved; /* 0x06 */ }; /* union of Request Descriptors */ union MEGASAS_REQUEST_DESCRIPTOR_UNION { struct MPI2_DEFAULT_REQUEST_DESCRIPTOR Default; struct MPI2_HIGH_PRIORITY_REQUEST_DESCRIPTOR HighPriority; struct MPI2_SCSI_IO_REQUEST_DESCRIPTOR SCSIIO; struct MPI2_SCSI_TARGET_REQUEST_DESCRIPTOR SCSITarget; struct MPI2_RAID_ACCEL_REQUEST_DESCRIPTOR RAIDAccelerator; struct MEGASAS_RAID_MFA_IO_REQUEST_DESCRIPTOR MFAIo; union { struct { __le32 low; __le32 high; } u; __le64 Words; }; }; /* Default Reply Descriptor */ struct MPI2_DEFAULT_REPLY_DESCRIPTOR { u8 ReplyFlags; /* 0x00 */ u8 MSIxIndex; /* 0x01 */ __le16 DescriptorTypeDependent1; /* 0x02 */ __le32 DescriptorTypeDependent2; /* 0x04 */ }; /* Address Reply Descriptor */ struct MPI2_ADDRESS_REPLY_DESCRIPTOR { u8 ReplyFlags; /* 0x00 */ u8 MSIxIndex; /* 0x01 */ __le16 SMID; /* 0x02 */ __le32 ReplyFrameAddress; /* 0x04 */ }; /* SCSI IO Success Reply Descriptor */ struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR { u8 ReplyFlags; /* 0x00 */ u8 MSIxIndex; /* 0x01 */ __le16 SMID; /* 0x02 */ __le16 TaskTag; /* 0x04 */ __le16 Reserved1; /* 0x06 */ }; /* TargetAssist Success Reply Descriptor */ struct MPI2_TARGETASSIST_SUCCESS_REPLY_DESCRIPTOR { u8 ReplyFlags; /* 0x00 */ u8 MSIxIndex; /* 0x01 */ __le16 SMID; /* 0x02 */ u8 SequenceNumber; /* 0x04 */ u8 Reserved1; /* 0x05 */ __le16 IoIndex; /* 0x06 */ }; /* Target Command Buffer Reply Descriptor */ struct MPI2_TARGET_COMMAND_BUFFER_REPLY_DESCRIPTOR { u8 ReplyFlags; /* 0x00 */ u8 MSIxIndex; /* 0x01 */ u8 VP_ID; /* 0x02 */ u8 Flags; /* 0x03 */ __le16 InitiatorDevHandle; /* 0x04 */ __le16 IoIndex; /* 0x06 */ }; /* RAID Accelerator Success Reply Descriptor */ struct MPI2_RAID_ACCELERATOR_SUCCESS_REPLY_DESCRIPTOR { u8 ReplyFlags; /* 0x00 */ u8 MSIxIndex; /* 0x01 */ __le16 SMID; /* 0x02 */ __le32 Reserved; /* 0x04 */ }; /* union of Reply Descriptors */ union MPI2_REPLY_DESCRIPTORS_UNION { struct MPI2_DEFAULT_REPLY_DESCRIPTOR Default; struct MPI2_ADDRESS_REPLY_DESCRIPTOR AddressReply; struct MPI2_SCSI_IO_SUCCESS_REPLY_DESCRIPTOR SCSIIOSuccess; struct MPI2_TARGETASSIST_SUCCESS_REPLY_DESCRIPTOR TargetAssistSuccess; struct MPI2_TARGET_COMMAND_BUFFER_REPLY_DESCRIPTOR TargetCommandBuffer; struct MPI2_RAID_ACCELERATOR_SUCCESS_REPLY_DESCRIPTOR RAIDAcceleratorSuccess; __le64 Words; }; /* IOCInit Request message */ struct MPI2_IOC_INIT_REQUEST { u8 WhoInit; /* 0x00 */ u8 Reserved1; /* 0x01 */ u8 ChainOffset; /* 0x02 */ u8 Function; /* 0x03 */ __le16 Reserved2; /* 0x04 */ u8 Reserved3; /* 0x06 */ u8 MsgFlags; /* 0x07 */ u8 VP_ID; /* 0x08 */ u8 VF_ID; /* 0x09 */ __le16 Reserved4; /* 0x0A */ __le16 MsgVersion; /* 0x0C */ __le16 HeaderVersion; /* 0x0E */ u32 Reserved5; /* 0x10 */ __le16 Reserved6; /* 0x14 */ u8 HostPageSize; /* 0x16 */ u8 HostMSIxVectors; /* 0x17 */ __le16 Reserved8; /* 0x18 */ __le16 SystemRequestFrameSize; /* 0x1A */ __le16 ReplyDescriptorPostQueueDepth; /* 0x1C */ __le16 ReplyFreeQueueDepth; /* 0x1E */ __le32 SenseBufferAddressHigh; /* 0x20 */ __le32 SystemReplyAddressHigh; /* 0x24 */ __le64 SystemRequestFrameBaseAddress; /* 0x28 */ __le64 ReplyDescriptorPostQueueAddress;/* 0x30 */ __le64 ReplyFreeQueueAddress; /* 0x38 */ __le64 TimeStamp; /* 0x40 */ }; /* mrpriv defines */ #define MR_PD_INVALID 0xFFFF #define MR_DEVHANDLE_INVALID 0xFFFF #define MAX_SPAN_DEPTH 8 #define MAX_QUAD_DEPTH MAX_SPAN_DEPTH #define MAX_RAIDMAP_SPAN_DEPTH (MAX_SPAN_DEPTH) #define MAX_ROW_SIZE 32 #define MAX_RAIDMAP_ROW_SIZE (MAX_ROW_SIZE) #define MAX_LOGICAL_DRIVES 64 #define MAX_LOGICAL_DRIVES_EXT 256 #define MAX_LOGICAL_DRIVES_DYN 512 #define MAX_RAIDMAP_LOGICAL_DRIVES (MAX_LOGICAL_DRIVES) #define MAX_RAIDMAP_VIEWS (MAX_LOGICAL_DRIVES) #define MAX_ARRAYS 128 #define MAX_RAIDMAP_ARRAYS (MAX_ARRAYS) #define MAX_ARRAYS_EXT 256 #define MAX_API_ARRAYS_EXT (MAX_ARRAYS_EXT) #define MAX_API_ARRAYS_DYN 512 #define MAX_PHYSICAL_DEVICES 256 #define MAX_RAIDMAP_PHYSICAL_DEVICES (MAX_PHYSICAL_DEVICES) #define MAX_RAIDMAP_PHYSICAL_DEVICES_DYN 512 #define MR_DCMD_LD_MAP_GET_INFO 0x0300e101 #define MR_DCMD_SYSTEM_PD_MAP_GET_INFO 0x0200e102 #define MR_DCMD_DRV_GET_TARGET_PROP 0x0200e103 #define MR_DCMD_CTRL_SHARED_HOST_MEM_ALLOC 0x010e8485 /* SR-IOV HB alloc*/ #define MR_DCMD_LD_VF_MAP_GET_ALL_LDS_111 0x03200200 #define MR_DCMD_LD_VF_MAP_GET_ALL_LDS 0x03150200 #define MR_DCMD_CTRL_SNAPDUMP_GET_PROPERTIES 0x01200100 #define MR_DCMD_CTRL_DEVICE_LIST_GET 0x01190600 struct MR_DEV_HANDLE_INFO { __le16 curDevHdl; u8 validHandles; u8 interfaceType; __le16 devHandle[2]; }; struct MR_ARRAY_INFO { __le16 pd[MAX_RAIDMAP_ROW_SIZE]; }; struct MR_QUAD_ELEMENT { __le64 logStart; __le64 logEnd; __le64 offsetInSpan; __le32 diff; __le32 reserved1; }; struct MR_SPAN_INFO { __le32 noElements; __le32 reserved1; struct MR_QUAD_ELEMENT quad[MAX_RAIDMAP_SPAN_DEPTH]; }; struct MR_LD_SPAN { __le64 startBlk; __le64 numBlks; __le16 arrayRef; u8 spanRowSize; u8 spanRowDataSize; u8 reserved[4]; }; struct MR_SPAN_BLOCK_INFO { __le64 num_rows; struct MR_LD_SPAN span; struct MR_SPAN_INFO block_span_info; }; #define MR_RAID_CTX_CPUSEL_0 0 #define MR_RAID_CTX_CPUSEL_1 1 #define MR_RAID_CTX_CPUSEL_2 2 #define MR_RAID_CTX_CPUSEL_3 3 #define MR_RAID_CTX_CPUSEL_FCFS 0xF struct MR_CPU_AFFINITY_MASK { union { struct { #ifndef __BIG_ENDIAN_BITFIELD u8 hw_path:1; u8 cpu0:1; u8 cpu1:1; u8 cpu2:1; u8 cpu3:1; u8 reserved:3; #else u8 reserved:3; u8 cpu3:1; u8 cpu2:1; u8 cpu1:1; u8 cpu0:1; u8 hw_path:1; #endif }; u8 core_mask; }; }; struct MR_IO_AFFINITY { union { struct { struct MR_CPU_AFFINITY_MASK pdRead; struct MR_CPU_AFFINITY_MASK pdWrite; struct MR_CPU_AFFINITY_MASK ldRead; struct MR_CPU_AFFINITY_MASK ldWrite; }; u32 word; }; u8 maxCores; /* Total cores + HW Path in ROC */ u8 reserved[3]; }; struct MR_LD_RAID { struct { #if defined(__BIG_ENDIAN_BITFIELD) u32 reserved4:2; u32 fp_cache_bypass_capable:1; u32 fp_rmw_capable:1; u32 disable_coalescing:1; u32 fpBypassRegionLock:1; u32 tmCapable:1; u32 fpNonRWCapable:1; u32 fpReadAcrossStripe:1; u32 fpWriteAcrossStripe:1; u32 fpReadCapable:1; u32 fpWriteCapable:1; u32 encryptionType:8; u32 pdPiMode:4; u32 ldPiMode:4; u32 reserved5:2; u32 ra_capable:1; u32 fpCapable:1; #else u32 fpCapable:1; u32 ra_capable:1; u32 reserved5:2; u32 ldPiMode:4; u32 pdPiMode:4; u32 encryptionType:8; u32 fpWriteCapable:1; u32 fpReadCapable:1; u32 fpWriteAcrossStripe:1; u32 fpReadAcrossStripe:1; u32 fpNonRWCapable:1; u32 tmCapable:1; u32 fpBypassRegionLock:1; u32 disable_coalescing:1; u32 fp_rmw_capable:1; u32 fp_cache_bypass_capable:1; u32 reserved4:2; #endif } capability; __le32 reserved6; __le64 size; u8 spanDepth; u8 level; u8 stripeShift; u8 rowSize; u8 rowDataSize; u8 writeMode; u8 PRL; u8 SRL; __le16 targetId; u8 ldState; u8 regTypeReqOnWrite; u8 modFactor; u8 regTypeReqOnRead; __le16 seqNum; struct { #ifndef __BIG_ENDIAN_BITFIELD u32 ldSyncRequired:1; u32 regTypeReqOnReadIsValid:1; u32 isEPD:1; u32 enableSLDOnAllRWIOs:1; u32 reserved:28; #else u32 reserved:28; u32 enableSLDOnAllRWIOs:1; u32 isEPD:1; u32 regTypeReqOnReadIsValid:1; u32 ldSyncRequired:1; #endif } flags; u8 LUN[8]; /* 0x24 8 byte LUN field used for SCSI IO's */ u8 fpIoTimeoutForLd;/*0x2C timeout value used by driver in FP IO*/ /* Ox2D This LD accept priority boost of this type */ u8 ld_accept_priority_type; u8 reserved2[2]; /* 0x2E - 0x2F */ /* 0x30 - 0x33, Logical block size for the LD */ u32 logical_block_length; struct { #ifndef __BIG_ENDIAN_BITFIELD /* 0x34, P_I_EXPONENT from READ CAPACITY 16 */ u32 ld_pi_exp:4; /* 0x34, LOGICAL BLOCKS PER PHYSICAL * BLOCK EXPONENT from READ CAPACITY 16 */ u32 ld_logical_block_exp:4; u32 reserved1:24; /* 0x34 */ #else u32 reserved1:24; /* 0x34 */ /* 0x34, LOGICAL BLOCKS PER PHYSICAL * BLOCK EXPONENT from READ CAPACITY 16 */ u32 ld_logical_block_exp:4; /* 0x34, P_I_EXPONENT from READ CAPACITY 16 */ u32 ld_pi_exp:4; #endif }; /* 0x34 - 0x37 */ /* 0x38 - 0x3f, This will determine which * core will process LD IO and PD IO. */ struct MR_IO_AFFINITY cpuAffinity; /* Bit definiations are specified by MR_IO_AFFINITY */ u8 reserved3[0x80 - 0x40]; /* 0x40 - 0x7f */ }; struct MR_LD_SPAN_MAP { struct MR_LD_RAID ldRaid; u8 dataArmMap[MAX_RAIDMAP_ROW_SIZE]; struct MR_SPAN_BLOCK_INFO spanBlock[MAX_RAIDMAP_SPAN_DEPTH]; }; struct MR_FW_RAID_MAP { __le32 totalSize; union { struct { __le32 maxLd; __le32 maxSpanDepth; __le32 maxRowSize; __le32 maxPdCount; __le32 maxArrays; } validationInfo; __le32 version[5]; }; __le32 ldCount; __le32 Reserved1; u8 ldTgtIdToLd[MAX_RAIDMAP_LOGICAL_DRIVES+ MAX_RAIDMAP_VIEWS]; u8 fpPdIoTimeoutSec; u8 reserved2[7]; struct MR_ARRAY_INFO arMapInfo[MAX_RAIDMAP_ARRAYS]; struct MR_DEV_HANDLE_INFO devHndlInfo[MAX_RAIDMAP_PHYSICAL_DEVICES]; struct MR_LD_SPAN_MAP ldSpanMap[]; }; struct IO_REQUEST_INFO { u64 ldStartBlock; u32 numBlocks; u16 ldTgtId; u8 isRead; __le16 devHandle; u8 pd_interface; u64 pdBlock; u8 fpOkForIo; u8 IoforUnevenSpan; u8 start_span; u8 do_fp_rlbypass; u64 start_row; u8 span_arm; /* span[7:5], arm[4:0] */ u8 pd_after_lb; u16 r1_alt_dev_handle; /* raid 1/10 only */ bool ra_capable; u8 data_arms; }; struct MR_LD_TARGET_SYNC { u8 targetId; u8 reserved; __le16 seqNum; }; /* * RAID Map descriptor Types. * Each element should uniquely idetify one data structure in the RAID map */ enum MR_RAID_MAP_DESC_TYPE { /* MR_DEV_HANDLE_INFO data */ RAID_MAP_DESC_TYPE_DEVHDL_INFO = 0x0, /* target to Ld num Index map */ RAID_MAP_DESC_TYPE_TGTID_INFO = 0x1, /* MR_ARRAY_INFO data */ RAID_MAP_DESC_TYPE_ARRAY_INFO = 0x2, /* MR_LD_SPAN_MAP data */ RAID_MAP_DESC_TYPE_SPAN_INFO = 0x3, RAID_MAP_DESC_TYPE_COUNT, }; /* * This table defines the offset, size and num elements of each descriptor * type in the RAID Map buffer */ struct MR_RAID_MAP_DESC_TABLE { /* Raid map descriptor type */ u32 raid_map_desc_type; /* Offset into the RAID map buffer where * descriptor data is saved */ u32 raid_map_desc_offset; /* total size of the * descriptor buffer */ u32 raid_map_desc_buffer_size; /* Number of elements contained in the * descriptor buffer */ u32 raid_map_desc_elements; }; /* * Dynamic Raid Map Structure. */ struct MR_FW_RAID_MAP_DYNAMIC { u32 raid_map_size; /* total size of RAID Map structure */ u32 desc_table_offset;/* Offset of desc table into RAID map*/ u32 desc_table_size; /* Total Size of desc table */ /* Total Number of elements in the desc table */ u32 desc_table_num_elements; u64 reserved1; u32 reserved2[3]; /*future use */ /* timeout value used by driver in FP IOs */ u8 fp_pd_io_timeout_sec; u8 reserved3[3]; /* when this seqNum increments, driver needs to * release RMW buffers asap */ u32 rmw_fp_seq_num; u16 ld_count; /* count of lds. */ u16 ar_count; /* count of arrays */ u16 span_count; /* count of spans */ u16 reserved4[3]; /* * The below structure of pointers is only to be used by the driver. * This is added in the ,API to reduce the amount of code changes * needed in the driver to support dynamic RAID map Firmware should * not update these pointers while preparing the raid map */ union { struct { struct MR_DEV_HANDLE_INFO *dev_hndl_info; u16 *ld_tgt_id_to_ld; struct MR_ARRAY_INFO *ar_map_info; struct MR_LD_SPAN_MAP *ld_span_map; }; u64 ptr_structure_size[RAID_MAP_DESC_TYPE_COUNT]; }; /* * RAID Map descriptor table defines the layout of data in the RAID Map. * The size of the descriptor table itself could change. */ /* Variable Size descriptor Table. */ struct MR_RAID_MAP_DESC_TABLE raid_map_desc_table[RAID_MAP_DESC_TYPE_COUNT]; /* Variable Size buffer containing all data */ u32 raid_map_desc_data[]; }; /* Dynamicaly sized RAID MAp structure */ #define IEEE_SGE_FLAGS_ADDR_MASK (0x03) #define IEEE_SGE_FLAGS_SYSTEM_ADDR (0x00) #define IEEE_SGE_FLAGS_IOCDDR_ADDR (0x01) #define IEEE_SGE_FLAGS_IOCPLB_ADDR (0x02) #define IEEE_SGE_FLAGS_IOCPLBNTA_ADDR (0x03) #define IEEE_SGE_FLAGS_CHAIN_ELEMENT (0x80) #define IEEE_SGE_FLAGS_END_OF_LIST (0x40) #define MPI2_SGE_FLAGS_SHIFT (0x02) #define IEEE_SGE_FLAGS_FORMAT_MASK (0xC0) #define IEEE_SGE_FLAGS_FORMAT_IEEE (0x00) #define IEEE_SGE_FLAGS_FORMAT_NVME (0x02) #define MPI26_IEEE_SGE_FLAGS_NSF_MASK (0x1C) #define MPI26_IEEE_SGE_FLAGS_NSF_MPI_IEEE (0x00) #define MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP (0x08) #define MPI26_IEEE_SGE_FLAGS_NSF_NVME_SGL (0x10) #define MEGASAS_DEFAULT_SNAP_DUMP_WAIT_TIME 15 #define MEGASAS_MAX_SNAP_DUMP_WAIT_TIME 60 struct megasas_register_set; struct megasas_instance; union desc_word { u64 word; struct { u32 low; u32 high; } u; }; struct megasas_cmd_fusion { struct MPI2_RAID_SCSI_IO_REQUEST *io_request; dma_addr_t io_request_phys_addr; union MPI2_SGE_IO_UNION *sg_frame; dma_addr_t sg_frame_phys_addr; u8 *sense; dma_addr_t sense_phys_addr; struct list_head list; struct scsi_cmnd *scmd; struct megasas_instance *instance; u8 retry_for_fw_reset; union MEGASAS_REQUEST_DESCRIPTOR_UNION *request_desc; /* * Context for a MFI frame. * Used to get the mfi cmd from list when a MFI cmd is completed */ u32 sync_cmd_idx; u32 index; u8 pd_r1_lb; struct completion done; u8 pd_interface; u16 r1_alt_dev_handle; /* raid 1/10 only*/ bool cmd_completed; /* raid 1/10 fp writes status holder */ }; struct LD_LOAD_BALANCE_INFO { u8 loadBalanceFlag; u8 reserved1; atomic_t scsi_pending_cmds[MAX_PHYSICAL_DEVICES]; u64 last_accessed_block[MAX_PHYSICAL_DEVICES]; }; /* SPAN_SET is info caclulated from span info from Raid map per LD */ typedef struct _LD_SPAN_SET { u64 log_start_lba; u64 log_end_lba; u64 span_row_start; u64 span_row_end; u64 data_strip_start; u64 data_strip_end; u64 data_row_start; u64 data_row_end; u8 strip_offset[MAX_SPAN_DEPTH]; u32 span_row_data_width; u32 diff; u32 reserved[2]; } LD_SPAN_SET, *PLD_SPAN_SET; typedef struct LOG_BLOCK_SPAN_INFO { LD_SPAN_SET span_set[MAX_SPAN_DEPTH]; } LD_SPAN_INFO, *PLD_SPAN_INFO; struct MR_FW_RAID_MAP_ALL { struct MR_FW_RAID_MAP raidMap; struct MR_LD_SPAN_MAP ldSpanMap[MAX_LOGICAL_DRIVES]; } __attribute__ ((packed)); struct MR_DRV_RAID_MAP { /* total size of this structure, including this field. * This feild will be manupulated by driver for ext raid map, * else pick the value from firmware raid map. */ __le32 totalSize; union { struct { __le32 maxLd; __le32 maxSpanDepth; __le32 maxRowSize; __le32 maxPdCount; __le32 maxArrays; } validationInfo; __le32 version[5]; }; /* timeout value used by driver in FP IOs*/ u8 fpPdIoTimeoutSec; u8 reserved2[7]; __le16 ldCount; __le16 arCount; __le16 spanCount; __le16 reserve3; struct MR_DEV_HANDLE_INFO devHndlInfo[MAX_RAIDMAP_PHYSICAL_DEVICES_DYN]; u16 ldTgtIdToLd[MAX_LOGICAL_DRIVES_DYN]; struct MR_ARRAY_INFO arMapInfo[MAX_API_ARRAYS_DYN]; struct MR_LD_SPAN_MAP ldSpanMap[]; }; /* Driver raid map size is same as raid map ext * MR_DRV_RAID_MAP_ALL is created to sync with old raid. * And it is mainly for code re-use purpose. */ struct MR_DRV_RAID_MAP_ALL { struct MR_DRV_RAID_MAP raidMap; struct MR_LD_SPAN_MAP ldSpanMap[MAX_LOGICAL_DRIVES_DYN]; } __packed; struct MR_FW_RAID_MAP_EXT { /* Not usred in new map */ u32 reserved; union { struct { u32 maxLd; u32 maxSpanDepth; u32 maxRowSize; u32 maxPdCount; u32 maxArrays; } validationInfo; u32 version[5]; }; u8 fpPdIoTimeoutSec; u8 reserved2[7]; __le16 ldCount; __le16 arCount; __le16 spanCount; __le16 reserve3; struct MR_DEV_HANDLE_INFO devHndlInfo[MAX_RAIDMAP_PHYSICAL_DEVICES]; u8 ldTgtIdToLd[MAX_LOGICAL_DRIVES_EXT]; struct MR_ARRAY_INFO arMapInfo[MAX_API_ARRAYS_EXT]; struct MR_LD_SPAN_MAP ldSpanMap[MAX_LOGICAL_DRIVES_EXT]; }; /* * * define MR_PD_CFG_SEQ structure for system PDs * */ struct MR_PD_CFG_SEQ { u16 seqNum; u16 devHandle; struct { #if defined(__BIG_ENDIAN_BITFIELD) u8 reserved:7; u8 tmCapable:1; #else u8 tmCapable:1; u8 reserved:7; #endif } capability; u8 reserved; u16 pd_target_id; } __packed; struct MR_PD_CFG_SEQ_NUM_SYNC { __le32 size; __le32 count; struct MR_PD_CFG_SEQ seq[]; } __packed; /* stream detection */ struct STREAM_DETECT { u64 next_seq_lba; /* next LBA to match sequential access */ struct megasas_cmd_fusion *first_cmd_fusion; /* first cmd in group */ struct megasas_cmd_fusion *last_cmd_fusion; /* last cmd in group */ u32 count_cmds_in_stream; /* count of host commands in this stream */ u16 num_sges_in_group; /* total number of SGEs in grouped IOs */ u8 is_read; /* SCSI OpCode for this stream */ u8 group_depth; /* total number of host commands in group */ /* TRUE if cannot add any more commands to this group */ bool group_flush; u8 reserved[7]; /* pad to 64-bit alignment */ }; struct LD_STREAM_DETECT { bool write_back; /* TRUE if WB, FALSE if WT */ bool fp_write_enabled; bool members_ssds; bool fp_cache_bypass_capable; u32 mru_bit_map; /* bitmap used to track MRU and LRU stream indicies */ /* this is the array of stream detect structures (one per stream) */ struct STREAM_DETECT stream_track[MAX_STREAMS_TRACKED]; }; struct MPI2_IOC_INIT_RDPQ_ARRAY_ENTRY { u64 RDPQBaseAddress; u32 Reserved1; u32 Reserved2; }; struct rdpq_alloc_detail { struct dma_pool *dma_pool_ptr; dma_addr_t pool_entry_phys; union MPI2_REPLY_DESCRIPTORS_UNION *pool_entry_virt; }; struct fusion_context { struct megasas_cmd_fusion **cmd_list; dma_addr_t req_frames_desc_phys; u8 *req_frames_desc; struct dma_pool *io_request_frames_pool; dma_addr_t io_request_frames_phys; u8 *io_request_frames; struct dma_pool *sg_dma_pool; struct dma_pool *sense_dma_pool; u8 *sense; dma_addr_t sense_phys_addr; atomic_t busy_mq_poll[MAX_MSIX_QUEUES_FUSION]; dma_addr_t reply_frames_desc_phys[MAX_MSIX_QUEUES_FUSION]; union MPI2_REPLY_DESCRIPTORS_UNION *reply_frames_desc[MAX_MSIX_QUEUES_FUSION]; struct rdpq_alloc_detail rdpq_tracker[RDPQ_MAX_CHUNK_COUNT]; struct dma_pool *reply_frames_desc_pool; struct dma_pool *reply_frames_desc_pool_align; u16 last_reply_idx[MAX_MSIX_QUEUES_FUSION]; u32 reply_q_depth; u32 request_alloc_sz; u32 reply_alloc_sz; u32 io_frames_alloc_sz; struct MPI2_IOC_INIT_RDPQ_ARRAY_ENTRY *rdpq_virt; dma_addr_t rdpq_phys; u16 max_sge_in_main_msg; u16 max_sge_in_chain; u8 chain_offset_io_request; u8 chain_offset_mfi_pthru; struct MR_FW_RAID_MAP_DYNAMIC *ld_map[2]; dma_addr_t ld_map_phys[2]; /*Non dma-able memory. Driver local copy.*/ struct MR_DRV_RAID_MAP_ALL *ld_drv_map[2]; u32 max_map_sz; u32 current_map_sz; u32 old_map_sz; u32 new_map_sz; u32 drv_map_sz; u32 drv_map_pages; struct MR_PD_CFG_SEQ_NUM_SYNC *pd_seq_sync[JBOD_MAPS_COUNT]; dma_addr_t pd_seq_phys[JBOD_MAPS_COUNT]; u8 fast_path_io; struct LD_LOAD_BALANCE_INFO *load_balance_info; u32 load_balance_info_pages; LD_SPAN_INFO *log_to_span; u32 log_to_span_pages; struct LD_STREAM_DETECT **stream_detect_by_ld; dma_addr_t ioc_init_request_phys; struct MPI2_IOC_INIT_REQUEST *ioc_init_request; struct megasas_cmd *ioc_init_cmd; bool pcie_bw_limitation; bool r56_div_offload; }; union desc_value { __le64 word; struct { __le32 low; __le32 high; } u; }; enum CMD_RET_VALUES { REFIRE_CMD = 1, COMPLETE_CMD = 2, RETURN_CMD = 3, }; struct MR_SNAPDUMP_PROPERTIES { u8 offload_num; u8 max_num_supported; u8 cur_num_supported; u8 trigger_min_num_sec_before_ocr; u8 reserved[12]; }; struct megasas_debugfs_buffer { void *buf; u32 len; }; void megasas_free_cmds_fusion(struct megasas_instance *instance); int megasas_ioc_init_fusion(struct megasas_instance *instance); u8 megasas_get_map_info(struct megasas_instance *instance); int megasas_sync_map_info(struct megasas_instance *instance); void megasas_release_fusion(struct megasas_instance *instance); void megasas_reset_reply_desc(struct megasas_instance *instance); int megasas_check_mpio_paths(struct megasas_instance *instance, struct scsi_cmnd *scmd); void megasas_fusion_ocr_wq(struct work_struct *work); #endif /* _MEGARAID_SAS_FUSION_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1