Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jonas Gorski | 2147 | 49.77% | 9 | 27.27% |
William Zhang | 1887 | 43.74% | 8 | 24.24% |
Herve Codina via Alsa-devel | 75 | 1.74% | 1 | 3.03% |
Álvaro Fernández Rojas | 65 | 1.51% | 2 | 6.06% |
Yang Yingliang | 64 | 1.48% | 1 | 3.03% |
Stefan Potyra | 44 | 1.02% | 1 | 3.03% |
Jingoo Han | 7 | 0.16% | 2 | 6.06% |
Andres Galacho | 7 | 0.16% | 1 | 3.03% |
Dan Carpenter | 6 | 0.14% | 1 | 3.03% |
Aravind Thokala | 3 | 0.07% | 1 | 3.03% |
Yue haibing | 2 | 0.05% | 1 | 3.03% |
Qinglang Miao | 2 | 0.05% | 1 | 3.03% |
Uwe Kleine-König | 2 | 0.05% | 1 | 3.03% |
Alexandru Ardelean | 1 | 0.02% | 1 | 3.03% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 3.03% |
Axel Lin | 1 | 0.02% | 1 | 3.03% |
Total | 4314 | 33 |
/* * Broadcom BCM63XX High Speed SPI Controller driver * * Copyright 2000-2010 Broadcom Corporation * Copyright 2012-2013 Jonas Gorski <jonas.gorski@gmail.com> * * Licensed under the GNU/GPL. See COPYING for details. */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/spi/spi.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/spi/spi-mem.h> #include <linux/mtd/spi-nor.h> #include <linux/reset.h> #include <linux/pm_runtime.h> #define HSSPI_GLOBAL_CTRL_REG 0x0 #define GLOBAL_CTRL_CS_POLARITY_SHIFT 0 #define GLOBAL_CTRL_CS_POLARITY_MASK 0x000000ff #define GLOBAL_CTRL_PLL_CLK_CTRL_SHIFT 8 #define GLOBAL_CTRL_PLL_CLK_CTRL_MASK 0x0000ff00 #define GLOBAL_CTRL_CLK_GATE_SSOFF BIT(16) #define GLOBAL_CTRL_CLK_POLARITY BIT(17) #define GLOBAL_CTRL_MOSI_IDLE BIT(18) #define HSSPI_GLOBAL_EXT_TRIGGER_REG 0x4 #define HSSPI_INT_STATUS_REG 0x8 #define HSSPI_INT_STATUS_MASKED_REG 0xc #define HSSPI_INT_MASK_REG 0x10 #define HSSPI_PINGx_CMD_DONE(i) BIT((i * 8) + 0) #define HSSPI_PINGx_RX_OVER(i) BIT((i * 8) + 1) #define HSSPI_PINGx_TX_UNDER(i) BIT((i * 8) + 2) #define HSSPI_PINGx_POLL_TIMEOUT(i) BIT((i * 8) + 3) #define HSSPI_PINGx_CTRL_INVAL(i) BIT((i * 8) + 4) #define HSSPI_INT_CLEAR_ALL 0xff001f1f #define HSSPI_PINGPONG_COMMAND_REG(x) (0x80 + (x) * 0x40) #define PINGPONG_CMD_COMMAND_MASK 0xf #define PINGPONG_COMMAND_NOOP 0 #define PINGPONG_COMMAND_START_NOW 1 #define PINGPONG_COMMAND_START_TRIGGER 2 #define PINGPONG_COMMAND_HALT 3 #define PINGPONG_COMMAND_FLUSH 4 #define PINGPONG_CMD_PROFILE_SHIFT 8 #define PINGPONG_CMD_SS_SHIFT 12 #define HSSPI_PINGPONG_STATUS_REG(x) (0x84 + (x) * 0x40) #define HSSPI_PINGPONG_STATUS_SRC_BUSY BIT(1) #define HSSPI_PROFILE_CLK_CTRL_REG(x) (0x100 + (x) * 0x20) #define CLK_CTRL_FREQ_CTRL_MASK 0x0000ffff #define CLK_CTRL_SPI_CLK_2X_SEL BIT(14) #define CLK_CTRL_ACCUM_RST_ON_LOOP BIT(15) #define HSSPI_PROFILE_SIGNAL_CTRL_REG(x) (0x104 + (x) * 0x20) #define SIGNAL_CTRL_LATCH_RISING BIT(12) #define SIGNAL_CTRL_LAUNCH_RISING BIT(13) #define SIGNAL_CTRL_ASYNC_INPUT_PATH BIT(16) #define HSSPI_PROFILE_MODE_CTRL_REG(x) (0x108 + (x) * 0x20) #define MODE_CTRL_MULTIDATA_RD_STRT_SHIFT 8 #define MODE_CTRL_MULTIDATA_WR_STRT_SHIFT 12 #define MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT 16 #define MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT 18 #define MODE_CTRL_MODE_3WIRE BIT(20) #define MODE_CTRL_PREPENDBYTE_CNT_SHIFT 24 #define HSSPI_FIFO_REG(x) (0x200 + (x) * 0x200) #define HSSPI_OP_MULTIBIT BIT(11) #define HSSPI_OP_CODE_SHIFT 13 #define HSSPI_OP_SLEEP (0 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_READ_WRITE (1 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_WRITE (2 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_READ (3 << HSSPI_OP_CODE_SHIFT) #define HSSPI_OP_SETIRQ (4 << HSSPI_OP_CODE_SHIFT) #define HSSPI_BUFFER_LEN 512 #define HSSPI_OPCODE_LEN 2 #define HSSPI_MAX_PREPEND_LEN 15 /* * Some chip require 30MHz but other require 25MHz. Use smaller value to cover * both cases. */ #define HSSPI_MAX_SYNC_CLOCK 25000000 #define HSSPI_SPI_MAX_CS 8 #define HSSPI_BUS_NUM 1 /* 0 is legacy SPI */ #define HSSPI_POLL_STATUS_TIMEOUT_MS 100 #define HSSPI_WAIT_MODE_POLLING 0 #define HSSPI_WAIT_MODE_INTR 1 #define HSSPI_WAIT_MODE_MAX HSSPI_WAIT_MODE_INTR /* * Default transfer mode is auto. If the msg is prependable, use the prepend * mode. If not, falls back to use the dummy cs workaround mode but limit the * clock to 25MHz to make sure it works in all board design. */ #define HSSPI_XFER_MODE_AUTO 0 #define HSSPI_XFER_MODE_PREPEND 1 #define HSSPI_XFER_MODE_DUMMYCS 2 #define HSSPI_XFER_MODE_MAX HSSPI_XFER_MODE_DUMMYCS #define bcm63xx_prepend_printk_on_checkfail(bs, fmt, ...) \ do { \ if (bs->xfer_mode == HSSPI_XFER_MODE_AUTO) \ dev_dbg(&bs->pdev->dev, fmt, ##__VA_ARGS__); \ else if (bs->xfer_mode == HSSPI_XFER_MODE_PREPEND) \ dev_err(&bs->pdev->dev, fmt, ##__VA_ARGS__); \ } while (0) struct bcm63xx_hsspi { struct completion done; struct mutex bus_mutex; struct mutex msg_mutex; struct platform_device *pdev; struct clk *clk; struct clk *pll_clk; void __iomem *regs; u8 __iomem *fifo; u32 speed_hz; u8 cs_polarity; u32 wait_mode; u32 xfer_mode; u32 prepend_cnt; u8 *prepend_buf; }; static ssize_t wait_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl); return sprintf(buf, "%d\n", bs->wait_mode); } static ssize_t wait_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl); u32 val; if (kstrtou32(buf, 10, &val)) return -EINVAL; if (val > HSSPI_WAIT_MODE_MAX) { dev_warn(dev, "invalid wait mode %u\n", val); return -EINVAL; } mutex_lock(&bs->msg_mutex); bs->wait_mode = val; /* clear interrupt status to avoid spurious int on next transfer */ if (val == HSSPI_WAIT_MODE_INTR) __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); mutex_unlock(&bs->msg_mutex); return count; } static DEVICE_ATTR_RW(wait_mode); static ssize_t xfer_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl); return sprintf(buf, "%d\n", bs->xfer_mode); } static ssize_t xfer_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct spi_controller *ctrl = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(ctrl); u32 val; if (kstrtou32(buf, 10, &val)) return -EINVAL; if (val > HSSPI_XFER_MODE_MAX) { dev_warn(dev, "invalid xfer mode %u\n", val); return -EINVAL; } mutex_lock(&bs->msg_mutex); bs->xfer_mode = val; mutex_unlock(&bs->msg_mutex); return count; } static DEVICE_ATTR_RW(xfer_mode); static struct attribute *bcm63xx_hsspi_attrs[] = { &dev_attr_wait_mode.attr, &dev_attr_xfer_mode.attr, NULL, }; static const struct attribute_group bcm63xx_hsspi_group = { .attrs = bcm63xx_hsspi_attrs, }; static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs, struct spi_device *spi, int hz); static size_t bcm63xx_hsspi_max_message_size(struct spi_device *spi) { return HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN; } static int bcm63xx_hsspi_wait_cmd(struct bcm63xx_hsspi *bs) { unsigned long limit; u32 reg = 0; int rc = 0; if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) { if (wait_for_completion_timeout(&bs->done, HZ) == 0) rc = 1; } else { /* polling mode checks for status busy bit */ limit = jiffies + msecs_to_jiffies(HSSPI_POLL_STATUS_TIMEOUT_MS); while (!time_after(jiffies, limit)) { reg = __raw_readl(bs->regs + HSSPI_PINGPONG_STATUS_REG(0)); if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY) cpu_relax(); else break; } if (reg & HSSPI_PINGPONG_STATUS_SRC_BUSY) rc = 1; } if (rc) dev_err(&bs->pdev->dev, "transfer timed out!\n"); return rc; } static bool bcm63xx_prepare_prepend_transfer(struct spi_controller *host, struct spi_message *msg, struct spi_transfer *t_prepend) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host); bool tx_only = false; struct spi_transfer *t; /* * Multiple transfers within a message may be combined into one transfer * to the controller using its prepend feature. A SPI message is prependable * only if the following are all true: * 1. One or more half duplex write transfer in single bit mode * 2. Optional full duplex read/write at the end * 3. No delay and cs_change between transfers */ bs->prepend_cnt = 0; list_for_each_entry(t, &msg->transfers, transfer_list) { if ((spi_delay_to_ns(&t->delay, t) > 0) || t->cs_change) { bcm63xx_prepend_printk_on_checkfail(bs, "Delay or cs change not supported in prepend mode!\n"); return false; } tx_only = false; if (t->tx_buf && !t->rx_buf) { tx_only = true; if (bs->prepend_cnt + t->len > (HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN)) { bcm63xx_prepend_printk_on_checkfail(bs, "exceed max buf len, abort prepending transfers!\n"); return false; } if (t->tx_nbits > SPI_NBITS_SINGLE && !list_is_last(&t->transfer_list, &msg->transfers)) { bcm63xx_prepend_printk_on_checkfail(bs, "multi-bit prepend buf not supported!\n"); return false; } if (t->tx_nbits == SPI_NBITS_SINGLE) { memcpy(bs->prepend_buf + bs->prepend_cnt, t->tx_buf, t->len); bs->prepend_cnt += t->len; } } else { if (!list_is_last(&t->transfer_list, &msg->transfers)) { bcm63xx_prepend_printk_on_checkfail(bs, "rx/tx_rx transfer not supported when it is not last one!\n"); return false; } } if (list_is_last(&t->transfer_list, &msg->transfers)) { memcpy(t_prepend, t, sizeof(struct spi_transfer)); if (tx_only && t->tx_nbits == SPI_NBITS_SINGLE) { /* * if the last one is also a single bit tx only transfer, merge * all of them into one single tx transfer */ t_prepend->len = bs->prepend_cnt; t_prepend->tx_buf = bs->prepend_buf; bs->prepend_cnt = 0; } else { /* * if the last one is not a tx only transfer or dual tx xfer, all * the previous transfers are sent through prepend bytes and * make sure it does not exceed the max prepend len */ if (bs->prepend_cnt > HSSPI_MAX_PREPEND_LEN) { bcm63xx_prepend_printk_on_checkfail(bs, "exceed max prepend len, abort prepending transfers!\n"); return false; } } } } return true; } static int bcm63xx_hsspi_do_prepend_txrx(struct spi_device *spi, struct spi_transfer *t) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller); unsigned int chip_select = spi_get_chipselect(spi, 0); u16 opcode = 0, val; const u8 *tx = t->tx_buf; u8 *rx = t->rx_buf; u32 reg = 0; /* * shouldn't happen as we set the max_message_size in the probe. * but check it again in case some driver does not honor the max size */ if (t->len + bs->prepend_cnt > (HSSPI_BUFFER_LEN - HSSPI_OPCODE_LEN)) { dev_warn(&bs->pdev->dev, "Prepend message large than fifo size len %d prepend %d\n", t->len, bs->prepend_cnt); return -EINVAL; } bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz); if (tx && rx) opcode = HSSPI_OP_READ_WRITE; else if (tx) opcode = HSSPI_OP_WRITE; else if (rx) opcode = HSSPI_OP_READ; if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) || (opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) { opcode |= HSSPI_OP_MULTIBIT; if (t->rx_nbits == SPI_NBITS_DUAL) { reg |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT; reg |= bs->prepend_cnt << MODE_CTRL_MULTIDATA_RD_STRT_SHIFT; } if (t->tx_nbits == SPI_NBITS_DUAL) { reg |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT; reg |= bs->prepend_cnt << MODE_CTRL_MULTIDATA_WR_STRT_SHIFT; } } reg |= bs->prepend_cnt << MODE_CTRL_PREPENDBYTE_CNT_SHIFT; __raw_writel(reg | 0xff, bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select)); reinit_completion(&bs->done); if (bs->prepend_cnt) memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, bs->prepend_buf, bs->prepend_cnt); if (tx) memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN + bs->prepend_cnt, tx, t->len); *(__be16 *)(&val) = cpu_to_be16(opcode | t->len); __raw_writew(val, bs->fifo); /* enable interrupt */ if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) __raw_writel(HSSPI_PINGx_CMD_DONE(0), bs->regs + HSSPI_INT_MASK_REG); /* start the transfer */ reg = chip_select << PINGPONG_CMD_SS_SHIFT | chip_select << PINGPONG_CMD_PROFILE_SHIFT | PINGPONG_COMMAND_START_NOW; __raw_writel(reg, bs->regs + HSSPI_PINGPONG_COMMAND_REG(0)); if (bcm63xx_hsspi_wait_cmd(bs)) return -ETIMEDOUT; if (rx) memcpy_fromio(rx, bs->fifo, t->len); return 0; } static void bcm63xx_hsspi_set_cs(struct bcm63xx_hsspi *bs, unsigned int cs, bool active) { u32 reg; mutex_lock(&bs->bus_mutex); reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); reg &= ~BIT(cs); if (active == !(bs->cs_polarity & BIT(cs))) reg |= BIT(cs); __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG); mutex_unlock(&bs->bus_mutex); } static void bcm63xx_hsspi_set_clk(struct bcm63xx_hsspi *bs, struct spi_device *spi, int hz) { unsigned int profile = spi_get_chipselect(spi, 0); u32 reg; reg = DIV_ROUND_UP(2048, DIV_ROUND_UP(bs->speed_hz, hz)); __raw_writel(CLK_CTRL_ACCUM_RST_ON_LOOP | reg, bs->regs + HSSPI_PROFILE_CLK_CTRL_REG(profile)); reg = __raw_readl(bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile)); if (hz > HSSPI_MAX_SYNC_CLOCK) reg |= SIGNAL_CTRL_ASYNC_INPUT_PATH; else reg &= ~SIGNAL_CTRL_ASYNC_INPUT_PATH; __raw_writel(reg, bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(profile)); mutex_lock(&bs->bus_mutex); /* setup clock polarity */ reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); reg &= ~GLOBAL_CTRL_CLK_POLARITY; if (spi->mode & SPI_CPOL) reg |= GLOBAL_CTRL_CLK_POLARITY; __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG); mutex_unlock(&bs->bus_mutex); } static int bcm63xx_hsspi_do_txrx(struct spi_device *spi, struct spi_transfer *t) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller); unsigned int chip_select = spi_get_chipselect(spi, 0); u16 opcode = 0, val; int pending = t->len; int step_size = HSSPI_BUFFER_LEN; const u8 *tx = t->tx_buf; u8 *rx = t->rx_buf; u32 reg = 0; bcm63xx_hsspi_set_clk(bs, spi, t->speed_hz); if (!t->cs_off) bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), true); if (tx && rx) opcode = HSSPI_OP_READ_WRITE; else if (tx) opcode = HSSPI_OP_WRITE; else if (rx) opcode = HSSPI_OP_READ; if (opcode != HSSPI_OP_READ) step_size -= HSSPI_OPCODE_LEN; if ((opcode == HSSPI_OP_READ && t->rx_nbits == SPI_NBITS_DUAL) || (opcode == HSSPI_OP_WRITE && t->tx_nbits == SPI_NBITS_DUAL)) { opcode |= HSSPI_OP_MULTIBIT; if (t->rx_nbits == SPI_NBITS_DUAL) reg |= 1 << MODE_CTRL_MULTIDATA_RD_SIZE_SHIFT; if (t->tx_nbits == SPI_NBITS_DUAL) reg |= 1 << MODE_CTRL_MULTIDATA_WR_SIZE_SHIFT; } __raw_writel(reg | 0xff, bs->regs + HSSPI_PROFILE_MODE_CTRL_REG(chip_select)); while (pending > 0) { int curr_step = min_t(int, step_size, pending); reinit_completion(&bs->done); if (tx) { memcpy_toio(bs->fifo + HSSPI_OPCODE_LEN, tx, curr_step); tx += curr_step; } *(__be16 *)(&val) = cpu_to_be16(opcode | curr_step); __raw_writew(val, bs->fifo); /* enable interrupt */ if (bs->wait_mode == HSSPI_WAIT_MODE_INTR) __raw_writel(HSSPI_PINGx_CMD_DONE(0), bs->regs + HSSPI_INT_MASK_REG); reg = !chip_select << PINGPONG_CMD_SS_SHIFT | chip_select << PINGPONG_CMD_PROFILE_SHIFT | PINGPONG_COMMAND_START_NOW; __raw_writel(reg, bs->regs + HSSPI_PINGPONG_COMMAND_REG(0)); if (bcm63xx_hsspi_wait_cmd(bs)) return -ETIMEDOUT; if (rx) { memcpy_fromio(rx, bs->fifo, curr_step); rx += curr_step; } pending -= curr_step; } return 0; } static int bcm63xx_hsspi_setup(struct spi_device *spi) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller); u32 reg; reg = __raw_readl(bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(spi_get_chipselect(spi, 0))); reg &= ~(SIGNAL_CTRL_LAUNCH_RISING | SIGNAL_CTRL_LATCH_RISING); if (spi->mode & SPI_CPHA) reg |= SIGNAL_CTRL_LAUNCH_RISING; else reg |= SIGNAL_CTRL_LATCH_RISING; __raw_writel(reg, bs->regs + HSSPI_PROFILE_SIGNAL_CTRL_REG(spi_get_chipselect(spi, 0))); mutex_lock(&bs->bus_mutex); reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); /* only change actual polarities if there is no transfer */ if ((reg & GLOBAL_CTRL_CS_POLARITY_MASK) == bs->cs_polarity) { if (spi->mode & SPI_CS_HIGH) reg |= BIT(spi_get_chipselect(spi, 0)); else reg &= ~BIT(spi_get_chipselect(spi, 0)); __raw_writel(reg, bs->regs + HSSPI_GLOBAL_CTRL_REG); } if (spi->mode & SPI_CS_HIGH) bs->cs_polarity |= BIT(spi_get_chipselect(spi, 0)); else bs->cs_polarity &= ~BIT(spi_get_chipselect(spi, 0)); mutex_unlock(&bs->bus_mutex); return 0; } static int bcm63xx_hsspi_do_dummy_cs_txrx(struct spi_device *spi, struct spi_message *msg) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(spi->controller); int status = -EINVAL; int dummy_cs; bool keep_cs = false; struct spi_transfer *t; /* * This controller does not support keeping CS active during idle. * To work around this, we use the following ugly hack: * * a. Invert the target chip select's polarity so it will be active. * b. Select a "dummy" chip select to use as the hardware target. * c. Invert the dummy chip select's polarity so it will be inactive * during the actual transfers. * d. Tell the hardware to send to the dummy chip select. Thanks to * the multiplexed nature of SPI the actual target will receive * the transfer and we see its response. * * e. At the end restore the polarities again to their default values. */ dummy_cs = !spi_get_chipselect(spi, 0); bcm63xx_hsspi_set_cs(bs, dummy_cs, true); list_for_each_entry(t, &msg->transfers, transfer_list) { /* * We are here because one of reasons below: * a. Message is not prependable and in default auto xfer mode. This mean * we fallback to dummy cs mode at maximum 25MHz safe clock rate. * b. User set to use the dummy cs mode. */ if (bs->xfer_mode == HSSPI_XFER_MODE_AUTO) { if (t->speed_hz > HSSPI_MAX_SYNC_CLOCK) { t->speed_hz = HSSPI_MAX_SYNC_CLOCK; dev_warn_once(&bs->pdev->dev, "Force to dummy cs mode. Reduce the speed to %dHz", t->speed_hz); } } status = bcm63xx_hsspi_do_txrx(spi, t); if (status) break; msg->actual_length += t->len; spi_transfer_delay_exec(t); /* use existing cs change logic from spi_transfer_one_message */ if (t->cs_change) { if (list_is_last(&t->transfer_list, &msg->transfers)) { keep_cs = true; } else { if (!t->cs_off) bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), false); spi_transfer_cs_change_delay_exec(msg, t); if (!list_next_entry(t, transfer_list)->cs_off) bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), true); } } else if (!list_is_last(&t->transfer_list, &msg->transfers) && t->cs_off != list_next_entry(t, transfer_list)->cs_off) { bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), t->cs_off); } } bcm63xx_hsspi_set_cs(bs, dummy_cs, false); if (status || !keep_cs) bcm63xx_hsspi_set_cs(bs, spi_get_chipselect(spi, 0), false); return status; } static int bcm63xx_hsspi_transfer_one(struct spi_controller *host, struct spi_message *msg) { struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host); struct spi_device *spi = msg->spi; int status = -EINVAL; bool prependable = false; struct spi_transfer t_prepend; mutex_lock(&bs->msg_mutex); if (bs->xfer_mode != HSSPI_XFER_MODE_DUMMYCS) prependable = bcm63xx_prepare_prepend_transfer(host, msg, &t_prepend); if (prependable) { status = bcm63xx_hsspi_do_prepend_txrx(spi, &t_prepend); msg->actual_length = (t_prepend.len + bs->prepend_cnt); } else { if (bs->xfer_mode == HSSPI_XFER_MODE_PREPEND) { dev_err(&bs->pdev->dev, "User sets prepend mode but msg not prependable! Abort transfer\n"); status = -EINVAL; } else status = bcm63xx_hsspi_do_dummy_cs_txrx(spi, msg); } mutex_unlock(&bs->msg_mutex); msg->status = status; spi_finalize_current_message(host); return 0; } static bool bcm63xx_hsspi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op) { if (!spi_mem_default_supports_op(mem, op)) return false; /* Controller doesn't support spi mem dual io mode */ if ((op->cmd.opcode == SPINOR_OP_READ_1_2_2) || (op->cmd.opcode == SPINOR_OP_READ_1_2_2_4B) || (op->cmd.opcode == SPINOR_OP_READ_1_2_2_DTR) || (op->cmd.opcode == SPINOR_OP_READ_1_2_2_DTR_4B)) return false; return true; } static const struct spi_controller_mem_ops bcm63xx_hsspi_mem_ops = { .supports_op = bcm63xx_hsspi_mem_supports_op, }; static irqreturn_t bcm63xx_hsspi_interrupt(int irq, void *dev_id) { struct bcm63xx_hsspi *bs = (struct bcm63xx_hsspi *)dev_id; if (__raw_readl(bs->regs + HSSPI_INT_STATUS_MASKED_REG) == 0) return IRQ_NONE; __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); complete(&bs->done); return IRQ_HANDLED; } static int bcm63xx_hsspi_probe(struct platform_device *pdev) { struct spi_controller *host; struct bcm63xx_hsspi *bs; void __iomem *regs; struct device *dev = &pdev->dev; struct clk *clk, *pll_clk = NULL; int irq, ret; u32 reg, rate, num_cs = HSSPI_SPI_MAX_CS; struct reset_control *reset; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(regs)) return PTR_ERR(regs); clk = devm_clk_get(dev, "hsspi"); if (IS_ERR(clk)) return PTR_ERR(clk); reset = devm_reset_control_get_optional_exclusive(dev, NULL); if (IS_ERR(reset)) return PTR_ERR(reset); ret = clk_prepare_enable(clk); if (ret) return ret; ret = reset_control_reset(reset); if (ret) { dev_err(dev, "unable to reset device: %d\n", ret); goto out_disable_clk; } rate = clk_get_rate(clk); if (!rate) { pll_clk = devm_clk_get(dev, "pll"); if (IS_ERR(pll_clk)) { ret = PTR_ERR(pll_clk); goto out_disable_clk; } ret = clk_prepare_enable(pll_clk); if (ret) goto out_disable_clk; rate = clk_get_rate(pll_clk); if (!rate) { ret = -EINVAL; goto out_disable_pll_clk; } } host = spi_alloc_host(&pdev->dev, sizeof(*bs)); if (!host) { ret = -ENOMEM; goto out_disable_pll_clk; } bs = spi_controller_get_devdata(host); bs->pdev = pdev; bs->clk = clk; bs->pll_clk = pll_clk; bs->regs = regs; bs->speed_hz = rate; bs->fifo = (u8 __iomem *)(bs->regs + HSSPI_FIFO_REG(0)); bs->wait_mode = HSSPI_WAIT_MODE_POLLING; bs->prepend_buf = devm_kzalloc(dev, HSSPI_BUFFER_LEN, GFP_KERNEL); if (!bs->prepend_buf) { ret = -ENOMEM; goto out_put_host; } mutex_init(&bs->bus_mutex); mutex_init(&bs->msg_mutex); init_completion(&bs->done); host->mem_ops = &bcm63xx_hsspi_mem_ops; host->dev.of_node = dev->of_node; if (!dev->of_node) host->bus_num = HSSPI_BUS_NUM; of_property_read_u32(dev->of_node, "num-cs", &num_cs); if (num_cs > 8) { dev_warn(dev, "unsupported number of cs (%i), reducing to 8\n", num_cs); num_cs = HSSPI_SPI_MAX_CS; } host->num_chipselect = num_cs; host->setup = bcm63xx_hsspi_setup; host->transfer_one_message = bcm63xx_hsspi_transfer_one; host->max_transfer_size = bcm63xx_hsspi_max_message_size; host->max_message_size = bcm63xx_hsspi_max_message_size; host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_RX_DUAL | SPI_TX_DUAL; host->bits_per_word_mask = SPI_BPW_MASK(8); host->auto_runtime_pm = true; platform_set_drvdata(pdev, host); /* Initialize the hardware */ __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); /* clean up any pending interrupts */ __raw_writel(HSSPI_INT_CLEAR_ALL, bs->regs + HSSPI_INT_STATUS_REG); /* read out default CS polarities */ reg = __raw_readl(bs->regs + HSSPI_GLOBAL_CTRL_REG); bs->cs_polarity = reg & GLOBAL_CTRL_CS_POLARITY_MASK; __raw_writel(reg | GLOBAL_CTRL_CLK_GATE_SSOFF, bs->regs + HSSPI_GLOBAL_CTRL_REG); if (irq > 0) { ret = devm_request_irq(dev, irq, bcm63xx_hsspi_interrupt, IRQF_SHARED, pdev->name, bs); if (ret) goto out_put_host; } pm_runtime_enable(&pdev->dev); ret = sysfs_create_group(&pdev->dev.kobj, &bcm63xx_hsspi_group); if (ret) { dev_err(&pdev->dev, "couldn't register sysfs group\n"); goto out_pm_disable; } /* register and we are done */ ret = devm_spi_register_controller(dev, host); if (ret) goto out_sysgroup_disable; dev_info(dev, "Broadcom 63XX High Speed SPI Controller driver"); return 0; out_sysgroup_disable: sysfs_remove_group(&pdev->dev.kobj, &bcm63xx_hsspi_group); out_pm_disable: pm_runtime_disable(&pdev->dev); out_put_host: spi_controller_put(host); out_disable_pll_clk: clk_disable_unprepare(pll_clk); out_disable_clk: clk_disable_unprepare(clk); return ret; } static void bcm63xx_hsspi_remove(struct platform_device *pdev) { struct spi_controller *host = platform_get_drvdata(pdev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host); /* reset the hardware and block queue progress */ __raw_writel(0, bs->regs + HSSPI_INT_MASK_REG); clk_disable_unprepare(bs->pll_clk); clk_disable_unprepare(bs->clk); sysfs_remove_group(&pdev->dev.kobj, &bcm63xx_hsspi_group); } #ifdef CONFIG_PM_SLEEP static int bcm63xx_hsspi_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host); spi_controller_suspend(host); clk_disable_unprepare(bs->pll_clk); clk_disable_unprepare(bs->clk); return 0; } static int bcm63xx_hsspi_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct bcm63xx_hsspi *bs = spi_controller_get_devdata(host); int ret; ret = clk_prepare_enable(bs->clk); if (ret) return ret; if (bs->pll_clk) { ret = clk_prepare_enable(bs->pll_clk); if (ret) { clk_disable_unprepare(bs->clk); return ret; } } spi_controller_resume(host); return 0; } #endif static SIMPLE_DEV_PM_OPS(bcm63xx_hsspi_pm_ops, bcm63xx_hsspi_suspend, bcm63xx_hsspi_resume); static const struct of_device_id bcm63xx_hsspi_of_match[] = { { .compatible = "brcm,bcm6328-hsspi", }, { .compatible = "brcm,bcmbca-hsspi-v1.0", }, { }, }; MODULE_DEVICE_TABLE(of, bcm63xx_hsspi_of_match); static struct platform_driver bcm63xx_hsspi_driver = { .driver = { .name = "bcm63xx-hsspi", .pm = &bcm63xx_hsspi_pm_ops, .of_match_table = bcm63xx_hsspi_of_match, }, .probe = bcm63xx_hsspi_probe, .remove_new = bcm63xx_hsspi_remove, }; module_platform_driver(bcm63xx_hsspi_driver); MODULE_ALIAS("platform:bcm63xx_hsspi"); MODULE_DESCRIPTION("Broadcom BCM63xx High Speed SPI Controller driver"); MODULE_AUTHOR("Jonas Gorski <jogo@openwrt.org>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1