Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anatolij Gustschin | 1487 | 69.13% | 5 | 14.29% |
Gerhard Sittig | 323 | 15.02% | 5 | 14.29% |
Uwe Kleine-König | 143 | 6.65% | 2 | 5.71% |
Rob Herring | 40 | 1.86% | 2 | 5.71% |
Yang Yingliang | 39 | 1.81% | 1 | 2.86% |
Andy Shevchenko | 38 | 1.77% | 5 | 14.29% |
Linus Walleij | 29 | 1.35% | 2 | 5.71% |
Herve Codina via Alsa-devel | 20 | 0.93% | 1 | 2.86% |
Zhiqi Song | 6 | 0.28% | 1 | 2.86% |
Axel Lin | 6 | 0.28% | 1 | 2.86% |
Jingoo Han | 6 | 0.28% | 2 | 5.71% |
Grant C. Likely | 4 | 0.19% | 3 | 8.57% |
Wei Yongjun | 4 | 0.19% | 1 | 2.86% |
Thomas Gleixner | 2 | 0.09% | 1 | 2.86% |
Wolfram Sang | 2 | 0.09% | 1 | 2.86% |
Alexandru Ardelean | 1 | 0.05% | 1 | 2.86% |
Fabian Frederick | 1 | 0.05% | 1 | 2.86% |
Total | 2151 | 35 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * MPC512x PSC in SPI mode driver. * * Copyright (C) 2007,2008 Freescale Semiconductor Inc. * Original port from 52xx driver: * Hongjun Chen <hong-jun.chen@freescale.com> * * Fork of mpc52xx_psc_spi.c: * Copyright (C) 2006 TOPTICA Photonics AG., Dragos Carp */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/completion.h> #include <linux/io.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/spi/spi.h> #include <asm/mpc52xx_psc.h> enum { TYPE_MPC5121, TYPE_MPC5125, }; /* * This macro abstracts the differences in the PSC register layout between * MPC5121 (which uses a struct mpc52xx_psc) and MPC5125 (using mpc5125_psc). */ #define psc_addr(mps, regname) ({ \ void *__ret = NULL; \ switch (mps->type) { \ case TYPE_MPC5121: { \ struct mpc52xx_psc __iomem *psc = mps->psc; \ __ret = &psc->regname; \ }; \ break; \ case TYPE_MPC5125: { \ struct mpc5125_psc __iomem *psc = mps->psc; \ __ret = &psc->regname; \ }; \ break; \ } \ __ret; }) struct mpc512x_psc_spi { /* driver internal data */ int type; void __iomem *psc; struct mpc512x_psc_fifo __iomem *fifo; int irq; u8 bits_per_word; u32 mclk_rate; struct completion txisrdone; }; /* controller state */ struct mpc512x_psc_spi_cs { int bits_per_word; int speed_hz; }; /* set clock freq, clock ramp, bits per work * if t is NULL then reset the values to the default values */ static int mpc512x_psc_spi_transfer_setup(struct spi_device *spi, struct spi_transfer *t) { struct mpc512x_psc_spi_cs *cs = spi->controller_state; cs->speed_hz = (t && t->speed_hz) ? t->speed_hz : spi->max_speed_hz; cs->bits_per_word = (t && t->bits_per_word) ? t->bits_per_word : spi->bits_per_word; cs->bits_per_word = ((cs->bits_per_word + 7) / 8) * 8; return 0; } static void mpc512x_psc_spi_activate_cs(struct spi_device *spi) { struct mpc512x_psc_spi_cs *cs = spi->controller_state; struct mpc512x_psc_spi *mps = spi_controller_get_devdata(spi->controller); u32 sicr; u32 ccr; int speed; u16 bclkdiv; sicr = in_be32(psc_addr(mps, sicr)); /* Set clock phase and polarity */ if (spi->mode & SPI_CPHA) sicr |= 0x00001000; else sicr &= ~0x00001000; if (spi->mode & SPI_CPOL) sicr |= 0x00002000; else sicr &= ~0x00002000; if (spi->mode & SPI_LSB_FIRST) sicr |= 0x10000000; else sicr &= ~0x10000000; out_be32(psc_addr(mps, sicr), sicr); ccr = in_be32(psc_addr(mps, ccr)); ccr &= 0xFF000000; speed = cs->speed_hz; if (!speed) speed = 1000000; /* default 1MHz */ bclkdiv = (mps->mclk_rate / speed) - 1; ccr |= (((bclkdiv & 0xff) << 16) | (((bclkdiv >> 8) & 0xff) << 8)); out_be32(psc_addr(mps, ccr), ccr); mps->bits_per_word = cs->bits_per_word; if (spi_get_csgpiod(spi, 0)) { /* gpiolib will deal with the inversion */ gpiod_set_value(spi_get_csgpiod(spi, 0), 1); } } static void mpc512x_psc_spi_deactivate_cs(struct spi_device *spi) { if (spi_get_csgpiod(spi, 0)) { /* gpiolib will deal with the inversion */ gpiod_set_value(spi_get_csgpiod(spi, 0), 0); } } /* extract and scale size field in txsz or rxsz */ #define MPC512x_PSC_FIFO_SZ(sz) ((sz & 0x7ff) << 2); #define EOFBYTE 1 static int mpc512x_psc_spi_transfer_rxtx(struct spi_device *spi, struct spi_transfer *t) { struct mpc512x_psc_spi *mps = spi_controller_get_devdata(spi->controller); struct mpc512x_psc_fifo __iomem *fifo = mps->fifo; size_t tx_len = t->len; size_t rx_len = t->len; u8 *tx_buf = (u8 *)t->tx_buf; u8 *rx_buf = (u8 *)t->rx_buf; if (!tx_buf && !rx_buf && t->len) return -EINVAL; while (rx_len || tx_len) { size_t txcount; u8 data; size_t fifosz; size_t rxcount; int rxtries; /* * send the TX bytes in as large a chunk as possible * but neither exceed the TX nor the RX FIFOs */ fifosz = MPC512x_PSC_FIFO_SZ(in_be32(&fifo->txsz)); txcount = min(fifosz, tx_len); fifosz = MPC512x_PSC_FIFO_SZ(in_be32(&fifo->rxsz)); fifosz -= in_be32(&fifo->rxcnt) + 1; txcount = min(fifosz, txcount); if (txcount) { /* fill the TX FIFO */ while (txcount-- > 0) { data = tx_buf ? *tx_buf++ : 0; if (tx_len == EOFBYTE && t->cs_change) setbits32(&fifo->txcmd, MPC512x_PSC_FIFO_EOF); out_8(&fifo->txdata_8, data); tx_len--; } /* have the ISR trigger when the TX FIFO is empty */ reinit_completion(&mps->txisrdone); out_be32(&fifo->txisr, MPC512x_PSC_FIFO_EMPTY); out_be32(&fifo->tximr, MPC512x_PSC_FIFO_EMPTY); wait_for_completion(&mps->txisrdone); } /* * consume as much RX data as the FIFO holds, while we * iterate over the transfer's TX data length * * only insist in draining all the remaining RX bytes * when the TX bytes were exhausted (that's at the very * end of this transfer, not when still iterating over * the transfer's chunks) */ rxtries = 50; do { /* * grab whatever was in the FIFO when we started * looking, don't bother fetching what was added to * the FIFO while we read from it -- we'll return * here eventually and prefer sending out remaining * TX data */ fifosz = in_be32(&fifo->rxcnt); rxcount = min(fifosz, rx_len); while (rxcount-- > 0) { data = in_8(&fifo->rxdata_8); if (rx_buf) *rx_buf++ = data; rx_len--; } /* * come back later if there still is TX data to send, * bail out of the RX drain loop if all of the TX data * was sent and all of the RX data was received (i.e. * when the transmission has completed) */ if (tx_len) break; if (!rx_len) break; /* * TX data transmission has completed while RX data * is still pending -- that's a transient situation * which depends on wire speed and specific * hardware implementation details (buffering) yet * should resolve very quickly * * just yield for a moment to not hog the CPU for * too long when running SPI at low speed * * the timeout range is rather arbitrary and tries * to balance throughput against system load; the * chosen values result in a minimal timeout of 50 * times 10us and thus work at speeds as low as * some 20kbps, while the maximum timeout at the * transfer's end could be 5ms _if_ nothing else * ticks in the system _and_ RX data still wasn't * received, which only occurs in situations that * are exceptional; removing the unpredictability * of the timeout either decreases throughput * (longer timeouts), or puts more load on the * system (fixed short timeouts) or requires the * use of a timeout API instead of a counter and an * unknown inner delay */ usleep_range(10, 100); } while (--rxtries > 0); if (!tx_len && rx_len && !rxtries) { /* * not enough RX bytes even after several retries * and the resulting rather long timeout? */ rxcount = in_be32(&fifo->rxcnt); dev_warn(&spi->dev, "short xfer, missing %zd RX bytes, FIFO level %zd\n", rx_len, rxcount); } /* * drain and drop RX data which "should not be there" in * the first place, for undisturbed transmission this turns * into a NOP (except for the FIFO level fetch) */ if (!tx_len && !rx_len) { while (in_be32(&fifo->rxcnt)) in_8(&fifo->rxdata_8); } } return 0; } static int mpc512x_psc_spi_msg_xfer(struct spi_controller *host, struct spi_message *m) { struct spi_device *spi; unsigned cs_change; int status; struct spi_transfer *t; spi = m->spi; cs_change = 1; status = 0; list_for_each_entry(t, &m->transfers, transfer_list) { status = mpc512x_psc_spi_transfer_setup(spi, t); if (status < 0) break; if (cs_change) mpc512x_psc_spi_activate_cs(spi); cs_change = t->cs_change; status = mpc512x_psc_spi_transfer_rxtx(spi, t); if (status) break; m->actual_length += t->len; spi_transfer_delay_exec(t); if (cs_change) mpc512x_psc_spi_deactivate_cs(spi); } m->status = status; if (m->complete) m->complete(m->context); if (status || !cs_change) mpc512x_psc_spi_deactivate_cs(spi); mpc512x_psc_spi_transfer_setup(spi, NULL); spi_finalize_current_message(host); return status; } static int mpc512x_psc_spi_prep_xfer_hw(struct spi_controller *host) { struct mpc512x_psc_spi *mps = spi_controller_get_devdata(host); dev_dbg(&host->dev, "%s()\n", __func__); /* Zero MR2 */ in_8(psc_addr(mps, mr2)); out_8(psc_addr(mps, mr2), 0x0); /* enable transmitter/receiver */ out_8(psc_addr(mps, command), MPC52xx_PSC_TX_ENABLE | MPC52xx_PSC_RX_ENABLE); return 0; } static int mpc512x_psc_spi_unprep_xfer_hw(struct spi_controller *host) { struct mpc512x_psc_spi *mps = spi_controller_get_devdata(host); struct mpc512x_psc_fifo __iomem *fifo = mps->fifo; dev_dbg(&host->dev, "%s()\n", __func__); /* disable transmitter/receiver and fifo interrupt */ out_8(psc_addr(mps, command), MPC52xx_PSC_TX_DISABLE | MPC52xx_PSC_RX_DISABLE); out_be32(&fifo->tximr, 0); return 0; } static int mpc512x_psc_spi_setup(struct spi_device *spi) { struct mpc512x_psc_spi_cs *cs = spi->controller_state; if (spi->bits_per_word % 8) return -EINVAL; if (!cs) { cs = kzalloc(sizeof(*cs), GFP_KERNEL); if (!cs) return -ENOMEM; spi->controller_state = cs; } cs->bits_per_word = spi->bits_per_word; cs->speed_hz = spi->max_speed_hz; return 0; } static void mpc512x_psc_spi_cleanup(struct spi_device *spi) { kfree(spi->controller_state); } static int mpc512x_psc_spi_port_config(struct spi_controller *host, struct mpc512x_psc_spi *mps) { struct mpc512x_psc_fifo __iomem *fifo = mps->fifo; u32 sicr; u32 ccr; int speed; u16 bclkdiv; /* Reset the PSC into a known state */ out_8(psc_addr(mps, command), MPC52xx_PSC_RST_RX); out_8(psc_addr(mps, command), MPC52xx_PSC_RST_TX); out_8(psc_addr(mps, command), MPC52xx_PSC_TX_DISABLE | MPC52xx_PSC_RX_DISABLE); /* Disable psc interrupts all useful interrupts are in fifo */ out_be16(psc_addr(mps, isr_imr.imr), 0); /* Disable fifo interrupts, will be enabled later */ out_be32(&fifo->tximr, 0); out_be32(&fifo->rximr, 0); /* Setup fifo slice address and size */ /*out_be32(&fifo->txsz, 0x0fe00004);*/ /*out_be32(&fifo->rxsz, 0x0ff00004);*/ sicr = 0x01000000 | /* SIM = 0001 -- 8 bit */ 0x00800000 | /* GenClk = 1 -- internal clk */ 0x00008000 | /* SPI = 1 */ 0x00004000 | /* MSTR = 1 -- SPI host */ 0x00000800; /* UseEOF = 1 -- SS low until EOF */ out_be32(psc_addr(mps, sicr), sicr); ccr = in_be32(psc_addr(mps, ccr)); ccr &= 0xFF000000; speed = 1000000; /* default 1MHz */ bclkdiv = (mps->mclk_rate / speed) - 1; ccr |= (((bclkdiv & 0xff) << 16) | (((bclkdiv >> 8) & 0xff) << 8)); out_be32(psc_addr(mps, ccr), ccr); /* Set 2ms DTL delay */ out_8(psc_addr(mps, ctur), 0x00); out_8(psc_addr(mps, ctlr), 0x82); /* we don't use the alarms */ out_be32(&fifo->rxalarm, 0xfff); out_be32(&fifo->txalarm, 0); /* Enable FIFO slices for Rx/Tx */ out_be32(&fifo->rxcmd, MPC512x_PSC_FIFO_ENABLE_SLICE | MPC512x_PSC_FIFO_ENABLE_DMA); out_be32(&fifo->txcmd, MPC512x_PSC_FIFO_ENABLE_SLICE | MPC512x_PSC_FIFO_ENABLE_DMA); mps->bits_per_word = 8; return 0; } static irqreturn_t mpc512x_psc_spi_isr(int irq, void *dev_id) { struct mpc512x_psc_spi *mps = (struct mpc512x_psc_spi *)dev_id; struct mpc512x_psc_fifo __iomem *fifo = mps->fifo; /* clear interrupt and wake up the rx/tx routine */ if (in_be32(&fifo->txisr) & in_be32(&fifo->tximr) & MPC512x_PSC_FIFO_EMPTY) { out_be32(&fifo->txisr, MPC512x_PSC_FIFO_EMPTY); out_be32(&fifo->tximr, 0); complete(&mps->txisrdone); return IRQ_HANDLED; } return IRQ_NONE; } static int mpc512x_psc_spi_of_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mpc512x_psc_spi *mps; struct spi_controller *host; int ret; void *tempp; struct clk *clk; host = devm_spi_alloc_host(dev, sizeof(*mps)); if (host == NULL) return -ENOMEM; dev_set_drvdata(dev, host); mps = spi_controller_get_devdata(host); mps->type = (int)device_get_match_data(dev); host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST; host->setup = mpc512x_psc_spi_setup; host->prepare_transfer_hardware = mpc512x_psc_spi_prep_xfer_hw; host->transfer_one_message = mpc512x_psc_spi_msg_xfer; host->unprepare_transfer_hardware = mpc512x_psc_spi_unprep_xfer_hw; host->use_gpio_descriptors = true; host->cleanup = mpc512x_psc_spi_cleanup; device_set_node(&host->dev, dev_fwnode(dev)); tempp = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(tempp)) return dev_err_probe(dev, PTR_ERR(tempp), "could not ioremap I/O port range\n"); mps->psc = tempp; mps->fifo = (struct mpc512x_psc_fifo *)(tempp + sizeof(struct mpc52xx_psc)); mps->irq = platform_get_irq(pdev, 0); if (mps->irq < 0) return mps->irq; ret = devm_request_irq(dev, mps->irq, mpc512x_psc_spi_isr, IRQF_SHARED, "mpc512x-psc-spi", mps); if (ret) return ret; init_completion(&mps->txisrdone); clk = devm_clk_get_enabled(dev, "mclk"); if (IS_ERR(clk)) return PTR_ERR(clk); mps->mclk_rate = clk_get_rate(clk); clk = devm_clk_get_enabled(dev, "ipg"); if (IS_ERR(clk)) return PTR_ERR(clk); ret = mpc512x_psc_spi_port_config(host, mps); if (ret < 0) return ret; return devm_spi_register_controller(dev, host); } static const struct of_device_id mpc512x_psc_spi_of_match[] = { { .compatible = "fsl,mpc5121-psc-spi", .data = (void *)TYPE_MPC5121 }, { .compatible = "fsl,mpc5125-psc-spi", .data = (void *)TYPE_MPC5125 }, {}, }; MODULE_DEVICE_TABLE(of, mpc512x_psc_spi_of_match); static struct platform_driver mpc512x_psc_spi_of_driver = { .probe = mpc512x_psc_spi_of_probe, .driver = { .name = "mpc512x-psc-spi", .of_match_table = mpc512x_psc_spi_of_match, }, }; module_platform_driver(mpc512x_psc_spi_of_driver); MODULE_AUTHOR("John Rigby"); MODULE_DESCRIPTION("MPC512x PSC SPI Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1