Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Girish Mahadevan | 2469 | 60.71% | 1 | 3.70% |
Vijaya Krishna Nivarthi | 1045 | 25.69% | 5 | 18.52% |
Doug Anderson | 195 | 4.79% | 6 | 22.22% |
Akash Asthana | 163 | 4.01% | 1 | 3.70% |
Yang Yingliang | 59 | 1.45% | 1 | 3.70% |
Rajendra Nayak | 53 | 1.30% | 1 | 3.70% |
Matthias Kaehlcke | 31 | 0.76% | 1 | 3.70% |
Lukas Wunner | 23 | 0.57% | 1 | 3.70% |
Yangtao Li | 8 | 0.20% | 1 | 3.70% |
Herve Codina via Alsa-devel | 5 | 0.12% | 1 | 3.70% |
Krzysztof Kozlowski | 5 | 0.12% | 1 | 3.70% |
Yue haibing | 3 | 0.07% | 1 | 3.70% |
Uwe Kleine-König | 2 | 0.05% | 1 | 3.70% |
Barry Song | 2 | 0.05% | 1 | 3.70% |
Andy Shevchenko | 1 | 0.02% | 1 | 3.70% |
Viresh Kumar | 1 | 0.02% | 1 | 3.70% |
Stephen Boyd | 1 | 0.02% | 1 | 3.70% |
Rob Herring | 1 | 0.02% | 1 | 3.70% |
Total | 4067 | 27 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2017-2018, The Linux foundation. All rights reserved. #include <linux/clk.h> #include <linux/dmapool.h> #include <linux/dma-mapping.h> #include <linux/interconnect.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pinctrl/consumer.h> #include <linux/pm_runtime.h> #include <linux/pm_opp.h> #include <linux/spi/spi.h> #include <linux/spi/spi-mem.h> #define QSPI_NUM_CS 2 #define QSPI_BYTES_PER_WORD 4 #define MSTR_CONFIG 0x0000 #define FULL_CYCLE_MODE BIT(3) #define FB_CLK_EN BIT(4) #define PIN_HOLDN BIT(6) #define PIN_WPN BIT(7) #define DMA_ENABLE BIT(8) #define BIG_ENDIAN_MODE BIT(9) #define SPI_MODE_MSK 0xc00 #define SPI_MODE_SHFT 10 #define CHIP_SELECT_NUM BIT(12) #define SBL_EN BIT(13) #define LPA_BASE_MSK 0x3c000 #define LPA_BASE_SHFT 14 #define TX_DATA_DELAY_MSK 0xc0000 #define TX_DATA_DELAY_SHFT 18 #define TX_CLK_DELAY_MSK 0x300000 #define TX_CLK_DELAY_SHFT 20 #define TX_CS_N_DELAY_MSK 0xc00000 #define TX_CS_N_DELAY_SHFT 22 #define TX_DATA_OE_DELAY_MSK 0x3000000 #define TX_DATA_OE_DELAY_SHFT 24 #define AHB_MASTER_CFG 0x0004 #define HMEM_TYPE_START_MID_TRANS_MSK 0x7 #define HMEM_TYPE_START_MID_TRANS_SHFT 0 #define HMEM_TYPE_LAST_TRANS_MSK 0x38 #define HMEM_TYPE_LAST_TRANS_SHFT 3 #define USE_HMEMTYPE_LAST_ON_DESC_OR_CHAIN_MSK 0xc0 #define USE_HMEMTYPE_LAST_ON_DESC_OR_CHAIN_SHFT 6 #define HMEMTYPE_READ_TRANS_MSK 0x700 #define HMEMTYPE_READ_TRANS_SHFT 8 #define HSHARED BIT(11) #define HINNERSHARED BIT(12) #define MSTR_INT_EN 0x000C #define MSTR_INT_STATUS 0x0010 #define RESP_FIFO_UNDERRUN BIT(0) #define RESP_FIFO_NOT_EMPTY BIT(1) #define RESP_FIFO_RDY BIT(2) #define HRESP_FROM_NOC_ERR BIT(3) #define WR_FIFO_EMPTY BIT(9) #define WR_FIFO_FULL BIT(10) #define WR_FIFO_OVERRUN BIT(11) #define TRANSACTION_DONE BIT(16) #define DMA_CHAIN_DONE BIT(31) #define QSPI_ERR_IRQS (RESP_FIFO_UNDERRUN | HRESP_FROM_NOC_ERR | \ WR_FIFO_OVERRUN) #define QSPI_ALL_IRQS (QSPI_ERR_IRQS | RESP_FIFO_RDY | \ WR_FIFO_EMPTY | WR_FIFO_FULL | \ TRANSACTION_DONE | DMA_CHAIN_DONE) #define PIO_XFER_CTRL 0x0014 #define REQUEST_COUNT_MSK 0xffff #define PIO_XFER_CFG 0x0018 #define TRANSFER_DIRECTION BIT(0) #define MULTI_IO_MODE_MSK 0xe #define MULTI_IO_MODE_SHFT 1 #define TRANSFER_FRAGMENT BIT(8) #define SDR_1BIT 1 #define SDR_2BIT 2 #define SDR_4BIT 3 #define DDR_1BIT 5 #define DDR_2BIT 6 #define DDR_4BIT 7 #define DMA_DESC_SINGLE_SPI 1 #define DMA_DESC_DUAL_SPI 2 #define DMA_DESC_QUAD_SPI 3 #define PIO_XFER_STATUS 0x001c #define WR_FIFO_BYTES_MSK 0xffff0000 #define WR_FIFO_BYTES_SHFT 16 #define PIO_DATAOUT_1B 0x0020 #define PIO_DATAOUT_4B 0x0024 #define RD_FIFO_CFG 0x0028 #define CONTINUOUS_MODE BIT(0) #define RD_FIFO_STATUS 0x002c #define FIFO_EMPTY BIT(11) #define WR_CNTS_MSK 0x7f0 #define WR_CNTS_SHFT 4 #define RDY_64BYTE BIT(3) #define RDY_32BYTE BIT(2) #define RDY_16BYTE BIT(1) #define FIFO_RDY BIT(0) #define RD_FIFO_RESET 0x0030 #define RESET_FIFO BIT(0) #define NEXT_DMA_DESC_ADDR 0x0040 #define CURRENT_DMA_DESC_ADDR 0x0044 #define CURRENT_MEM_ADDR 0x0048 #define CUR_MEM_ADDR 0x0048 #define HW_VERSION 0x004c #define RD_FIFO 0x0050 #define SAMPLING_CLK_CFG 0x0090 #define SAMPLING_CLK_STATUS 0x0094 #define QSPI_ALIGN_REQ 32 enum qspi_dir { QSPI_READ, QSPI_WRITE, }; struct qspi_cmd_desc { u32 data_address; u32 next_descriptor; u32 direction:1; u32 multi_io_mode:3; u32 reserved1:4; u32 fragment:1; u32 reserved2:7; u32 length:16; }; struct qspi_xfer { union { const void *tx_buf; void *rx_buf; }; unsigned int rem_bytes; unsigned int buswidth; enum qspi_dir dir; bool is_last; }; enum qspi_clocks { QSPI_CLK_CORE, QSPI_CLK_IFACE, QSPI_NUM_CLKS }; /* * Number of entries in sgt returned from spi framework that- * will be supported. Can be modified as required. * In practice, given max_dma_len is 64KB, the number of * entries is not expected to exceed 1. */ #define QSPI_MAX_SG 5 struct qcom_qspi { void __iomem *base; struct device *dev; struct clk_bulk_data *clks; struct qspi_xfer xfer; struct dma_pool *dma_cmd_pool; dma_addr_t dma_cmd_desc[QSPI_MAX_SG]; void *virt_cmd_desc[QSPI_MAX_SG]; unsigned int n_cmd_desc; struct icc_path *icc_path_cpu_to_qspi; unsigned long last_speed; /* Lock to protect data accessed by IRQs */ spinlock_t lock; }; static u32 qspi_buswidth_to_iomode(struct qcom_qspi *ctrl, unsigned int buswidth) { switch (buswidth) { case 1: return SDR_1BIT; case 2: return SDR_2BIT; case 4: return SDR_4BIT; default: dev_warn_once(ctrl->dev, "Unexpected bus width: %u\n", buswidth); return SDR_1BIT; } } static void qcom_qspi_pio_xfer_cfg(struct qcom_qspi *ctrl) { u32 pio_xfer_cfg; u32 iomode; const struct qspi_xfer *xfer; xfer = &ctrl->xfer; pio_xfer_cfg = readl(ctrl->base + PIO_XFER_CFG); pio_xfer_cfg &= ~TRANSFER_DIRECTION; pio_xfer_cfg |= xfer->dir; if (xfer->is_last) pio_xfer_cfg &= ~TRANSFER_FRAGMENT; else pio_xfer_cfg |= TRANSFER_FRAGMENT; pio_xfer_cfg &= ~MULTI_IO_MODE_MSK; iomode = qspi_buswidth_to_iomode(ctrl, xfer->buswidth); pio_xfer_cfg |= iomode << MULTI_IO_MODE_SHFT; writel(pio_xfer_cfg, ctrl->base + PIO_XFER_CFG); } static void qcom_qspi_pio_xfer_ctrl(struct qcom_qspi *ctrl) { u32 pio_xfer_ctrl; pio_xfer_ctrl = readl(ctrl->base + PIO_XFER_CTRL); pio_xfer_ctrl &= ~REQUEST_COUNT_MSK; pio_xfer_ctrl |= ctrl->xfer.rem_bytes; writel(pio_xfer_ctrl, ctrl->base + PIO_XFER_CTRL); } static void qcom_qspi_pio_xfer(struct qcom_qspi *ctrl) { u32 ints; qcom_qspi_pio_xfer_cfg(ctrl); /* Ack any previous interrupts that might be hanging around */ writel(QSPI_ALL_IRQS, ctrl->base + MSTR_INT_STATUS); /* Setup new interrupts */ if (ctrl->xfer.dir == QSPI_WRITE) ints = QSPI_ERR_IRQS | WR_FIFO_EMPTY; else ints = QSPI_ERR_IRQS | RESP_FIFO_RDY; writel(ints, ctrl->base + MSTR_INT_EN); /* Kick off the transfer */ qcom_qspi_pio_xfer_ctrl(ctrl); } static void qcom_qspi_handle_err(struct spi_controller *host, struct spi_message *msg) { u32 int_status; struct qcom_qspi *ctrl = spi_controller_get_devdata(host); unsigned long flags; int i; spin_lock_irqsave(&ctrl->lock, flags); writel(0, ctrl->base + MSTR_INT_EN); int_status = readl(ctrl->base + MSTR_INT_STATUS); writel(int_status, ctrl->base + MSTR_INT_STATUS); ctrl->xfer.rem_bytes = 0; /* free cmd descriptors if they are around (DMA mode) */ for (i = 0; i < ctrl->n_cmd_desc; i++) dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i], ctrl->dma_cmd_desc[i]); ctrl->n_cmd_desc = 0; spin_unlock_irqrestore(&ctrl->lock, flags); } static int qcom_qspi_set_speed(struct qcom_qspi *ctrl, unsigned long speed_hz) { int ret; unsigned int avg_bw_cpu; if (speed_hz == ctrl->last_speed) return 0; /* In regular operation (SBL_EN=1) core must be 4x transfer clock */ ret = dev_pm_opp_set_rate(ctrl->dev, speed_hz * 4); if (ret) { dev_err(ctrl->dev, "Failed to set core clk %d\n", ret); return ret; } /* * Set BW quota for CPU. * We don't have explicit peak requirement so keep it equal to avg_bw. */ avg_bw_cpu = Bps_to_icc(speed_hz); ret = icc_set_bw(ctrl->icc_path_cpu_to_qspi, avg_bw_cpu, avg_bw_cpu); if (ret) { dev_err(ctrl->dev, "%s: ICC BW voting failed for cpu: %d\n", __func__, ret); return ret; } ctrl->last_speed = speed_hz; return 0; } static int qcom_qspi_alloc_desc(struct qcom_qspi *ctrl, dma_addr_t dma_ptr, uint32_t n_bytes) { struct qspi_cmd_desc *virt_cmd_desc, *prev; dma_addr_t dma_cmd_desc; /* allocate for dma cmd descriptor */ virt_cmd_desc = dma_pool_alloc(ctrl->dma_cmd_pool, GFP_ATOMIC | __GFP_ZERO, &dma_cmd_desc); if (!virt_cmd_desc) { dev_warn_once(ctrl->dev, "Couldn't find memory for descriptor\n"); return -EAGAIN; } ctrl->virt_cmd_desc[ctrl->n_cmd_desc] = virt_cmd_desc; ctrl->dma_cmd_desc[ctrl->n_cmd_desc] = dma_cmd_desc; ctrl->n_cmd_desc++; /* setup cmd descriptor */ virt_cmd_desc->data_address = dma_ptr; virt_cmd_desc->direction = ctrl->xfer.dir; virt_cmd_desc->multi_io_mode = qspi_buswidth_to_iomode(ctrl, ctrl->xfer.buswidth); virt_cmd_desc->fragment = !ctrl->xfer.is_last; virt_cmd_desc->length = n_bytes; /* update previous descriptor */ if (ctrl->n_cmd_desc >= 2) { prev = (ctrl->virt_cmd_desc)[ctrl->n_cmd_desc - 2]; prev->next_descriptor = dma_cmd_desc; prev->fragment = 1; } return 0; } static int qcom_qspi_setup_dma_desc(struct qcom_qspi *ctrl, struct spi_transfer *xfer) { int ret; struct sg_table *sgt; dma_addr_t dma_ptr_sg; unsigned int dma_len_sg; int i; if (ctrl->n_cmd_desc) { dev_err(ctrl->dev, "Remnant dma buffers n_cmd_desc-%d\n", ctrl->n_cmd_desc); return -EIO; } sgt = (ctrl->xfer.dir == QSPI_READ) ? &xfer->rx_sg : &xfer->tx_sg; if (!sgt->nents || sgt->nents > QSPI_MAX_SG) { dev_warn_once(ctrl->dev, "Cannot handle %d entries in scatter list\n", sgt->nents); return -EAGAIN; } for (i = 0; i < sgt->nents; i++) { dma_ptr_sg = sg_dma_address(sgt->sgl + i); dma_len_sg = sg_dma_len(sgt->sgl + i); if (!IS_ALIGNED(dma_ptr_sg, QSPI_ALIGN_REQ)) { dev_warn_once(ctrl->dev, "dma_address not aligned to %d\n", QSPI_ALIGN_REQ); return -EAGAIN; } /* * When reading with DMA the controller writes to memory 1 word * at a time. If the length isn't a multiple of 4 bytes then * the controller can clobber the things later in memory. * Fallback to PIO to be safe. */ if (ctrl->xfer.dir == QSPI_READ && (dma_len_sg & 0x03)) { dev_warn_once(ctrl->dev, "fallback to PIO for read of size %#010x\n", dma_len_sg); return -EAGAIN; } } for (i = 0; i < sgt->nents; i++) { dma_ptr_sg = sg_dma_address(sgt->sgl + i); dma_len_sg = sg_dma_len(sgt->sgl + i); ret = qcom_qspi_alloc_desc(ctrl, dma_ptr_sg, dma_len_sg); if (ret) goto cleanup; } return 0; cleanup: for (i = 0; i < ctrl->n_cmd_desc; i++) dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i], ctrl->dma_cmd_desc[i]); ctrl->n_cmd_desc = 0; return ret; } static void qcom_qspi_dma_xfer(struct qcom_qspi *ctrl) { /* Setup new interrupts */ writel(DMA_CHAIN_DONE, ctrl->base + MSTR_INT_EN); /* kick off transfer */ writel((u32)((ctrl->dma_cmd_desc)[0]), ctrl->base + NEXT_DMA_DESC_ADDR); } /* Switch to DMA if transfer length exceeds this */ #define QSPI_MAX_BYTES_FIFO 64 static bool qcom_qspi_can_dma(struct spi_controller *ctlr, struct spi_device *slv, struct spi_transfer *xfer) { return xfer->len > QSPI_MAX_BYTES_FIFO; } static int qcom_qspi_transfer_one(struct spi_controller *host, struct spi_device *slv, struct spi_transfer *xfer) { struct qcom_qspi *ctrl = spi_controller_get_devdata(host); int ret; unsigned long speed_hz; unsigned long flags; u32 mstr_cfg; speed_hz = slv->max_speed_hz; if (xfer->speed_hz) speed_hz = xfer->speed_hz; ret = qcom_qspi_set_speed(ctrl, speed_hz); if (ret) return ret; spin_lock_irqsave(&ctrl->lock, flags); mstr_cfg = readl(ctrl->base + MSTR_CONFIG); /* We are half duplex, so either rx or tx will be set */ if (xfer->rx_buf) { ctrl->xfer.dir = QSPI_READ; ctrl->xfer.buswidth = xfer->rx_nbits; ctrl->xfer.rx_buf = xfer->rx_buf; } else { ctrl->xfer.dir = QSPI_WRITE; ctrl->xfer.buswidth = xfer->tx_nbits; ctrl->xfer.tx_buf = xfer->tx_buf; } ctrl->xfer.is_last = list_is_last(&xfer->transfer_list, &host->cur_msg->transfers); ctrl->xfer.rem_bytes = xfer->len; if (xfer->rx_sg.nents || xfer->tx_sg.nents) { /* do DMA transfer */ if (!(mstr_cfg & DMA_ENABLE)) { mstr_cfg |= DMA_ENABLE; writel(mstr_cfg, ctrl->base + MSTR_CONFIG); } ret = qcom_qspi_setup_dma_desc(ctrl, xfer); if (ret != -EAGAIN) { if (!ret) { dma_wmb(); qcom_qspi_dma_xfer(ctrl); } goto exit; } dev_warn_once(ctrl->dev, "DMA failure, falling back to PIO\n"); ret = 0; /* We'll retry w/ PIO */ } if (mstr_cfg & DMA_ENABLE) { mstr_cfg &= ~DMA_ENABLE; writel(mstr_cfg, ctrl->base + MSTR_CONFIG); } qcom_qspi_pio_xfer(ctrl); exit: spin_unlock_irqrestore(&ctrl->lock, flags); if (ret) return ret; /* We'll call spi_finalize_current_transfer() when done */ return 1; } static int qcom_qspi_prepare_message(struct spi_controller *host, struct spi_message *message) { u32 mstr_cfg; struct qcom_qspi *ctrl; int tx_data_oe_delay = 1; int tx_data_delay = 1; unsigned long flags; ctrl = spi_controller_get_devdata(host); spin_lock_irqsave(&ctrl->lock, flags); mstr_cfg = readl(ctrl->base + MSTR_CONFIG); mstr_cfg &= ~CHIP_SELECT_NUM; if (spi_get_chipselect(message->spi, 0)) mstr_cfg |= CHIP_SELECT_NUM; mstr_cfg |= FB_CLK_EN | PIN_WPN | PIN_HOLDN | SBL_EN | FULL_CYCLE_MODE; mstr_cfg &= ~(SPI_MODE_MSK | TX_DATA_OE_DELAY_MSK | TX_DATA_DELAY_MSK); mstr_cfg |= message->spi->mode << SPI_MODE_SHFT; mstr_cfg |= tx_data_oe_delay << TX_DATA_OE_DELAY_SHFT; mstr_cfg |= tx_data_delay << TX_DATA_DELAY_SHFT; mstr_cfg &= ~DMA_ENABLE; writel(mstr_cfg, ctrl->base + MSTR_CONFIG); spin_unlock_irqrestore(&ctrl->lock, flags); return 0; } static int qcom_qspi_alloc_dma(struct qcom_qspi *ctrl) { ctrl->dma_cmd_pool = dmam_pool_create("qspi cmd desc pool", ctrl->dev, sizeof(struct qspi_cmd_desc), 0, 0); if (!ctrl->dma_cmd_pool) return -ENOMEM; return 0; } static irqreturn_t pio_read(struct qcom_qspi *ctrl) { u32 rd_fifo_status; u32 rd_fifo; unsigned int wr_cnts; unsigned int bytes_to_read; unsigned int words_to_read; u32 *word_buf; u8 *byte_buf; int i; rd_fifo_status = readl(ctrl->base + RD_FIFO_STATUS); if (!(rd_fifo_status & FIFO_RDY)) { dev_dbg(ctrl->dev, "Spurious IRQ %#x\n", rd_fifo_status); return IRQ_NONE; } wr_cnts = (rd_fifo_status & WR_CNTS_MSK) >> WR_CNTS_SHFT; wr_cnts = min(wr_cnts, ctrl->xfer.rem_bytes); words_to_read = wr_cnts / QSPI_BYTES_PER_WORD; bytes_to_read = wr_cnts % QSPI_BYTES_PER_WORD; if (words_to_read) { word_buf = ctrl->xfer.rx_buf; ctrl->xfer.rem_bytes -= words_to_read * QSPI_BYTES_PER_WORD; ioread32_rep(ctrl->base + RD_FIFO, word_buf, words_to_read); ctrl->xfer.rx_buf = word_buf + words_to_read; } if (bytes_to_read) { byte_buf = ctrl->xfer.rx_buf; rd_fifo = readl(ctrl->base + RD_FIFO); ctrl->xfer.rem_bytes -= bytes_to_read; for (i = 0; i < bytes_to_read; i++) *byte_buf++ = rd_fifo >> (i * BITS_PER_BYTE); ctrl->xfer.rx_buf = byte_buf; } return IRQ_HANDLED; } static irqreturn_t pio_write(struct qcom_qspi *ctrl) { const void *xfer_buf = ctrl->xfer.tx_buf; const int *word_buf; const char *byte_buf; unsigned int wr_fifo_bytes; unsigned int wr_fifo_words; unsigned int wr_size; unsigned int rem_words; wr_fifo_bytes = readl(ctrl->base + PIO_XFER_STATUS); wr_fifo_bytes >>= WR_FIFO_BYTES_SHFT; if (ctrl->xfer.rem_bytes < QSPI_BYTES_PER_WORD) { /* Process the last 1-3 bytes */ wr_size = min(wr_fifo_bytes, ctrl->xfer.rem_bytes); ctrl->xfer.rem_bytes -= wr_size; byte_buf = xfer_buf; while (wr_size--) writel(*byte_buf++, ctrl->base + PIO_DATAOUT_1B); ctrl->xfer.tx_buf = byte_buf; } else { /* * Process all the whole words; to keep things simple we'll * just wait for the next interrupt to handle the last 1-3 * bytes if we don't have an even number of words. */ rem_words = ctrl->xfer.rem_bytes / QSPI_BYTES_PER_WORD; wr_fifo_words = wr_fifo_bytes / QSPI_BYTES_PER_WORD; wr_size = min(rem_words, wr_fifo_words); ctrl->xfer.rem_bytes -= wr_size * QSPI_BYTES_PER_WORD; word_buf = xfer_buf; iowrite32_rep(ctrl->base + PIO_DATAOUT_4B, word_buf, wr_size); ctrl->xfer.tx_buf = word_buf + wr_size; } return IRQ_HANDLED; } static irqreturn_t qcom_qspi_irq(int irq, void *dev_id) { u32 int_status; struct qcom_qspi *ctrl = dev_id; irqreturn_t ret = IRQ_NONE; spin_lock(&ctrl->lock); int_status = readl(ctrl->base + MSTR_INT_STATUS); writel(int_status, ctrl->base + MSTR_INT_STATUS); /* Ignore disabled interrupts */ int_status &= readl(ctrl->base + MSTR_INT_EN); /* PIO mode handling */ if (ctrl->xfer.dir == QSPI_WRITE) { if (int_status & WR_FIFO_EMPTY) ret = pio_write(ctrl); } else { if (int_status & RESP_FIFO_RDY) ret = pio_read(ctrl); } if (int_status & QSPI_ERR_IRQS) { if (int_status & RESP_FIFO_UNDERRUN) dev_err(ctrl->dev, "IRQ error: FIFO underrun\n"); if (int_status & WR_FIFO_OVERRUN) dev_err(ctrl->dev, "IRQ error: FIFO overrun\n"); if (int_status & HRESP_FROM_NOC_ERR) dev_err(ctrl->dev, "IRQ error: NOC response error\n"); ret = IRQ_HANDLED; } if (!ctrl->xfer.rem_bytes) { writel(0, ctrl->base + MSTR_INT_EN); spi_finalize_current_transfer(dev_get_drvdata(ctrl->dev)); } /* DMA mode handling */ if (int_status & DMA_CHAIN_DONE) { int i; writel(0, ctrl->base + MSTR_INT_EN); ctrl->xfer.rem_bytes = 0; for (i = 0; i < ctrl->n_cmd_desc; i++) dma_pool_free(ctrl->dma_cmd_pool, ctrl->virt_cmd_desc[i], ctrl->dma_cmd_desc[i]); ctrl->n_cmd_desc = 0; ret = IRQ_HANDLED; spi_finalize_current_transfer(dev_get_drvdata(ctrl->dev)); } spin_unlock(&ctrl->lock); return ret; } static int qcom_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) { /* * If qcom_qspi_can_dma() is going to return false we don't need to * adjust anything. */ if (op->data.nbytes <= QSPI_MAX_BYTES_FIFO) return 0; /* * When reading, the transfer needs to be a multiple of 4 bytes so * shrink the transfer if that's not true. The caller will then do a * second transfer to finish things up. */ if (op->data.dir == SPI_MEM_DATA_IN && (op->data.nbytes & 0x3)) op->data.nbytes &= ~0x3; return 0; } static const struct spi_controller_mem_ops qcom_qspi_mem_ops = { .adjust_op_size = qcom_qspi_adjust_op_size, }; static int qcom_qspi_probe(struct platform_device *pdev) { int ret; struct device *dev; struct spi_controller *host; struct qcom_qspi *ctrl; dev = &pdev->dev; host = devm_spi_alloc_host(dev, sizeof(*ctrl)); if (!host) return -ENOMEM; platform_set_drvdata(pdev, host); ctrl = spi_controller_get_devdata(host); spin_lock_init(&ctrl->lock); ctrl->dev = dev; ctrl->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ctrl->base)) return PTR_ERR(ctrl->base); ctrl->clks = devm_kcalloc(dev, QSPI_NUM_CLKS, sizeof(*ctrl->clks), GFP_KERNEL); if (!ctrl->clks) return -ENOMEM; ctrl->clks[QSPI_CLK_CORE].id = "core"; ctrl->clks[QSPI_CLK_IFACE].id = "iface"; ret = devm_clk_bulk_get(dev, QSPI_NUM_CLKS, ctrl->clks); if (ret) return ret; ctrl->icc_path_cpu_to_qspi = devm_of_icc_get(dev, "qspi-config"); if (IS_ERR(ctrl->icc_path_cpu_to_qspi)) return dev_err_probe(dev, PTR_ERR(ctrl->icc_path_cpu_to_qspi), "Failed to get cpu path\n"); /* Set BW vote for register access */ ret = icc_set_bw(ctrl->icc_path_cpu_to_qspi, Bps_to_icc(1000), Bps_to_icc(1000)); if (ret) { dev_err(ctrl->dev, "%s: ICC BW voting failed for cpu: %d\n", __func__, ret); return ret; } ret = icc_disable(ctrl->icc_path_cpu_to_qspi); if (ret) { dev_err(ctrl->dev, "%s: ICC disable failed for cpu: %d\n", __func__, ret); return ret; } ret = platform_get_irq(pdev, 0); if (ret < 0) return ret; ret = devm_request_irq(dev, ret, qcom_qspi_irq, 0, dev_name(dev), ctrl); if (ret) { dev_err(dev, "Failed to request irq %d\n", ret); return ret; } ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret) return dev_err_probe(dev, ret, "could not set DMA mask\n"); host->max_speed_hz = 300000000; host->max_dma_len = 65536; /* as per HPG */ host->dma_alignment = QSPI_ALIGN_REQ; host->num_chipselect = QSPI_NUM_CS; host->bus_num = -1; host->dev.of_node = pdev->dev.of_node; host->mode_bits = SPI_MODE_0 | SPI_TX_DUAL | SPI_RX_DUAL | SPI_TX_QUAD | SPI_RX_QUAD; host->flags = SPI_CONTROLLER_HALF_DUPLEX; host->prepare_message = qcom_qspi_prepare_message; host->transfer_one = qcom_qspi_transfer_one; host->handle_err = qcom_qspi_handle_err; if (of_property_read_bool(pdev->dev.of_node, "iommus")) host->can_dma = qcom_qspi_can_dma; host->auto_runtime_pm = true; host->mem_ops = &qcom_qspi_mem_ops; ret = devm_pm_opp_set_clkname(&pdev->dev, "core"); if (ret) return ret; /* OPP table is optional */ ret = devm_pm_opp_of_add_table(&pdev->dev); if (ret && ret != -ENODEV) { dev_err(&pdev->dev, "invalid OPP table in device tree\n"); return ret; } ret = qcom_qspi_alloc_dma(ctrl); if (ret) return ret; pm_runtime_use_autosuspend(dev); pm_runtime_set_autosuspend_delay(dev, 250); pm_runtime_enable(dev); ret = spi_register_controller(host); if (!ret) return 0; pm_runtime_disable(dev); return ret; } static void qcom_qspi_remove(struct platform_device *pdev) { struct spi_controller *host = platform_get_drvdata(pdev); /* Unregister _before_ disabling pm_runtime() so we stop transfers */ spi_unregister_controller(host); pm_runtime_disable(&pdev->dev); } static int __maybe_unused qcom_qspi_runtime_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct qcom_qspi *ctrl = spi_controller_get_devdata(host); int ret; /* Drop the performance state vote */ dev_pm_opp_set_rate(dev, 0); clk_bulk_disable_unprepare(QSPI_NUM_CLKS, ctrl->clks); ret = icc_disable(ctrl->icc_path_cpu_to_qspi); if (ret) { dev_err_ratelimited(ctrl->dev, "%s: ICC disable failed for cpu: %d\n", __func__, ret); return ret; } pinctrl_pm_select_sleep_state(dev); return 0; } static int __maybe_unused qcom_qspi_runtime_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); struct qcom_qspi *ctrl = spi_controller_get_devdata(host); int ret; pinctrl_pm_select_default_state(dev); ret = icc_enable(ctrl->icc_path_cpu_to_qspi); if (ret) { dev_err_ratelimited(ctrl->dev, "%s: ICC enable failed for cpu: %d\n", __func__, ret); return ret; } ret = clk_bulk_prepare_enable(QSPI_NUM_CLKS, ctrl->clks); if (ret) return ret; return dev_pm_opp_set_rate(dev, ctrl->last_speed * 4); } static int __maybe_unused qcom_qspi_suspend(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); int ret; ret = spi_controller_suspend(host); if (ret) return ret; ret = pm_runtime_force_suspend(dev); if (ret) spi_controller_resume(host); return ret; } static int __maybe_unused qcom_qspi_resume(struct device *dev) { struct spi_controller *host = dev_get_drvdata(dev); int ret; ret = pm_runtime_force_resume(dev); if (ret) return ret; ret = spi_controller_resume(host); if (ret) pm_runtime_force_suspend(dev); return ret; } static const struct dev_pm_ops qcom_qspi_dev_pm_ops = { SET_RUNTIME_PM_OPS(qcom_qspi_runtime_suspend, qcom_qspi_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(qcom_qspi_suspend, qcom_qspi_resume) }; static const struct of_device_id qcom_qspi_dt_match[] = { { .compatible = "qcom,qspi-v1", }, { } }; MODULE_DEVICE_TABLE(of, qcom_qspi_dt_match); static struct platform_driver qcom_qspi_driver = { .driver = { .name = "qcom_qspi", .pm = &qcom_qspi_dev_pm_ops, .of_match_table = qcom_qspi_dt_match, }, .probe = qcom_qspi_probe, .remove_new = qcom_qspi_remove, }; module_platform_driver(qcom_qspi_driver); MODULE_DESCRIPTION("SPI driver for QSPI cores"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1