Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rui Miguel Silva | 1288 | 52.53% | 12 | 31.58% |
Viresh Kumar | 955 | 38.95% | 5 | 13.16% |
Greg Kroah-Hartman | 51 | 2.08% | 10 | 26.32% |
Axel Haslam | 50 | 2.04% | 1 | 2.63% |
Uwe Kleine-König | 49 | 2.00% | 1 | 2.63% |
Alexandru Ardelean | 31 | 1.26% | 1 | 2.63% |
Johan Hovold | 17 | 0.69% | 5 | 13.16% |
Amit Kumar Mahapatra | 5 | 0.20% | 1 | 2.63% |
Alex Elder | 4 | 0.16% | 1 | 2.63% |
Kumar Kartikeya Dwivedi | 2 | 0.08% | 1 | 2.63% |
Total | 2452 | 38 |
// SPDX-License-Identifier: GPL-2.0 /* * Greybus SPI library * * Copyright 2014-2016 Google Inc. * Copyright 2014-2016 Linaro Ltd. */ #include <linux/bitops.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/greybus.h> #include <linux/spi/spi.h> #include "spilib.h" struct gb_spilib { struct gb_connection *connection; struct device *parent; struct spi_transfer *first_xfer; struct spi_transfer *last_xfer; struct spilib_ops *ops; u32 rx_xfer_offset; u32 tx_xfer_offset; u32 last_xfer_size; unsigned int op_timeout; u16 mode; u16 flags; u32 bits_per_word_mask; u8 num_chipselect; u32 min_speed_hz; u32 max_speed_hz; }; #define GB_SPI_STATE_MSG_DONE ((void *)0) #define GB_SPI_STATE_MSG_IDLE ((void *)1) #define GB_SPI_STATE_MSG_RUNNING ((void *)2) #define GB_SPI_STATE_OP_READY ((void *)3) #define GB_SPI_STATE_OP_DONE ((void *)4) #define GB_SPI_STATE_MSG_ERROR ((void *)-1) #define XFER_TIMEOUT_TOLERANCE 200 static struct spi_controller *get_controller_from_spi(struct gb_spilib *spi) { return gb_connection_get_data(spi->connection); } static int tx_header_fit_operation(u32 tx_size, u32 count, size_t data_max) { size_t headers_size; data_max -= sizeof(struct gb_spi_transfer_request); headers_size = (count + 1) * sizeof(struct gb_spi_transfer); return tx_size + headers_size > data_max ? 0 : 1; } static size_t calc_rx_xfer_size(u32 rx_size, u32 *tx_xfer_size, u32 len, size_t data_max) { size_t rx_xfer_size; data_max -= sizeof(struct gb_spi_transfer_response); if (rx_size + len > data_max) rx_xfer_size = data_max - rx_size; else rx_xfer_size = len; /* if this is a write_read, for symmetry read the same as write */ if (*tx_xfer_size && rx_xfer_size > *tx_xfer_size) rx_xfer_size = *tx_xfer_size; if (*tx_xfer_size && rx_xfer_size < *tx_xfer_size) *tx_xfer_size = rx_xfer_size; return rx_xfer_size; } static size_t calc_tx_xfer_size(u32 tx_size, u32 count, size_t len, size_t data_max) { size_t headers_size; data_max -= sizeof(struct gb_spi_transfer_request); headers_size = (count + 1) * sizeof(struct gb_spi_transfer); if (tx_size + headers_size + len > data_max) return data_max - (tx_size + sizeof(struct gb_spi_transfer)); return len; } static void clean_xfer_state(struct gb_spilib *spi) { spi->first_xfer = NULL; spi->last_xfer = NULL; spi->rx_xfer_offset = 0; spi->tx_xfer_offset = 0; spi->last_xfer_size = 0; spi->op_timeout = 0; } static bool is_last_xfer_done(struct gb_spilib *spi) { struct spi_transfer *last_xfer = spi->last_xfer; if ((spi->tx_xfer_offset + spi->last_xfer_size == last_xfer->len) || (spi->rx_xfer_offset + spi->last_xfer_size == last_xfer->len)) return true; return false; } static int setup_next_xfer(struct gb_spilib *spi, struct spi_message *msg) { struct spi_transfer *last_xfer = spi->last_xfer; if (msg->state != GB_SPI_STATE_OP_DONE) return 0; /* * if we transferred all content of the last transfer, reset values and * check if this was the last transfer in the message */ if (is_last_xfer_done(spi)) { spi->tx_xfer_offset = 0; spi->rx_xfer_offset = 0; spi->op_timeout = 0; if (last_xfer == list_last_entry(&msg->transfers, struct spi_transfer, transfer_list)) msg->state = GB_SPI_STATE_MSG_DONE; else spi->first_xfer = list_next_entry(last_xfer, transfer_list); return 0; } spi->first_xfer = last_xfer; if (last_xfer->tx_buf) spi->tx_xfer_offset += spi->last_xfer_size; if (last_xfer->rx_buf) spi->rx_xfer_offset += spi->last_xfer_size; return 0; } static struct spi_transfer *get_next_xfer(struct spi_transfer *xfer, struct spi_message *msg) { if (xfer == list_last_entry(&msg->transfers, struct spi_transfer, transfer_list)) return NULL; return list_next_entry(xfer, transfer_list); } /* Routines to transfer data */ static struct gb_operation *gb_spi_operation_create(struct gb_spilib *spi, struct gb_connection *connection, struct spi_message *msg) { struct gb_spi_transfer_request *request; struct spi_device *dev = msg->spi; struct spi_transfer *xfer; struct gb_spi_transfer *gb_xfer; struct gb_operation *operation; u32 tx_size = 0, rx_size = 0, count = 0, xfer_len = 0, request_size; u32 tx_xfer_size = 0, rx_xfer_size = 0, len; u32 total_len = 0; unsigned int xfer_timeout; size_t data_max; void *tx_data; data_max = gb_operation_get_payload_size_max(connection); xfer = spi->first_xfer; /* Find number of transfers queued and tx/rx length in the message */ while (msg->state != GB_SPI_STATE_OP_READY) { msg->state = GB_SPI_STATE_MSG_RUNNING; spi->last_xfer = xfer; if (!xfer->tx_buf && !xfer->rx_buf) { dev_err(spi->parent, "bufferless transfer, length %u\n", xfer->len); msg->state = GB_SPI_STATE_MSG_ERROR; return NULL; } tx_xfer_size = 0; rx_xfer_size = 0; if (xfer->tx_buf) { len = xfer->len - spi->tx_xfer_offset; if (!tx_header_fit_operation(tx_size, count, data_max)) break; tx_xfer_size = calc_tx_xfer_size(tx_size, count, len, data_max); spi->last_xfer_size = tx_xfer_size; } if (xfer->rx_buf) { len = xfer->len - spi->rx_xfer_offset; rx_xfer_size = calc_rx_xfer_size(rx_size, &tx_xfer_size, len, data_max); spi->last_xfer_size = rx_xfer_size; } tx_size += tx_xfer_size; rx_size += rx_xfer_size; total_len += spi->last_xfer_size; count++; xfer = get_next_xfer(xfer, msg); if (!xfer || total_len >= data_max) msg->state = GB_SPI_STATE_OP_READY; } /* * In addition to space for all message descriptors we need * to have enough to hold all tx data. */ request_size = sizeof(*request); request_size += count * sizeof(*gb_xfer); request_size += tx_size; /* Response consists only of incoming data */ operation = gb_operation_create(connection, GB_SPI_TYPE_TRANSFER, request_size, rx_size, GFP_KERNEL); if (!operation) return NULL; request = operation->request->payload; request->count = cpu_to_le16(count); request->mode = dev->mode; request->chip_select = spi_get_chipselect(dev, 0); gb_xfer = &request->transfers[0]; tx_data = gb_xfer + count; /* place tx data after last gb_xfer */ /* Fill in the transfers array */ xfer = spi->first_xfer; while (msg->state != GB_SPI_STATE_OP_DONE) { int xfer_delay; if (xfer == spi->last_xfer) xfer_len = spi->last_xfer_size; else xfer_len = xfer->len; /* make sure we do not timeout in a slow transfer */ xfer_timeout = xfer_len * 8 * MSEC_PER_SEC / xfer->speed_hz; xfer_timeout += GB_OPERATION_TIMEOUT_DEFAULT; if (xfer_timeout > spi->op_timeout) spi->op_timeout = xfer_timeout; gb_xfer->speed_hz = cpu_to_le32(xfer->speed_hz); gb_xfer->len = cpu_to_le32(xfer_len); xfer_delay = spi_delay_to_ns(&xfer->delay, xfer) / 1000; xfer_delay = clamp_t(u16, xfer_delay, 0, U16_MAX); gb_xfer->delay_usecs = cpu_to_le16(xfer_delay); gb_xfer->cs_change = xfer->cs_change; gb_xfer->bits_per_word = xfer->bits_per_word; /* Copy tx data */ if (xfer->tx_buf) { gb_xfer->xfer_flags |= GB_SPI_XFER_WRITE; memcpy(tx_data, xfer->tx_buf + spi->tx_xfer_offset, xfer_len); tx_data += xfer_len; } if (xfer->rx_buf) gb_xfer->xfer_flags |= GB_SPI_XFER_READ; if (xfer == spi->last_xfer) { if (!is_last_xfer_done(spi)) gb_xfer->xfer_flags |= GB_SPI_XFER_INPROGRESS; msg->state = GB_SPI_STATE_OP_DONE; continue; } gb_xfer++; xfer = get_next_xfer(xfer, msg); } msg->actual_length += total_len; return operation; } static void gb_spi_decode_response(struct gb_spilib *spi, struct spi_message *msg, struct gb_spi_transfer_response *response) { struct spi_transfer *xfer = spi->first_xfer; void *rx_data = response->data; u32 xfer_len; while (xfer) { /* Copy rx data */ if (xfer->rx_buf) { if (xfer == spi->first_xfer) xfer_len = xfer->len - spi->rx_xfer_offset; else if (xfer == spi->last_xfer) xfer_len = spi->last_xfer_size; else xfer_len = xfer->len; memcpy(xfer->rx_buf + spi->rx_xfer_offset, rx_data, xfer_len); rx_data += xfer_len; } if (xfer == spi->last_xfer) break; xfer = list_next_entry(xfer, transfer_list); } } static int gb_spi_transfer_one_message(struct spi_controller *ctlr, struct spi_message *msg) { struct gb_spilib *spi = spi_controller_get_devdata(ctlr); struct gb_connection *connection = spi->connection; struct gb_spi_transfer_response *response; struct gb_operation *operation; int ret = 0; spi->first_xfer = list_first_entry_or_null(&msg->transfers, struct spi_transfer, transfer_list); if (!spi->first_xfer) { ret = -ENOMEM; goto out; } msg->state = GB_SPI_STATE_MSG_IDLE; while (msg->state != GB_SPI_STATE_MSG_DONE && msg->state != GB_SPI_STATE_MSG_ERROR) { operation = gb_spi_operation_create(spi, connection, msg); if (!operation) { msg->state = GB_SPI_STATE_MSG_ERROR; ret = -EINVAL; continue; } ret = gb_operation_request_send_sync_timeout(operation, spi->op_timeout); if (!ret) { response = operation->response->payload; if (response) gb_spi_decode_response(spi, msg, response); } else { dev_err(spi->parent, "transfer operation failed: %d\n", ret); msg->state = GB_SPI_STATE_MSG_ERROR; } gb_operation_put(operation); setup_next_xfer(spi, msg); } out: msg->status = ret; clean_xfer_state(spi); spi_finalize_current_message(ctlr); return ret; } static int gb_spi_prepare_transfer_hardware(struct spi_controller *ctlr) { struct gb_spilib *spi = spi_controller_get_devdata(ctlr); return spi->ops->prepare_transfer_hardware(spi->parent); } static int gb_spi_unprepare_transfer_hardware(struct spi_controller *ctlr) { struct gb_spilib *spi = spi_controller_get_devdata(ctlr); spi->ops->unprepare_transfer_hardware(spi->parent); return 0; } static int gb_spi_setup(struct spi_device *spi) { /* Nothing to do for now */ return 0; } static void gb_spi_cleanup(struct spi_device *spi) { /* Nothing to do for now */ } /* Routines to get controller information */ /* * Map Greybus spi mode bits/flags/bpw into Linux ones. * All bits are same for now and so these macro's return same values. */ #define gb_spi_mode_map(mode) mode #define gb_spi_flags_map(flags) flags static int gb_spi_get_master_config(struct gb_spilib *spi) { struct gb_spi_master_config_response response; u16 mode, flags; int ret; ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_MASTER_CONFIG, NULL, 0, &response, sizeof(response)); if (ret < 0) return ret; mode = le16_to_cpu(response.mode); spi->mode = gb_spi_mode_map(mode); flags = le16_to_cpu(response.flags); spi->flags = gb_spi_flags_map(flags); spi->bits_per_word_mask = le32_to_cpu(response.bits_per_word_mask); spi->num_chipselect = response.num_chipselect; spi->min_speed_hz = le32_to_cpu(response.min_speed_hz); spi->max_speed_hz = le32_to_cpu(response.max_speed_hz); return 0; } static int gb_spi_setup_device(struct gb_spilib *spi, u8 cs) { struct spi_controller *ctlr = get_controller_from_spi(spi); struct gb_spi_device_config_request request; struct gb_spi_device_config_response response; struct spi_board_info spi_board = { {0} }; struct spi_device *spidev; int ret; u8 dev_type; request.chip_select = cs; ret = gb_operation_sync(spi->connection, GB_SPI_TYPE_DEVICE_CONFIG, &request, sizeof(request), &response, sizeof(response)); if (ret < 0) return ret; dev_type = response.device_type; if (dev_type == GB_SPI_SPI_DEV) strscpy(spi_board.modalias, "spidev", sizeof(spi_board.modalias)); else if (dev_type == GB_SPI_SPI_NOR) strscpy(spi_board.modalias, "spi-nor", sizeof(spi_board.modalias)); else if (dev_type == GB_SPI_SPI_MODALIAS) memcpy(spi_board.modalias, response.name, sizeof(spi_board.modalias)); else return -EINVAL; spi_board.mode = le16_to_cpu(response.mode); spi_board.bus_num = ctlr->bus_num; spi_board.chip_select = cs; spi_board.max_speed_hz = le32_to_cpu(response.max_speed_hz); spidev = spi_new_device(ctlr, &spi_board); if (!spidev) return -EINVAL; return 0; } int gb_spilib_master_init(struct gb_connection *connection, struct device *dev, struct spilib_ops *ops) { struct gb_spilib *spi; struct spi_controller *ctlr; int ret; u8 i; /* Allocate master with space for data */ ctlr = spi_alloc_master(dev, sizeof(*spi)); if (!ctlr) { dev_err(dev, "cannot alloc SPI master\n"); return -ENOMEM; } spi = spi_controller_get_devdata(ctlr); spi->connection = connection; gb_connection_set_data(connection, ctlr); spi->parent = dev; spi->ops = ops; /* get controller configuration */ ret = gb_spi_get_master_config(spi); if (ret) goto exit_spi_put; ctlr->bus_num = -1; /* Allow spi-core to allocate it dynamically */ ctlr->num_chipselect = spi->num_chipselect; ctlr->mode_bits = spi->mode; ctlr->flags = spi->flags; ctlr->bits_per_word_mask = spi->bits_per_word_mask; /* Attach methods */ ctlr->cleanup = gb_spi_cleanup; ctlr->setup = gb_spi_setup; ctlr->transfer_one_message = gb_spi_transfer_one_message; if (ops && ops->prepare_transfer_hardware) { ctlr->prepare_transfer_hardware = gb_spi_prepare_transfer_hardware; } if (ops && ops->unprepare_transfer_hardware) { ctlr->unprepare_transfer_hardware = gb_spi_unprepare_transfer_hardware; } ctlr->auto_runtime_pm = true; ret = spi_register_controller(ctlr); if (ret < 0) goto exit_spi_put; /* now, fetch the devices configuration */ for (i = 0; i < spi->num_chipselect; i++) { ret = gb_spi_setup_device(spi, i); if (ret < 0) { dev_err(dev, "failed to allocate spi device %d: %d\n", i, ret); goto exit_spi_unregister; } } return 0; exit_spi_put: spi_controller_put(ctlr); return ret; exit_spi_unregister: spi_unregister_controller(ctlr); return ret; } EXPORT_SYMBOL_GPL(gb_spilib_master_init); void gb_spilib_master_exit(struct gb_connection *connection) { struct spi_controller *ctlr = gb_connection_get_data(connection); spi_unregister_controller(ctlr); } EXPORT_SYMBOL_GPL(gb_spilib_master_exit); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1