Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Wolfram Sang | 9979 | 80.85% | 4 | 2.50% |
Sergio Paracuellos | 975 | 7.90% | 56 | 35.00% |
Tobin C Harding | 542 | 4.39% | 29 | 18.12% |
Quytelda Kahja | 388 | 3.14% | 39 | 24.38% |
Jeremy Sowden | 273 | 2.21% | 1 | 0.62% |
Janusz Lisiecki | 38 | 0.31% | 4 | 2.50% |
Sabitha George | 24 | 0.19% | 1 | 0.62% |
Davidlohr Bueso A | 23 | 0.19% | 1 | 0.62% |
sayli karnik | 15 | 0.12% | 2 | 1.25% |
Nicholas Mc Guire | 14 | 0.11% | 2 | 1.25% |
Perry Hooker | 10 | 0.08% | 1 | 0.62% |
Shiva Kerdel | 8 | 0.06% | 3 | 1.88% |
Allen Pais | 6 | 0.05% | 1 | 0.62% |
Punit Vara | 5 | 0.04% | 1 | 0.62% |
Johannes Berg | 5 | 0.04% | 1 | 0.62% |
Lee Jones | 4 | 0.03% | 1 | 0.62% |
Mihaela Muraru | 4 | 0.03% | 1 | 0.62% |
Wei Yongjun | 4 | 0.03% | 1 | 0.62% |
Bhumika Goyal | 3 | 0.02% | 1 | 0.62% |
Hariharan R | 3 | 0.02% | 1 | 0.62% |
Pontus Fuchs | 3 | 0.02% | 1 | 0.62% |
Colin Ian King | 3 | 0.02% | 1 | 0.62% |
Richard Porter | 3 | 0.02% | 1 | 0.62% |
Rehas Sachdeva | 3 | 0.02% | 1 | 0.62% |
Andy Shevchenko | 2 | 0.02% | 1 | 0.62% |
Nishka Dasgupta | 2 | 0.02% | 1 | 0.62% |
Ilia Sergachev | 2 | 0.02% | 1 | 0.62% |
Waiman Long | 1 | 0.01% | 1 | 0.62% |
Jakub Kiciński | 1 | 0.01% | 1 | 0.62% |
Total | 12343 | 160 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for KeyStream wireless LAN cards. * * Copyright (C) 2005-2008 KeyStream Corp. * Copyright (C) 2009 Renesas Technology Corp. */ #include <crypto/hash.h> #include <linux/circ_buf.h> #include <linux/if_arp.h> #include <net/iw_handler.h> #include <uapi/linux/llc.h> #include "eap_packet.h" #include "ks_wlan.h" #include "ks_hostif.h" #define MICHAEL_MIC_KEY_LEN 8 #define MICHAEL_MIC_LEN 8 static inline void inc_smeqhead(struct ks_wlan_private *priv) { priv->sme_i.qhead = (priv->sme_i.qhead + 1) % SME_EVENT_BUFF_SIZE; } static inline void inc_smeqtail(struct ks_wlan_private *priv) { priv->sme_i.qtail = (priv->sme_i.qtail + 1) % SME_EVENT_BUFF_SIZE; } static inline unsigned int cnt_smeqbody(struct ks_wlan_private *priv) { return CIRC_CNT_TO_END(priv->sme_i.qhead, priv->sme_i.qtail, SME_EVENT_BUFF_SIZE); } static inline u8 get_byte(struct ks_wlan_private *priv) { u8 data; data = *priv->rxp++; /* length check in advance ! */ --(priv->rx_size); return data; } static inline u16 get_word(struct ks_wlan_private *priv) { u16 data; data = (get_byte(priv) & 0xff); data |= ((get_byte(priv) << 8) & 0xff00); return data; } static inline u32 get_dword(struct ks_wlan_private *priv) { u32 data; data = (get_byte(priv) & 0xff); data |= ((get_byte(priv) << 8) & 0x0000ff00); data |= ((get_byte(priv) << 16) & 0x00ff0000); data |= ((get_byte(priv) << 24) & 0xff000000); return data; } static void ks_wlan_hw_wakeup_task(struct work_struct *work) { struct ks_wlan_private *priv; int ps_status; long time_left; priv = container_of(work, struct ks_wlan_private, wakeup_work); ps_status = atomic_read(&priv->psstatus.status); if (ps_status == PS_SNOOZE) { ks_wlan_hw_wakeup_request(priv); time_left = wait_for_completion_interruptible_timeout(&priv->psstatus.wakeup_wait, msecs_to_jiffies(20)); if (time_left <= 0) { netdev_dbg(priv->net_dev, "wake up timeout or interrupted !!!\n"); schedule_work(&priv->wakeup_work); return; } } } static void ks_wlan_do_power_save(struct ks_wlan_private *priv) { if (is_connect_status(priv->connect_status)) hostif_sme_enqueue(priv, SME_POW_MNGMT_REQUEST); else priv->dev_state = DEVICE_STATE_READY; } static int get_current_ap(struct ks_wlan_private *priv, struct link_ap_info *ap_info) { struct local_ap *ap; union iwreq_data wrqu; struct net_device *netdev = priv->net_dev; u8 size; ap = &priv->current_ap; if (is_disconnect_status(priv->connect_status)) { memset(ap, 0, sizeof(struct local_ap)); return -EPERM; } ether_addr_copy(ap->bssid, ap_info->bssid); memcpy(ap->ssid.body, priv->reg.ssid.body, priv->reg.ssid.size); ap->ssid.size = priv->reg.ssid.size; memcpy(ap->rate_set.body, ap_info->rate_set.body, ap_info->rate_set.size); ap->rate_set.size = ap_info->rate_set.size; if (ap_info->ext_rate_set.size != 0) { memcpy(&ap->rate_set.body[ap->rate_set.size], ap_info->ext_rate_set.body, ap_info->ext_rate_set.size); ap->rate_set.size += ap_info->ext_rate_set.size; } ap->channel = ap_info->ds_parameter.channel; ap->rssi = ap_info->rssi; ap->sq = ap_info->sq; ap->noise = ap_info->noise; ap->capability = le16_to_cpu(ap_info->capability); size = (ap_info->rsn.size <= RSN_IE_BODY_MAX) ? ap_info->rsn.size : RSN_IE_BODY_MAX; if ((ap_info->rsn_mode & RSN_MODE_WPA2) && (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2)) { ap->rsn_ie.id = RSN_INFO_ELEM_ID; ap->rsn_ie.size = size; memcpy(ap->rsn_ie.body, ap_info->rsn.body, size); } else if ((ap_info->rsn_mode & RSN_MODE_WPA) && (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA)) { ap->wpa_ie.id = WPA_INFO_ELEM_ID; ap->wpa_ie.size = size; memcpy(ap->wpa_ie.body, ap_info->rsn.body, size); } else { ap->rsn_ie.id = 0; ap->rsn_ie.size = 0; ap->wpa_ie.id = 0; ap->wpa_ie.size = 0; } wrqu.data.length = 0; wrqu.data.flags = 0; wrqu.ap_addr.sa_family = ARPHRD_ETHER; if (is_connect_status(priv->connect_status)) { ether_addr_copy(wrqu.ap_addr.sa_data, priv->current_ap.bssid); netdev_dbg(priv->net_dev, "IWEVENT: connect bssid=%pM\n", wrqu.ap_addr.sa_data); wireless_send_event(netdev, SIOCGIWAP, &wrqu, NULL); } netdev_dbg(priv->net_dev, "Link AP\n" "- bssid=%pM\n" "- essid=%s\n" "- rate_set=%02X,%02X,%02X,%02X,%02X,%02X,%02X,%02X\n" "- channel=%d\n" "- rssi=%d\n" "- sq=%d\n" "- capability=%04X\n" "- rsn.mode=%d\n" "- rsn.size=%d\n" "- ext_rate_set_size=%d\n" "- rate_set_size=%d\n", ap->bssid, &ap->ssid.body[0], ap->rate_set.body[0], ap->rate_set.body[1], ap->rate_set.body[2], ap->rate_set.body[3], ap->rate_set.body[4], ap->rate_set.body[5], ap->rate_set.body[6], ap->rate_set.body[7], ap->channel, ap->rssi, ap->sq, ap->capability, ap_info->rsn_mode, ap_info->rsn.size, ap_info->ext_rate_set.size, ap_info->rate_set.size); return 0; } static u8 read_ie(unsigned char *bp, u8 max, u8 *body) { u8 size = (*(bp + 1) <= max) ? *(bp + 1) : max; memcpy(body, bp + 2, size); return size; } static int michael_mic(u8 *key, u8 *data, unsigned int len, u8 priority, u8 *result) { u8 pad_data[4] = { priority, 0, 0, 0 }; struct crypto_shash *tfm = NULL; struct shash_desc *desc = NULL; int ret; tfm = crypto_alloc_shash("michael_mic", 0, 0); if (IS_ERR(tfm)) { ret = PTR_ERR(tfm); goto err; } ret = crypto_shash_setkey(tfm, key, MICHAEL_MIC_KEY_LEN); if (ret < 0) goto err_free_tfm; desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(tfm), GFP_KERNEL); if (!desc) { ret = -ENOMEM; goto err_free_tfm; } desc->tfm = tfm; ret = crypto_shash_init(desc); if (ret < 0) goto err_free_desc; // Compute the MIC value /* * IEEE802.11i page 47 * Figure 43g TKIP MIC processing format * +--+--+--------+--+----+--+--+--+--+--+--+--+--+ * |6 |6 |1 |3 |M |1 |1 |1 |1 |1 |1 |1 |1 | Octet * +--+--+--------+--+----+--+--+--+--+--+--+--+--+ * |DA|SA|Priority|0 |Data|M0|M1|M2|M3|M4|M5|M6|M7| * +--+--+--------+--+----+--+--+--+--+--+--+--+--+ */ ret = crypto_shash_update(desc, data, 12); if (ret < 0) goto err_free_desc; ret = crypto_shash_update(desc, pad_data, 4); if (ret < 0) goto err_free_desc; ret = crypto_shash_finup(desc, data + 12, len - 12, result); err_free_desc: kfree_sensitive(desc); err_free_tfm: crypto_free_shash(tfm); err: return ret; } static int get_ap_information(struct ks_wlan_private *priv, struct ap_info *ap_info, struct local_ap *ap) { unsigned char *bp; int bsize, offset; memset(ap, 0, sizeof(struct local_ap)); ether_addr_copy(ap->bssid, ap_info->bssid); ap->rssi = ap_info->rssi; ap->sq = ap_info->sq; ap->noise = ap_info->noise; ap->capability = le16_to_cpu(ap_info->capability); ap->channel = ap_info->ch_info; bp = ap_info->body; bsize = le16_to_cpu(ap_info->body_size); offset = 0; while (bsize > offset) { switch (*bp) { /* Information Element ID */ case WLAN_EID_SSID: ap->ssid.size = read_ie(bp, IEEE80211_MAX_SSID_LEN, ap->ssid.body); break; case WLAN_EID_SUPP_RATES: case WLAN_EID_EXT_SUPP_RATES: if ((*(bp + 1) + ap->rate_set.size) <= RATE_SET_MAX_SIZE) { memcpy(&ap->rate_set.body[ap->rate_set.size], bp + 2, *(bp + 1)); ap->rate_set.size += *(bp + 1); } else { memcpy(&ap->rate_set.body[ap->rate_set.size], bp + 2, RATE_SET_MAX_SIZE - ap->rate_set.size); ap->rate_set.size += (RATE_SET_MAX_SIZE - ap->rate_set.size); } break; case WLAN_EID_RSN: ap->rsn_ie.id = *bp; ap->rsn_ie.size = read_ie(bp, RSN_IE_BODY_MAX, ap->rsn_ie.body); break; case WLAN_EID_VENDOR_SPECIFIC: /* WPA */ /* WPA OUI check */ if (memcmp(bp + 2, CIPHER_ID_WPA_WEP40, 4) == 0) { ap->wpa_ie.id = *bp; ap->wpa_ie.size = read_ie(bp, RSN_IE_BODY_MAX, ap->wpa_ie.body); } break; case WLAN_EID_DS_PARAMS: case WLAN_EID_FH_PARAMS: case WLAN_EID_CF_PARAMS: case WLAN_EID_TIM: case WLAN_EID_IBSS_PARAMS: case WLAN_EID_COUNTRY: case WLAN_EID_ERP_INFO: break; default: netdev_err(priv->net_dev, "unknown Element ID=%d\n", *bp); break; } offset += 2; /* id & size field */ offset += *(bp + 1); /* +size offset */ bp += (*(bp + 1) + 2); /* pointer update */ } return 0; } static int hostif_data_indication_wpa(struct ks_wlan_private *priv, unsigned short auth_type) { struct ether_hdr *eth_hdr; unsigned short eth_proto; unsigned char recv_mic[MICHAEL_MIC_LEN]; char buf[128]; unsigned long now; struct mic_failure *mic_failure; u8 mic[MICHAEL_MIC_LEN]; union iwreq_data wrqu; unsigned int key_index = auth_type - 1; struct wpa_key *key = &priv->wpa.key[key_index]; eth_hdr = (struct ether_hdr *)(priv->rxp); eth_proto = ntohs(eth_hdr->h_proto); if (eth_hdr->h_dest_snap != eth_hdr->h_source_snap) { netdev_err(priv->net_dev, "invalid data format\n"); priv->nstats.rx_errors++; return -EINVAL; } if (((auth_type == TYPE_PMK1 && priv->wpa.pairwise_suite == IW_AUTH_CIPHER_TKIP) || (auth_type == TYPE_GMK1 && priv->wpa.group_suite == IW_AUTH_CIPHER_TKIP) || (auth_type == TYPE_GMK2 && priv->wpa.group_suite == IW_AUTH_CIPHER_TKIP)) && key->key_len) { int ret; netdev_dbg(priv->net_dev, "TKIP: protocol=%04X: size=%u\n", eth_proto, priv->rx_size); /* MIC save */ memcpy(&recv_mic[0], (priv->rxp) + ((priv->rx_size) - sizeof(recv_mic)), sizeof(recv_mic)); priv->rx_size = priv->rx_size - sizeof(recv_mic); ret = michael_mic(key->rx_mic_key, priv->rxp, priv->rx_size, 0, mic); if (ret < 0) return ret; if (memcmp(mic, recv_mic, sizeof(mic)) != 0) { now = jiffies; mic_failure = &priv->wpa.mic_failure; /* MIC FAILURE */ if (mic_failure->last_failure_time && (now - mic_failure->last_failure_time) / HZ >= 60) { mic_failure->failure = 0; } netdev_err(priv->net_dev, "MIC FAILURE\n"); if (mic_failure->failure == 0) { mic_failure->failure = 1; mic_failure->counter = 0; } else if (mic_failure->failure == 1) { mic_failure->failure = 2; mic_failure->counter = (u16)((now - mic_failure->last_failure_time) / HZ); /* range 1-60 */ if (!mic_failure->counter) mic_failure->counter = 1; } priv->wpa.mic_failure.last_failure_time = now; /* needed parameters: count, keyid, key type, TSC */ sprintf(buf, "MLME-MICHAELMICFAILURE.indication(keyid=%d %scast addr=%pM)", key_index, eth_hdr->h_dest[0] & 0x01 ? "broad" : "uni", eth_hdr->h_source); memset(&wrqu, 0, sizeof(wrqu)); wrqu.data.length = strlen(buf); wireless_send_event(priv->net_dev, IWEVCUSTOM, &wrqu, buf); return -EINVAL; } } return 0; } static void hostif_data_indication(struct ks_wlan_private *priv) { unsigned int rx_ind_size; /* indicate data size */ struct sk_buff *skb; u16 auth_type; unsigned char temp[256]; struct ether_hdr *eth_hdr; struct ieee802_1x_hdr *aa1x_hdr; size_t size; int ret; /* min length check */ if (priv->rx_size <= ETH_HLEN) { priv->nstats.rx_errors++; return; } auth_type = get_word(priv); /* AuthType */ get_word(priv); /* Reserve Area */ eth_hdr = (struct ether_hdr *)(priv->rxp); /* source address check */ if (ether_addr_equal(&priv->eth_addr[0], eth_hdr->h_source)) { netdev_err(priv->net_dev, "invalid : source is own mac address !!\n"); netdev_err(priv->net_dev, "eth_hdrernet->h_dest=%pM\n", eth_hdr->h_source); priv->nstats.rx_errors++; return; } /* for WPA */ if (auth_type != TYPE_DATA && priv->wpa.rsn_enabled) { ret = hostif_data_indication_wpa(priv, auth_type); if (ret) return; } if ((priv->connect_status & FORCE_DISCONNECT) || priv->wpa.mic_failure.failure == 2) { return; } /* check 13th byte at rx data */ switch (*(priv->rxp + 12)) { case LLC_SAP_SNAP: rx_ind_size = priv->rx_size - 6; skb = dev_alloc_skb(rx_ind_size); if (!skb) { priv->nstats.rx_dropped++; return; } netdev_dbg(priv->net_dev, "SNAP, rx_ind_size = %d\n", rx_ind_size); size = ETH_ALEN * 2; skb_put_data(skb, priv->rxp, size); /* (SNAP+UI..) skip */ size = rx_ind_size - (ETH_ALEN * 2); skb_put_data(skb, ð_hdr->h_proto, size); aa1x_hdr = (struct ieee802_1x_hdr *)(priv->rxp + ETHER_HDR_SIZE); break; case LLC_SAP_NETBEUI: rx_ind_size = (priv->rx_size + 2); skb = dev_alloc_skb(rx_ind_size); if (!skb) { priv->nstats.rx_dropped++; return; } netdev_dbg(priv->net_dev, "NETBEUI/NetBIOS rx_ind_size=%d\n", rx_ind_size); /* 8802/FDDI MAC copy */ skb_put_data(skb, priv->rxp, 12); /* NETBEUI size add */ temp[0] = (((rx_ind_size - 12) >> 8) & 0xff); temp[1] = ((rx_ind_size - 12) & 0xff); skb_put_data(skb, temp, 2); /* copy after Type */ skb_put_data(skb, priv->rxp + 12, rx_ind_size - 14); aa1x_hdr = (struct ieee802_1x_hdr *)(priv->rxp + 14); break; default: /* other rx data */ netdev_err(priv->net_dev, "invalid data format\n"); priv->nstats.rx_errors++; return; } if (aa1x_hdr->type == IEEE802_1X_TYPE_EAPOL_KEY && priv->wpa.rsn_enabled) atomic_set(&priv->psstatus.snooze_guard, 1); /* rx indication */ skb->dev = priv->net_dev; skb->protocol = eth_type_trans(skb, skb->dev); priv->nstats.rx_packets++; priv->nstats.rx_bytes += rx_ind_size; netif_rx(skb); } static void hostif_mib_get_confirm(struct ks_wlan_private *priv) { struct net_device *dev = priv->net_dev; u32 mib_status; u32 mib_attribute; mib_status = get_dword(priv); mib_attribute = get_dword(priv); get_word(priv); /* mib_val_size */ get_word(priv); /* mib_val_type */ if (mib_status) { netdev_err(priv->net_dev, "attribute=%08X, status=%08X\n", mib_attribute, mib_status); return; } switch (mib_attribute) { case DOT11_MAC_ADDRESS: hostif_sme_enqueue(priv, SME_GET_MAC_ADDRESS); ether_addr_copy(priv->eth_addr, priv->rxp); priv->mac_address_valid = true; eth_hw_addr_set(dev, priv->eth_addr); netdev_info(dev, "MAC ADDRESS = %pM\n", priv->eth_addr); break; case DOT11_PRODUCT_VERSION: priv->version_size = priv->rx_size; memcpy(priv->firmware_version, priv->rxp, priv->rx_size); priv->firmware_version[priv->rx_size] = '\0'; netdev_info(dev, "firmware ver. = %s\n", priv->firmware_version); hostif_sme_enqueue(priv, SME_GET_PRODUCT_VERSION); /* wake_up_interruptible_all(&priv->confirm_wait); */ complete(&priv->confirm_wait); break; case LOCAL_GAIN: memcpy(&priv->gain, priv->rxp, sizeof(priv->gain)); netdev_dbg(priv->net_dev, "tx_mode=%d, rx_mode=%d, tx_gain=%d, rx_gain=%d\n", priv->gain.tx_mode, priv->gain.rx_mode, priv->gain.tx_gain, priv->gain.rx_gain); break; case LOCAL_EEPROM_SUM: memcpy(&priv->eeprom_sum, priv->rxp, sizeof(priv->eeprom_sum)); if (priv->eeprom_sum.type != 0 && priv->eeprom_sum.type != 1) { netdev_err(dev, "LOCAL_EEPROM_SUM error!\n"); return; } priv->eeprom_checksum = (priv->eeprom_sum.type == 0) ? EEPROM_CHECKSUM_NONE : (priv->eeprom_sum.result == 0) ? EEPROM_NG : EEPROM_OK; break; default: netdev_err(priv->net_dev, "mib_attribute=%08x\n", (unsigned int)mib_attribute); break; } } static void hostif_mib_set_confirm(struct ks_wlan_private *priv) { u32 mib_status; u32 mib_attribute; mib_status = get_dword(priv); mib_attribute = get_dword(priv); if (mib_status) { /* in case of error */ netdev_err(priv->net_dev, "error :: attribute=%08X, status=%08X\n", mib_attribute, mib_status); } switch (mib_attribute) { case DOT11_RTS_THRESHOLD: hostif_sme_enqueue(priv, SME_RTS_THRESHOLD_CONFIRM); break; case DOT11_FRAGMENTATION_THRESHOLD: hostif_sme_enqueue(priv, SME_FRAGMENTATION_THRESHOLD_CONFIRM); break; case DOT11_WEP_DEFAULT_KEY_ID: if (!priv->wpa.wpa_enabled) hostif_sme_enqueue(priv, SME_WEP_INDEX_CONFIRM); break; case DOT11_WEP_DEFAULT_KEY_VALUE1: if (priv->wpa.rsn_enabled) hostif_sme_enqueue(priv, SME_SET_PMK_TSC); else hostif_sme_enqueue(priv, SME_WEP_KEY1_CONFIRM); break; case DOT11_WEP_DEFAULT_KEY_VALUE2: if (priv->wpa.rsn_enabled) hostif_sme_enqueue(priv, SME_SET_GMK1_TSC); else hostif_sme_enqueue(priv, SME_WEP_KEY2_CONFIRM); break; case DOT11_WEP_DEFAULT_KEY_VALUE3: if (priv->wpa.rsn_enabled) hostif_sme_enqueue(priv, SME_SET_GMK2_TSC); else hostif_sme_enqueue(priv, SME_WEP_KEY3_CONFIRM); break; case DOT11_WEP_DEFAULT_KEY_VALUE4: if (!priv->wpa.rsn_enabled) hostif_sme_enqueue(priv, SME_WEP_KEY4_CONFIRM); break; case DOT11_PRIVACY_INVOKED: if (!priv->wpa.rsn_enabled) hostif_sme_enqueue(priv, SME_WEP_FLAG_CONFIRM); break; case DOT11_RSN_ENABLED: hostif_sme_enqueue(priv, SME_RSN_ENABLED_CONFIRM); break; case LOCAL_RSN_MODE: hostif_sme_enqueue(priv, SME_RSN_MODE_CONFIRM); break; case LOCAL_MULTICAST_ADDRESS: hostif_sme_enqueue(priv, SME_MULTICAST_REQUEST); break; case LOCAL_MULTICAST_FILTER: hostif_sme_enqueue(priv, SME_MULTICAST_CONFIRM); break; case LOCAL_CURRENTADDRESS: priv->mac_address_valid = true; break; case DOT11_RSN_CONFIG_MULTICAST_CIPHER: hostif_sme_enqueue(priv, SME_RSN_MCAST_CONFIRM); break; case DOT11_RSN_CONFIG_UNICAST_CIPHER: hostif_sme_enqueue(priv, SME_RSN_UCAST_CONFIRM); break; case DOT11_RSN_CONFIG_AUTH_SUITE: hostif_sme_enqueue(priv, SME_RSN_AUTH_CONFIRM); break; case DOT11_GMK1_TSC: if (atomic_read(&priv->psstatus.snooze_guard)) atomic_set(&priv->psstatus.snooze_guard, 0); break; case DOT11_GMK2_TSC: if (atomic_read(&priv->psstatus.snooze_guard)) atomic_set(&priv->psstatus.snooze_guard, 0); break; case DOT11_PMK_TSC: case LOCAL_PMK: case LOCAL_GAIN: case LOCAL_WPS_ENABLE: case LOCAL_WPS_PROBE_REQ: case LOCAL_REGION: default: break; } } static void hostif_power_mgmt_confirm(struct ks_wlan_private *priv) { if (priv->reg.power_mgmt > POWER_MGMT_ACTIVE && priv->reg.operation_mode == MODE_INFRASTRUCTURE) { atomic_set(&priv->psstatus.confirm_wait, 0); priv->dev_state = DEVICE_STATE_SLEEP; ks_wlan_hw_power_save(priv); } else { priv->dev_state = DEVICE_STATE_READY; } } static void hostif_sleep_confirm(struct ks_wlan_private *priv) { atomic_set(&priv->sleepstatus.doze_request, 1); queue_delayed_work(priv->wq, &priv->rw_dwork, 1); } static void hostif_start_confirm(struct ks_wlan_private *priv) { union iwreq_data wrqu; wrqu.data.length = 0; wrqu.data.flags = 0; wrqu.ap_addr.sa_family = ARPHRD_ETHER; if (is_connect_status(priv->connect_status)) { eth_zero_addr(wrqu.ap_addr.sa_data); wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL); } netdev_dbg(priv->net_dev, " scan_ind_count=%d\n", priv->scan_ind_count); hostif_sme_enqueue(priv, SME_START_CONFIRM); } static void hostif_connect_indication(struct ks_wlan_private *priv) { u16 connect_code; unsigned int tmp = 0; unsigned int old_status = priv->connect_status; struct net_device *netdev = priv->net_dev; union iwreq_data wrqu0; connect_code = get_word(priv); switch (connect_code) { case RESULT_CONNECT: if (!(priv->connect_status & FORCE_DISCONNECT)) netif_carrier_on(netdev); tmp = FORCE_DISCONNECT & priv->connect_status; priv->connect_status = tmp + CONNECT_STATUS; break; case RESULT_DISCONNECT: netif_carrier_off(netdev); tmp = FORCE_DISCONNECT & priv->connect_status; priv->connect_status = tmp + DISCONNECT_STATUS; break; default: netdev_dbg(priv->net_dev, "unknown connect_code=%d :: scan_ind_count=%d\n", connect_code, priv->scan_ind_count); netif_carrier_off(netdev); tmp = FORCE_DISCONNECT & priv->connect_status; priv->connect_status = tmp + DISCONNECT_STATUS; break; } get_current_ap(priv, (struct link_ap_info *)priv->rxp); if (is_connect_status(priv->connect_status) && is_disconnect_status(old_status)) { /* for power save */ atomic_set(&priv->psstatus.snooze_guard, 0); atomic_set(&priv->psstatus.confirm_wait, 0); } ks_wlan_do_power_save(priv); wrqu0.data.length = 0; wrqu0.data.flags = 0; wrqu0.ap_addr.sa_family = ARPHRD_ETHER; if (is_disconnect_status(priv->connect_status) && is_connect_status(old_status)) { eth_zero_addr(wrqu0.ap_addr.sa_data); netdev_dbg(priv->net_dev, "disconnect :: scan_ind_count=%d\n", priv->scan_ind_count); wireless_send_event(netdev, SIOCGIWAP, &wrqu0, NULL); } priv->scan_ind_count = 0; } static void hostif_scan_indication(struct ks_wlan_private *priv) { int i; struct ap_info *ap_info; netdev_dbg(priv->net_dev, "scan_ind_count = %d\n", priv->scan_ind_count); ap_info = (struct ap_info *)(priv->rxp); if (priv->scan_ind_count) { /* bssid check */ for (i = 0; i < priv->aplist.size; i++) { u8 *bssid = priv->aplist.ap[i].bssid; if (ether_addr_equal(ap_info->bssid, bssid)) continue; if (ap_info->frame_type == IEEE80211_STYPE_PROBE_RESP) get_ap_information(priv, ap_info, &priv->aplist.ap[i]); return; } } priv->scan_ind_count++; if (priv->scan_ind_count < LOCAL_APLIST_MAX + 1) { netdev_dbg(priv->net_dev, " scan_ind_count=%d :: aplist.size=%d\n", priv->scan_ind_count, priv->aplist.size); get_ap_information(priv, (struct ap_info *)(priv->rxp), &priv->aplist.ap[priv->scan_ind_count - 1]); priv->aplist.size = priv->scan_ind_count; } else { netdev_dbg(priv->net_dev, " count over :: scan_ind_count=%d\n", priv->scan_ind_count); } } static void hostif_stop_confirm(struct ks_wlan_private *priv) { unsigned int tmp = 0; unsigned int old_status = priv->connect_status; struct net_device *netdev = priv->net_dev; union iwreq_data wrqu0; if (priv->dev_state == DEVICE_STATE_SLEEP) priv->dev_state = DEVICE_STATE_READY; /* disconnect indication */ if (is_connect_status(priv->connect_status)) { netif_carrier_off(netdev); tmp = FORCE_DISCONNECT & priv->connect_status; priv->connect_status = tmp | DISCONNECT_STATUS; netdev_info(netdev, "IWEVENT: disconnect\n"); wrqu0.data.length = 0; wrqu0.data.flags = 0; wrqu0.ap_addr.sa_family = ARPHRD_ETHER; if (is_disconnect_status(priv->connect_status) && is_connect_status(old_status)) { eth_zero_addr(wrqu0.ap_addr.sa_data); netdev_info(netdev, "IWEVENT: disconnect\n"); wireless_send_event(netdev, SIOCGIWAP, &wrqu0, NULL); } priv->scan_ind_count = 0; } hostif_sme_enqueue(priv, SME_STOP_CONFIRM); } static void hostif_ps_adhoc_set_confirm(struct ks_wlan_private *priv) { priv->infra_status = 0; /* infrastructure mode cancel */ hostif_sme_enqueue(priv, SME_MODE_SET_CONFIRM); } static void hostif_infrastructure_set_confirm(struct ks_wlan_private *priv) { get_word(priv); /* result_code */ priv->infra_status = 1; /* infrastructure mode set */ hostif_sme_enqueue(priv, SME_MODE_SET_CONFIRM); } static void hostif_adhoc_set_confirm(struct ks_wlan_private *priv) { priv->infra_status = 1; /* infrastructure mode set */ hostif_sme_enqueue(priv, SME_MODE_SET_CONFIRM); } static void hostif_associate_indication(struct ks_wlan_private *priv) { struct association_request *assoc_req; struct association_response *assoc_resp; unsigned char *pb; union iwreq_data wrqu; char buf[IW_CUSTOM_MAX]; char *pbuf = &buf[0]; int i; static const char associnfo_leader0[] = "ASSOCINFO(ReqIEs="; static const char associnfo_leader1[] = " RespIEs="; assoc_req = (struct association_request *)(priv->rxp); assoc_resp = (struct association_response *)(assoc_req + 1); pb = (unsigned char *)(assoc_resp + 1); memset(&wrqu, 0, sizeof(wrqu)); memcpy(pbuf, associnfo_leader0, sizeof(associnfo_leader0) - 1); wrqu.data.length += sizeof(associnfo_leader0) - 1; pbuf += sizeof(associnfo_leader0) - 1; for (i = 0; i < le16_to_cpu(assoc_req->req_ies_size); i++) pbuf += sprintf(pbuf, "%02x", *(pb + i)); wrqu.data.length += (le16_to_cpu(assoc_req->req_ies_size)) * 2; memcpy(pbuf, associnfo_leader1, sizeof(associnfo_leader1) - 1); wrqu.data.length += sizeof(associnfo_leader1) - 1; pbuf += sizeof(associnfo_leader1) - 1; pb += le16_to_cpu(assoc_req->req_ies_size); for (i = 0; i < le16_to_cpu(assoc_resp->resp_ies_size); i++) pbuf += sprintf(pbuf, "%02x", *(pb + i)); wrqu.data.length += (le16_to_cpu(assoc_resp->resp_ies_size)) * 2; pbuf += sprintf(pbuf, ")"); wrqu.data.length += 1; wireless_send_event(priv->net_dev, IWEVCUSTOM, &wrqu, buf); } static void hostif_bss_scan_confirm(struct ks_wlan_private *priv) { u32 result_code; struct net_device *dev = priv->net_dev; union iwreq_data wrqu; result_code = get_dword(priv); netdev_dbg(priv->net_dev, "result=%d :: scan_ind_count=%d\n", result_code, priv->scan_ind_count); priv->sme_i.sme_flag &= ~SME_AP_SCAN; hostif_sme_enqueue(priv, SME_BSS_SCAN_CONFIRM); wrqu.data.length = 0; wrqu.data.flags = 0; wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL); priv->scan_ind_count = 0; } static void hostif_phy_information_confirm(struct ks_wlan_private *priv) { struct iw_statistics *wstats = &priv->wstats; u8 rssi, signal; u8 link_speed; u32 transmitted_frame_count, received_fragment_count; u32 failed_count, fcs_error_count; rssi = get_byte(priv); signal = get_byte(priv); get_byte(priv); /* noise */ link_speed = get_byte(priv); transmitted_frame_count = get_dword(priv); received_fragment_count = get_dword(priv); failed_count = get_dword(priv); fcs_error_count = get_dword(priv); netdev_dbg(priv->net_dev, "phyinfo confirm rssi=%d signal=%d\n", rssi, signal); priv->current_rate = (link_speed & RATE_MASK); wstats->qual.qual = signal; wstats->qual.level = 256 - rssi; wstats->qual.noise = 0; /* invalid noise value */ wstats->qual.updated = IW_QUAL_ALL_UPDATED | IW_QUAL_DBM; netdev_dbg(priv->net_dev, "\n rssi=%u\n" " signal=%u\n" " link_speed=%ux500Kbps\n" " transmitted_frame_count=%u\n" " received_fragment_count=%u\n" " failed_count=%u\n" " fcs_error_count=%u\n", rssi, signal, link_speed, transmitted_frame_count, received_fragment_count, failed_count, fcs_error_count); /* wake_up_interruptible_all(&priv->confirm_wait); */ complete(&priv->confirm_wait); } static void hostif_mic_failure_confirm(struct ks_wlan_private *priv) { netdev_dbg(priv->net_dev, "mic_failure=%u\n", priv->wpa.mic_failure.failure); hostif_sme_enqueue(priv, SME_MIC_FAILURE_CONFIRM); } static void hostif_event_check(struct ks_wlan_private *priv) { u16 event; event = get_word(priv); switch (event) { case HIF_DATA_IND: hostif_data_indication(priv); break; case HIF_MIB_GET_CONF: hostif_mib_get_confirm(priv); break; case HIF_MIB_SET_CONF: hostif_mib_set_confirm(priv); break; case HIF_POWER_MGMT_CONF: hostif_power_mgmt_confirm(priv); break; case HIF_SLEEP_CONF: hostif_sleep_confirm(priv); break; case HIF_START_CONF: hostif_start_confirm(priv); break; case HIF_CONNECT_IND: hostif_connect_indication(priv); break; case HIF_STOP_CONF: hostif_stop_confirm(priv); break; case HIF_PS_ADH_SET_CONF: hostif_ps_adhoc_set_confirm(priv); break; case HIF_INFRA_SET_CONF: case HIF_INFRA_SET2_CONF: hostif_infrastructure_set_confirm(priv); break; case HIF_ADH_SET_CONF: case HIF_ADH_SET2_CONF: hostif_adhoc_set_confirm(priv); break; case HIF_ASSOC_INFO_IND: hostif_associate_indication(priv); break; case HIF_MIC_FAILURE_CONF: hostif_mic_failure_confirm(priv); break; case HIF_SCAN_CONF: hostif_bss_scan_confirm(priv); break; case HIF_PHY_INFO_CONF: case HIF_PHY_INFO_IND: hostif_phy_information_confirm(priv); break; case HIF_SCAN_IND: hostif_scan_indication(priv); break; case HIF_AP_SET_CONF: default: netdev_err(priv->net_dev, "undefined event[%04X]\n", event); /* wake_up_all(&priv->confirm_wait); */ complete(&priv->confirm_wait); break; } /* add event to hostt buffer */ priv->hostt.buff[priv->hostt.qtail] = event; priv->hostt.qtail = (priv->hostt.qtail + 1) % SME_EVENT_BUFF_SIZE; } /* allocate size bytes, set header size and event */ static void *hostif_generic_request(size_t size, int event) { struct hostif_hdr *p; p = kzalloc(hif_align_size(size), GFP_ATOMIC); if (!p) return NULL; p->size = cpu_to_le16(size - sizeof(p->size)); p->event = cpu_to_le16(event); return p; } int hostif_data_request(struct ks_wlan_private *priv, struct sk_buff *skb) { unsigned int skb_len = 0; unsigned char *buffer = NULL; unsigned int length = 0; struct hostif_data_request *pp; unsigned char *p; unsigned short eth_proto; struct ether_hdr *eth_hdr; unsigned short keyinfo = 0; struct ieee802_1x_hdr *aa1x_hdr; struct wpa_eapol_key *eap_key; struct ethhdr *eth; size_t size; int ret; skb_len = skb->len; if (skb_len > ETH_FRAME_LEN) { netdev_err(priv->net_dev, "bad length skb_len=%d\n", skb_len); ret = -EOVERFLOW; goto err_kfree_skb; } if (is_disconnect_status(priv->connect_status) || (priv->connect_status & FORCE_DISCONNECT) || priv->wpa.mic_failure.stop) { if (netif_queue_stopped(priv->net_dev)) netif_wake_queue(priv->net_dev); dev_kfree_skb(skb); return 0; } /* power save wakeup */ if (atomic_read(&priv->psstatus.status) == PS_SNOOZE) { if (!netif_queue_stopped(priv->net_dev)) netif_stop_queue(priv->net_dev); } size = sizeof(*pp) + 6 + skb_len + 8; pp = kmalloc(hif_align_size(size), GFP_ATOMIC); if (!pp) { ret = -ENOMEM; goto err_kfree_skb; } p = (unsigned char *)pp->data; buffer = skb->data; length = skb->len; /* skb check */ eth = (struct ethhdr *)skb->data; if (!ether_addr_equal(&priv->eth_addr[0], eth->h_source)) { netdev_err(priv->net_dev, "Invalid mac address: ethernet->h_source=%pM\n", eth->h_source); ret = -ENXIO; goto err_kfree; } /* dest and src MAC address copy */ size = ETH_ALEN * 2; memcpy(p, buffer, size); p += size; buffer += size; length -= size; /* EtherType/Length check */ if (*(buffer + 1) + (*buffer << 8) > 1500) { /* ProtocolEAP = *(buffer+1) + (*buffer << 8); */ /* SAP/CTL/OUI(6 byte) add */ *p++ = 0xAA; /* DSAP */ *p++ = 0xAA; /* SSAP */ *p++ = 0x03; /* CTL */ *p++ = 0x00; /* OUI ("000000") */ *p++ = 0x00; /* OUI ("000000") */ *p++ = 0x00; /* OUI ("000000") */ skb_len += 6; } else { /* Length(2 byte) delete */ buffer += 2; length -= 2; skb_len -= 2; } /* pp->data copy */ memcpy(p, buffer, length); p += length; /* for WPA */ eth_hdr = (struct ether_hdr *)&pp->data[0]; eth_proto = ntohs(eth_hdr->h_proto); /* for MIC FAILURE REPORT check */ if (eth_proto == ETH_P_PAE && priv->wpa.mic_failure.failure > 0) { aa1x_hdr = (struct ieee802_1x_hdr *)(eth_hdr + 1); if (aa1x_hdr->type == IEEE802_1X_TYPE_EAPOL_KEY) { eap_key = (struct wpa_eapol_key *)(aa1x_hdr + 1); keyinfo = ntohs(eap_key->key_info); } } if (priv->wpa.rsn_enabled && priv->wpa.key[0].key_len) { /* no encryption */ if (eth_proto == ETH_P_PAE && priv->wpa.key[1].key_len == 0 && priv->wpa.key[2].key_len == 0 && priv->wpa.key[3].key_len == 0) { pp->auth_type = cpu_to_le16(TYPE_AUTH); } else { if (priv->wpa.pairwise_suite == IW_AUTH_CIPHER_TKIP) { u8 mic[MICHAEL_MIC_LEN]; ret = michael_mic(priv->wpa.key[0].tx_mic_key, &pp->data[0], skb_len, 0, mic); if (ret < 0) goto err_kfree; memcpy(p, mic, sizeof(mic)); length += sizeof(mic); skb_len += sizeof(mic); p += sizeof(mic); pp->auth_type = cpu_to_le16(TYPE_DATA); } else if (priv->wpa.pairwise_suite == IW_AUTH_CIPHER_CCMP) { pp->auth_type = cpu_to_le16(TYPE_DATA); } } } else { if (eth_proto == ETH_P_PAE) pp->auth_type = cpu_to_le16(TYPE_AUTH); else pp->auth_type = cpu_to_le16(TYPE_DATA); } /* header value set */ pp->header.size = cpu_to_le16((sizeof(*pp) - sizeof(pp->header.size) + skb_len)); pp->header.event = cpu_to_le16(HIF_DATA_REQ); /* tx request */ ret = ks_wlan_hw_tx(priv, pp, hif_align_size(sizeof(*pp) + skb_len), send_packet_complete, skb); /* MIC FAILURE REPORT check */ if (eth_proto == ETH_P_PAE && priv->wpa.mic_failure.failure > 0) { if (keyinfo & WPA_KEY_INFO_ERROR && keyinfo & WPA_KEY_INFO_REQUEST) { netdev_err(priv->net_dev, "MIC ERROR Report SET : %04X\n", keyinfo); hostif_sme_enqueue(priv, SME_MIC_FAILURE_REQUEST); } if (priv->wpa.mic_failure.failure == 2) priv->wpa.mic_failure.stop = 1; } return ret; err_kfree: kfree(pp); err_kfree_skb: dev_kfree_skb(skb); return ret; } static inline void ps_confirm_wait_inc(struct ks_wlan_private *priv) { if (atomic_read(&priv->psstatus.status) > PS_ACTIVE_SET) atomic_inc(&priv->psstatus.confirm_wait); } static inline void send_request_to_device(struct ks_wlan_private *priv, void *data, size_t size) { ps_confirm_wait_inc(priv); ks_wlan_hw_tx(priv, data, size, NULL, NULL); } static void hostif_mib_get_request(struct ks_wlan_private *priv, u32 mib_attribute) { struct hostif_mib_get_request *pp; pp = hostif_generic_request(sizeof(*pp), HIF_MIB_GET_REQ); if (!pp) return; pp->mib_attribute = cpu_to_le32(mib_attribute); send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); } static void hostif_mib_set_request(struct ks_wlan_private *priv, enum mib_attribute attr, enum mib_data_type type, void *data, size_t size) { struct hostif_mib_set_request_t *pp; if (priv->dev_state < DEVICE_STATE_BOOT) return; pp = hostif_generic_request(sizeof(*pp), HIF_MIB_SET_REQ); if (!pp) return; pp->mib_attribute = cpu_to_le32(attr); pp->mib_value.size = cpu_to_le16(size); pp->mib_value.type = cpu_to_le16(type); memcpy(&pp->mib_value.body, data, size); send_request_to_device(priv, pp, hif_align_size(sizeof(*pp) + size)); } static inline void hostif_mib_set_request_int(struct ks_wlan_private *priv, enum mib_attribute attr, int val) { __le32 v = cpu_to_le32(val); size_t size = sizeof(v); hostif_mib_set_request(priv, attr, MIB_VALUE_TYPE_INT, &v, size); } static inline void hostif_mib_set_request_bool(struct ks_wlan_private *priv, enum mib_attribute attr, bool val) { __le32 v = cpu_to_le32(val); size_t size = sizeof(v); hostif_mib_set_request(priv, attr, MIB_VALUE_TYPE_BOOL, &v, size); } static inline void hostif_mib_set_request_ostring(struct ks_wlan_private *priv, enum mib_attribute attr, void *data, size_t size) { hostif_mib_set_request(priv, attr, MIB_VALUE_TYPE_OSTRING, data, size); } static void hostif_start_request(struct ks_wlan_private *priv, unsigned char mode) { struct hostif_start_request *pp; pp = hostif_generic_request(sizeof(*pp), HIF_START_REQ); if (!pp) return; pp->mode = cpu_to_le16(mode); send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); priv->aplist.size = 0; priv->scan_ind_count = 0; } static __le16 ks_wlan_cap(struct ks_wlan_private *priv) { u16 capability = 0x0000; if (priv->reg.preamble == SHORT_PREAMBLE) capability |= WLAN_CAPABILITY_SHORT_PREAMBLE; capability &= ~(WLAN_CAPABILITY_PBCC); /* pbcc not support */ if (priv->reg.phy_type != D_11B_ONLY_MODE) { capability |= WLAN_CAPABILITY_SHORT_SLOT_TIME; capability &= ~(WLAN_CAPABILITY_DSSS_OFDM); } return cpu_to_le16(capability); } static void init_request(struct ks_wlan_private *priv, struct hostif_request *req) { req->phy_type = cpu_to_le16(priv->reg.phy_type); req->cts_mode = cpu_to_le16(priv->reg.cts_mode); req->scan_type = cpu_to_le16(priv->reg.scan_type); req->rate_set.size = priv->reg.rate_set.size; req->capability = ks_wlan_cap(priv); memcpy(&req->rate_set.body[0], &priv->reg.rate_set.body[0], priv->reg.rate_set.size); } static void hostif_ps_adhoc_set_request(struct ks_wlan_private *priv) { struct hostif_ps_adhoc_set_request *pp; pp = hostif_generic_request(sizeof(*pp), HIF_PS_ADH_SET_REQ); if (!pp) return; init_request(priv, &pp->request); pp->channel = cpu_to_le16(priv->reg.channel); send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); } static void hostif_infrastructure_set_request(struct ks_wlan_private *priv, int event) { struct hostif_infrastructure_set_request *pp; pp = hostif_generic_request(sizeof(*pp), event); if (!pp) return; init_request(priv, &pp->request); pp->ssid.size = priv->reg.ssid.size; memcpy(&pp->ssid.body[0], &priv->reg.ssid.body[0], priv->reg.ssid.size); pp->beacon_lost_count = cpu_to_le16(priv->reg.beacon_lost_count); pp->auth_type = cpu_to_le16(priv->reg.authenticate_type); pp->channel_list.body[0] = 1; pp->channel_list.body[1] = 8; pp->channel_list.body[2] = 2; pp->channel_list.body[3] = 9; pp->channel_list.body[4] = 3; pp->channel_list.body[5] = 10; pp->channel_list.body[6] = 4; pp->channel_list.body[7] = 11; pp->channel_list.body[8] = 5; pp->channel_list.body[9] = 12; pp->channel_list.body[10] = 6; pp->channel_list.body[11] = 13; pp->channel_list.body[12] = 7; if (priv->reg.phy_type == D_11G_ONLY_MODE) { pp->channel_list.size = 13; } else { pp->channel_list.body[13] = 14; pp->channel_list.size = 14; } send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); } static void hostif_adhoc_set_request(struct ks_wlan_private *priv) { struct hostif_adhoc_set_request *pp; pp = hostif_generic_request(sizeof(*pp), HIF_ADH_SET_REQ); if (!pp) return; init_request(priv, &pp->request); pp->channel = cpu_to_le16(priv->reg.channel); pp->ssid.size = priv->reg.ssid.size; memcpy(&pp->ssid.body[0], &priv->reg.ssid.body[0], priv->reg.ssid.size); send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); } static void hostif_adhoc_set2_request(struct ks_wlan_private *priv) { struct hostif_adhoc_set2_request *pp; pp = hostif_generic_request(sizeof(*pp), HIF_ADH_SET_REQ); if (!pp) return; init_request(priv, &pp->request); pp->ssid.size = priv->reg.ssid.size; memcpy(&pp->ssid.body[0], &priv->reg.ssid.body[0], priv->reg.ssid.size); pp->channel_list.body[0] = priv->reg.channel; pp->channel_list.size = 1; memcpy(pp->bssid, priv->reg.bssid, ETH_ALEN); send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); } static void hostif_stop_request(struct ks_wlan_private *priv) { struct hostif_stop_request *pp; pp = hostif_generic_request(sizeof(*pp), HIF_STOP_REQ); if (!pp) return; send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); } static void hostif_phy_information_request(struct ks_wlan_private *priv) { struct hostif_phy_information_request *pp; pp = hostif_generic_request(sizeof(*pp), HIF_PHY_INFO_REQ); if (!pp) return; if (priv->reg.phy_info_timer) { pp->type = cpu_to_le16(TIME_TYPE); pp->time = cpu_to_le16(priv->reg.phy_info_timer); } else { pp->type = cpu_to_le16(NORMAL_TYPE); pp->time = cpu_to_le16(0); } send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); } static void hostif_power_mgmt_request(struct ks_wlan_private *priv, u32 mode, u32 wake_up, u32 receive_dtims) { struct hostif_power_mgmt_request *pp; pp = hostif_generic_request(sizeof(*pp), HIF_POWER_MGMT_REQ); if (!pp) return; pp->mode = cpu_to_le32(mode); pp->wake_up = cpu_to_le32(wake_up); pp->receive_dtims = cpu_to_le32(receive_dtims); send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); } static void hostif_sleep_request(struct ks_wlan_private *priv, enum sleep_mode_type mode) { struct hostif_sleep_request *pp; if (mode == SLP_SLEEP) { pp = hostif_generic_request(sizeof(*pp), HIF_SLEEP_REQ); if (!pp) return; send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); } else if (mode == SLP_ACTIVE) { atomic_set(&priv->sleepstatus.wakeup_request, 1); queue_delayed_work(priv->wq, &priv->rw_dwork, 1); } else { netdev_err(priv->net_dev, "invalid mode %ld\n", (long)mode); return; } } static void hostif_bss_scan_request(struct ks_wlan_private *priv, unsigned long scan_type, u8 *scan_ssid, u8 scan_ssid_len) { struct hostif_bss_scan_request *pp; pp = hostif_generic_request(sizeof(*pp), HIF_SCAN_REQ); if (!pp) return; pp->scan_type = scan_type; pp->ch_time_min = cpu_to_le32(110); /* default value */ pp->ch_time_max = cpu_to_le32(130); /* default value */ pp->channel_list.body[0] = 1; pp->channel_list.body[1] = 8; pp->channel_list.body[2] = 2; pp->channel_list.body[3] = 9; pp->channel_list.body[4] = 3; pp->channel_list.body[5] = 10; pp->channel_list.body[6] = 4; pp->channel_list.body[7] = 11; pp->channel_list.body[8] = 5; pp->channel_list.body[9] = 12; pp->channel_list.body[10] = 6; pp->channel_list.body[11] = 13; pp->channel_list.body[12] = 7; if (priv->reg.phy_type == D_11G_ONLY_MODE) { pp->channel_list.size = 13; } else { pp->channel_list.body[13] = 14; pp->channel_list.size = 14; } pp->ssid.size = 0; /* specified SSID SCAN */ if (scan_ssid_len > 0 && scan_ssid_len <= 32) { pp->ssid.size = scan_ssid_len; memcpy(&pp->ssid.body[0], scan_ssid, scan_ssid_len); } send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); priv->aplist.size = 0; priv->scan_ind_count = 0; } static void hostif_mic_failure_request(struct ks_wlan_private *priv, u16 failure_count, u16 timer) { struct hostif_mic_failure_request *pp; pp = hostif_generic_request(sizeof(*pp), HIF_MIC_FAILURE_REQ); if (!pp) return; pp->failure_count = cpu_to_le16(failure_count); pp->timer = cpu_to_le16(timer); send_request_to_device(priv, pp, hif_align_size(sizeof(*pp))); } /* Device I/O Receive indicate */ static void devio_rec_ind(struct ks_wlan_private *priv, unsigned char *p, unsigned int size) { if (!priv->is_device_open) return; spin_lock(&priv->dev_read_lock); priv->dev_data[atomic_read(&priv->rec_count)] = p; priv->dev_size[atomic_read(&priv->rec_count)] = size; if (atomic_read(&priv->event_count) != DEVICE_STOCK_COUNT) { /* rx event count inc */ atomic_inc(&priv->event_count); } atomic_inc(&priv->rec_count); if (atomic_read(&priv->rec_count) == DEVICE_STOCK_COUNT) atomic_set(&priv->rec_count, 0); wake_up_interruptible_all(&priv->devread_wait); spin_unlock(&priv->dev_read_lock); } void hostif_receive(struct ks_wlan_private *priv, unsigned char *p, unsigned int size) { devio_rec_ind(priv, p, size); priv->rxp = p; priv->rx_size = size; if (get_word(priv) == priv->rx_size) hostif_event_check(priv); } static void hostif_sme_set_wep(struct ks_wlan_private *priv, int type) { switch (type) { case SME_WEP_INDEX_REQUEST: hostif_mib_set_request_int(priv, DOT11_WEP_DEFAULT_KEY_ID, priv->reg.wep_index); break; case SME_WEP_KEY1_REQUEST: if (priv->wpa.wpa_enabled) return; hostif_mib_set_request_ostring(priv, DOT11_WEP_DEFAULT_KEY_VALUE1, &priv->reg.wep_key[0].val[0], priv->reg.wep_key[0].size); break; case SME_WEP_KEY2_REQUEST: if (priv->wpa.wpa_enabled) return; hostif_mib_set_request_ostring(priv, DOT11_WEP_DEFAULT_KEY_VALUE2, &priv->reg.wep_key[1].val[0], priv->reg.wep_key[1].size); break; case SME_WEP_KEY3_REQUEST: if (priv->wpa.wpa_enabled) return; hostif_mib_set_request_ostring(priv, DOT11_WEP_DEFAULT_KEY_VALUE3, &priv->reg.wep_key[2].val[0], priv->reg.wep_key[2].size); break; case SME_WEP_KEY4_REQUEST: if (priv->wpa.wpa_enabled) return; hostif_mib_set_request_ostring(priv, DOT11_WEP_DEFAULT_KEY_VALUE4, &priv->reg.wep_key[3].val[0], priv->reg.wep_key[3].size); break; case SME_WEP_FLAG_REQUEST: hostif_mib_set_request_bool(priv, DOT11_PRIVACY_INVOKED, priv->reg.privacy_invoked); break; } } struct wpa_suite { __le16 size; unsigned char suite[4][CIPHER_ID_LEN]; } __packed; struct rsn_mode { __le32 rsn_mode; __le16 rsn_capability; } __packed; static void hostif_sme_set_rsn(struct ks_wlan_private *priv, int type) { struct wpa_suite wpa_suite; struct rsn_mode rsn_mode; size_t size; u32 mode; const u8 *buf = NULL; memset(&wpa_suite, 0, sizeof(wpa_suite)); switch (type) { case SME_RSN_UCAST_REQUEST: wpa_suite.size = cpu_to_le16(1); switch (priv->wpa.pairwise_suite) { case IW_AUTH_CIPHER_NONE: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? CIPHER_ID_WPA2_NONE : CIPHER_ID_WPA_NONE; break; case IW_AUTH_CIPHER_WEP40: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? CIPHER_ID_WPA2_WEP40 : CIPHER_ID_WPA_WEP40; break; case IW_AUTH_CIPHER_TKIP: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? CIPHER_ID_WPA2_TKIP : CIPHER_ID_WPA_TKIP; break; case IW_AUTH_CIPHER_CCMP: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? CIPHER_ID_WPA2_CCMP : CIPHER_ID_WPA_CCMP; break; case IW_AUTH_CIPHER_WEP104: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? CIPHER_ID_WPA2_WEP104 : CIPHER_ID_WPA_WEP104; break; } if (buf) memcpy(&wpa_suite.suite[0][0], buf, CIPHER_ID_LEN); size = sizeof(wpa_suite.size) + (CIPHER_ID_LEN * le16_to_cpu(wpa_suite.size)); hostif_mib_set_request_ostring(priv, DOT11_RSN_CONFIG_UNICAST_CIPHER, &wpa_suite, size); break; case SME_RSN_MCAST_REQUEST: switch (priv->wpa.group_suite) { case IW_AUTH_CIPHER_NONE: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? CIPHER_ID_WPA2_NONE : CIPHER_ID_WPA_NONE; break; case IW_AUTH_CIPHER_WEP40: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? CIPHER_ID_WPA2_WEP40 : CIPHER_ID_WPA_WEP40; break; case IW_AUTH_CIPHER_TKIP: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? CIPHER_ID_WPA2_TKIP : CIPHER_ID_WPA_TKIP; break; case IW_AUTH_CIPHER_CCMP: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? CIPHER_ID_WPA2_CCMP : CIPHER_ID_WPA_CCMP; break; case IW_AUTH_CIPHER_WEP104: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? CIPHER_ID_WPA2_WEP104 : CIPHER_ID_WPA_WEP104; break; } if (buf) memcpy(&wpa_suite.suite[0][0], buf, CIPHER_ID_LEN); hostif_mib_set_request_ostring(priv, DOT11_RSN_CONFIG_MULTICAST_CIPHER, &wpa_suite.suite[0][0], CIPHER_ID_LEN); break; case SME_RSN_AUTH_REQUEST: wpa_suite.size = cpu_to_le16(1); switch (priv->wpa.key_mgmt_suite) { case IW_AUTH_KEY_MGMT_802_1X: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? KEY_MGMT_ID_WPA2_1X : KEY_MGMT_ID_WPA_1X; break; case IW_AUTH_KEY_MGMT_PSK: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? KEY_MGMT_ID_WPA2_PSK : KEY_MGMT_ID_WPA_PSK; break; case 0: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? KEY_MGMT_ID_WPA2_NONE : KEY_MGMT_ID_WPA_NONE; break; case 4: buf = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? KEY_MGMT_ID_WPA2_WPANONE : KEY_MGMT_ID_WPA_WPANONE; break; } if (buf) memcpy(&wpa_suite.suite[0][0], buf, KEY_MGMT_ID_LEN); size = sizeof(wpa_suite.size) + (KEY_MGMT_ID_LEN * le16_to_cpu(wpa_suite.size)); hostif_mib_set_request_ostring(priv, DOT11_RSN_CONFIG_AUTH_SUITE, &wpa_suite, size); break; case SME_RSN_ENABLED_REQUEST: hostif_mib_set_request_bool(priv, DOT11_RSN_ENABLED, priv->wpa.rsn_enabled); break; case SME_RSN_MODE_REQUEST: mode = (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA2) ? RSN_MODE_WPA2 : (priv->wpa.version == IW_AUTH_WPA_VERSION_WPA) ? RSN_MODE_WPA : RSN_MODE_NONE; rsn_mode.rsn_mode = cpu_to_le32(mode); rsn_mode.rsn_capability = cpu_to_le16(0); hostif_mib_set_request_ostring(priv, LOCAL_RSN_MODE, &rsn_mode, sizeof(rsn_mode)); break; } } static void hostif_sme_mode_setup(struct ks_wlan_private *priv) { unsigned char rate_size; unsigned char rate_octet[RATE_SET_MAX_SIZE]; int i = 0; /* rate setting if rate segging is auto for changing phy_type (#94) */ if (priv->reg.tx_rate == TX_RATE_FULL_AUTO) { if (priv->reg.phy_type == D_11B_ONLY_MODE) { priv->reg.rate_set.body[3] = TX_RATE_11M; priv->reg.rate_set.body[2] = TX_RATE_5M; priv->reg.rate_set.body[1] = TX_RATE_2M | BASIC_RATE; priv->reg.rate_set.body[0] = TX_RATE_1M | BASIC_RATE; priv->reg.rate_set.size = 4; } else { /* D_11G_ONLY_MODE or D_11BG_COMPATIBLE_MODE */ priv->reg.rate_set.body[11] = TX_RATE_54M; priv->reg.rate_set.body[10] = TX_RATE_48M; priv->reg.rate_set.body[9] = TX_RATE_36M; priv->reg.rate_set.body[8] = TX_RATE_18M; priv->reg.rate_set.body[7] = TX_RATE_9M; priv->reg.rate_set.body[6] = TX_RATE_24M | BASIC_RATE; priv->reg.rate_set.body[5] = TX_RATE_12M | BASIC_RATE; priv->reg.rate_set.body[4] = TX_RATE_6M | BASIC_RATE; priv->reg.rate_set.body[3] = TX_RATE_11M | BASIC_RATE; priv->reg.rate_set.body[2] = TX_RATE_5M | BASIC_RATE; priv->reg.rate_set.body[1] = TX_RATE_2M | BASIC_RATE; priv->reg.rate_set.body[0] = TX_RATE_1M | BASIC_RATE; priv->reg.rate_set.size = 12; } } /* rate mask by phy setting */ if (priv->reg.phy_type == D_11B_ONLY_MODE) { for (i = 0; i < priv->reg.rate_set.size; i++) { if (!is_11b_rate(priv->reg.rate_set.body[i])) break; if ((priv->reg.rate_set.body[i] & RATE_MASK) >= TX_RATE_5M) { rate_octet[i] = priv->reg.rate_set.body[i] & RATE_MASK; } else { rate_octet[i] = priv->reg.rate_set.body[i]; } } } else { /* D_11G_ONLY_MODE or D_11BG_COMPATIBLE_MODE */ for (i = 0; i < priv->reg.rate_set.size; i++) { if (!is_11bg_rate(priv->reg.rate_set.body[i])) break; if (is_ofdm_ext_rate(priv->reg.rate_set.body[i])) { rate_octet[i] = priv->reg.rate_set.body[i] & RATE_MASK; } else { rate_octet[i] = priv->reg.rate_set.body[i]; } } } rate_size = i; if (rate_size == 0) { if (priv->reg.phy_type == D_11G_ONLY_MODE) rate_octet[0] = TX_RATE_6M | BASIC_RATE; else rate_octet[0] = TX_RATE_2M | BASIC_RATE; rate_size = 1; } /* rate set update */ priv->reg.rate_set.size = rate_size; memcpy(&priv->reg.rate_set.body[0], &rate_octet[0], rate_size); switch (priv->reg.operation_mode) { case MODE_PSEUDO_ADHOC: hostif_ps_adhoc_set_request(priv); break; case MODE_INFRASTRUCTURE: if (!is_valid_ether_addr((u8 *)priv->reg.bssid)) { hostif_infrastructure_set_request(priv, HIF_INFRA_SET_REQ); } else { hostif_infrastructure_set_request(priv, HIF_INFRA_SET2_REQ); netdev_dbg(priv->net_dev, "Infra bssid = %pM\n", priv->reg.bssid); } break; case MODE_ADHOC: if (!is_valid_ether_addr((u8 *)priv->reg.bssid)) { hostif_adhoc_set_request(priv); } else { hostif_adhoc_set2_request(priv); netdev_dbg(priv->net_dev, "Adhoc bssid = %pM\n", priv->reg.bssid); } break; default: break; } } static void hostif_sme_multicast_set(struct ks_wlan_private *priv) { struct net_device *dev = priv->net_dev; int mc_count; struct netdev_hw_addr *ha; char set_address[NIC_MAX_MCAST_LIST * ETH_ALEN]; int i = 0; spin_lock(&priv->multicast_spin); memset(set_address, 0, NIC_MAX_MCAST_LIST * ETH_ALEN); if (dev->flags & IFF_PROMISC) { hostif_mib_set_request_int(priv, LOCAL_MULTICAST_FILTER, MCAST_FILTER_PROMISC); goto spin_unlock; } if ((netdev_mc_count(dev) > NIC_MAX_MCAST_LIST) || (dev->flags & IFF_ALLMULTI)) { hostif_mib_set_request_int(priv, LOCAL_MULTICAST_FILTER, MCAST_FILTER_MCASTALL); goto spin_unlock; } if (priv->sme_i.sme_flag & SME_MULTICAST) { mc_count = netdev_mc_count(dev); netdev_for_each_mc_addr(ha, dev) { ether_addr_copy(&set_address[i * ETH_ALEN], ha->addr); i++; } priv->sme_i.sme_flag &= ~SME_MULTICAST; hostif_mib_set_request_ostring(priv, LOCAL_MULTICAST_ADDRESS, &set_address[0], ETH_ALEN * mc_count); } else { priv->sme_i.sme_flag |= SME_MULTICAST; hostif_mib_set_request_int(priv, LOCAL_MULTICAST_FILTER, MCAST_FILTER_MCAST); } spin_unlock: spin_unlock(&priv->multicast_spin); } static void hostif_sme_power_mgmt_set(struct ks_wlan_private *priv) { u32 mode, wake_up, receive_dtims; if (priv->reg.power_mgmt != POWER_MGMT_SAVE1 && priv->reg.power_mgmt != POWER_MGMT_SAVE2) { mode = POWER_ACTIVE; wake_up = 0; receive_dtims = 0; } else { mode = (priv->reg.operation_mode == MODE_INFRASTRUCTURE) ? POWER_SAVE : POWER_ACTIVE; wake_up = 0; receive_dtims = (priv->reg.operation_mode == MODE_INFRASTRUCTURE && priv->reg.power_mgmt == POWER_MGMT_SAVE2); } hostif_power_mgmt_request(priv, mode, wake_up, receive_dtims); } static void hostif_sme_sleep_set(struct ks_wlan_private *priv) { if (priv->sleep_mode != SLP_SLEEP && priv->sleep_mode != SLP_ACTIVE) return; hostif_sleep_request(priv, priv->sleep_mode); } static void hostif_sme_set_key(struct ks_wlan_private *priv, int type) { switch (type) { case SME_SET_FLAG: hostif_mib_set_request_bool(priv, DOT11_PRIVACY_INVOKED, priv->reg.privacy_invoked); break; case SME_SET_TXKEY: hostif_mib_set_request_int(priv, DOT11_WEP_DEFAULT_KEY_ID, priv->wpa.txkey); break; case SME_SET_KEY1: hostif_mib_set_request_ostring(priv, DOT11_WEP_DEFAULT_KEY_VALUE1, &priv->wpa.key[0].key_val[0], priv->wpa.key[0].key_len); break; case SME_SET_KEY2: hostif_mib_set_request_ostring(priv, DOT11_WEP_DEFAULT_KEY_VALUE2, &priv->wpa.key[1].key_val[0], priv->wpa.key[1].key_len); break; case SME_SET_KEY3: hostif_mib_set_request_ostring(priv, DOT11_WEP_DEFAULT_KEY_VALUE3, &priv->wpa.key[2].key_val[0], priv->wpa.key[2].key_len); break; case SME_SET_KEY4: hostif_mib_set_request_ostring(priv, DOT11_WEP_DEFAULT_KEY_VALUE4, &priv->wpa.key[3].key_val[0], priv->wpa.key[3].key_len); break; case SME_SET_PMK_TSC: hostif_mib_set_request_ostring(priv, DOT11_PMK_TSC, &priv->wpa.key[0].rx_seq[0], WPA_RX_SEQ_LEN); break; case SME_SET_GMK1_TSC: hostif_mib_set_request_ostring(priv, DOT11_GMK1_TSC, &priv->wpa.key[1].rx_seq[0], WPA_RX_SEQ_LEN); break; case SME_SET_GMK2_TSC: hostif_mib_set_request_ostring(priv, DOT11_GMK2_TSC, &priv->wpa.key[2].rx_seq[0], WPA_RX_SEQ_LEN); break; } } static void hostif_sme_set_pmksa(struct ks_wlan_private *priv) { struct pmk_cache { __le16 size; struct { u8 bssid[ETH_ALEN]; u8 pmkid[IW_PMKID_LEN]; } __packed list[PMK_LIST_MAX]; } __packed pmkcache; struct pmk *pmk; size_t size; int i = 0; list_for_each_entry(pmk, &priv->pmklist.head, list) { if (i >= PMK_LIST_MAX) break; ether_addr_copy(pmkcache.list[i].bssid, pmk->bssid); memcpy(pmkcache.list[i].pmkid, pmk->pmkid, IW_PMKID_LEN); i++; } pmkcache.size = cpu_to_le16(priv->pmklist.size); size = sizeof(priv->pmklist.size) + ((ETH_ALEN + IW_PMKID_LEN) * priv->pmklist.size); hostif_mib_set_request_ostring(priv, LOCAL_PMK, &pmkcache, size); } /* execute sme */ static void hostif_sme_execute(struct ks_wlan_private *priv, int event) { u16 failure; switch (event) { case SME_START: if (priv->dev_state == DEVICE_STATE_BOOT) hostif_mib_get_request(priv, DOT11_MAC_ADDRESS); break; case SME_MULTICAST_REQUEST: hostif_sme_multicast_set(priv); break; case SME_MACADDRESS_SET_REQUEST: hostif_mib_set_request_ostring(priv, LOCAL_CURRENTADDRESS, &priv->eth_addr[0], ETH_ALEN); break; case SME_BSS_SCAN_REQUEST: hostif_bss_scan_request(priv, priv->reg.scan_type, priv->scan_ssid, priv->scan_ssid_len); break; case SME_POW_MNGMT_REQUEST: hostif_sme_power_mgmt_set(priv); break; case SME_PHY_INFO_REQUEST: hostif_phy_information_request(priv); break; case SME_MIC_FAILURE_REQUEST: failure = priv->wpa.mic_failure.failure; if (failure != 1 && failure != 2) { netdev_err(priv->net_dev, "SME_MIC_FAILURE_REQUEST: failure count=%u error?\n", failure); return; } hostif_mic_failure_request(priv, failure - 1, (failure == 1) ? 0 : priv->wpa.mic_failure.counter); break; case SME_MIC_FAILURE_CONFIRM: if (priv->wpa.mic_failure.failure == 2) { if (priv->wpa.mic_failure.stop) priv->wpa.mic_failure.stop = 0; priv->wpa.mic_failure.failure = 0; hostif_start_request(priv, priv->reg.operation_mode); } break; case SME_GET_MAC_ADDRESS: if (priv->dev_state == DEVICE_STATE_BOOT) hostif_mib_get_request(priv, DOT11_PRODUCT_VERSION); break; case SME_GET_PRODUCT_VERSION: if (priv->dev_state == DEVICE_STATE_BOOT) priv->dev_state = DEVICE_STATE_PREINIT; break; case SME_STOP_REQUEST: hostif_stop_request(priv); break; case SME_RTS_THRESHOLD_REQUEST: hostif_mib_set_request_int(priv, DOT11_RTS_THRESHOLD, priv->reg.rts); break; case SME_FRAGMENTATION_THRESHOLD_REQUEST: hostif_mib_set_request_int(priv, DOT11_FRAGMENTATION_THRESHOLD, priv->reg.fragment); break; case SME_WEP_INDEX_REQUEST: case SME_WEP_KEY1_REQUEST: case SME_WEP_KEY2_REQUEST: case SME_WEP_KEY3_REQUEST: case SME_WEP_KEY4_REQUEST: case SME_WEP_FLAG_REQUEST: hostif_sme_set_wep(priv, event); break; case SME_RSN_UCAST_REQUEST: case SME_RSN_MCAST_REQUEST: case SME_RSN_AUTH_REQUEST: case SME_RSN_ENABLED_REQUEST: case SME_RSN_MODE_REQUEST: hostif_sme_set_rsn(priv, event); break; case SME_SET_FLAG: case SME_SET_TXKEY: case SME_SET_KEY1: case SME_SET_KEY2: case SME_SET_KEY3: case SME_SET_KEY4: case SME_SET_PMK_TSC: case SME_SET_GMK1_TSC: case SME_SET_GMK2_TSC: hostif_sme_set_key(priv, event); break; case SME_SET_PMKSA: hostif_sme_set_pmksa(priv); break; case SME_WPS_ENABLE_REQUEST: hostif_mib_set_request_int(priv, LOCAL_WPS_ENABLE, priv->wps.wps_enabled); break; case SME_WPS_PROBE_REQUEST: hostif_mib_set_request_ostring(priv, LOCAL_WPS_PROBE_REQ, priv->wps.ie, priv->wps.ielen); break; case SME_MODE_SET_REQUEST: hostif_sme_mode_setup(priv); break; case SME_SET_GAIN: hostif_mib_set_request_ostring(priv, LOCAL_GAIN, &priv->gain, sizeof(priv->gain)); break; case SME_GET_GAIN: hostif_mib_get_request(priv, LOCAL_GAIN); break; case SME_GET_EEPROM_CKSUM: priv->eeprom_checksum = EEPROM_FW_NOT_SUPPORT; /* initialize */ hostif_mib_get_request(priv, LOCAL_EEPROM_SUM); break; case SME_START_REQUEST: hostif_start_request(priv, priv->reg.operation_mode); break; case SME_START_CONFIRM: /* for power save */ atomic_set(&priv->psstatus.snooze_guard, 0); atomic_set(&priv->psstatus.confirm_wait, 0); if (priv->dev_state == DEVICE_STATE_PREINIT) priv->dev_state = DEVICE_STATE_INIT; /* wake_up_interruptible_all(&priv->confirm_wait); */ complete(&priv->confirm_wait); break; case SME_SLEEP_REQUEST: hostif_sme_sleep_set(priv); break; case SME_SET_REGION: hostif_mib_set_request_int(priv, LOCAL_REGION, priv->region); break; case SME_MULTICAST_CONFIRM: case SME_BSS_SCAN_CONFIRM: case SME_POW_MNGMT_CONFIRM: case SME_PHY_INFO_CONFIRM: case SME_STOP_CONFIRM: case SME_RTS_THRESHOLD_CONFIRM: case SME_FRAGMENTATION_THRESHOLD_CONFIRM: case SME_WEP_INDEX_CONFIRM: case SME_WEP_KEY1_CONFIRM: case SME_WEP_KEY2_CONFIRM: case SME_WEP_KEY3_CONFIRM: case SME_WEP_KEY4_CONFIRM: case SME_WEP_FLAG_CONFIRM: case SME_RSN_UCAST_CONFIRM: case SME_RSN_MCAST_CONFIRM: case SME_RSN_AUTH_CONFIRM: case SME_RSN_ENABLED_CONFIRM: case SME_RSN_MODE_CONFIRM: case SME_MODE_SET_CONFIRM: case SME_TERMINATE: default: break; } } static void hostif_sme_work(struct work_struct *work) { struct ks_wlan_private *priv; priv = container_of(work, struct ks_wlan_private, sme_work); if (priv->dev_state < DEVICE_STATE_BOOT) return; if (cnt_smeqbody(priv) <= 0) return; hostif_sme_execute(priv, priv->sme_i.event_buff[priv->sme_i.qhead]); inc_smeqhead(priv); if (cnt_smeqbody(priv) > 0) schedule_work(&priv->sme_work); } /* send to Station Management Entity module */ void hostif_sme_enqueue(struct ks_wlan_private *priv, u16 event) { /* enqueue sme event */ if (cnt_smeqbody(priv) < (SME_EVENT_BUFF_SIZE - 1)) { priv->sme_i.event_buff[priv->sme_i.qtail] = event; inc_smeqtail(priv); } else { /* in case of buffer overflow */ netdev_err(priv->net_dev, "sme queue buffer overflow\n"); } schedule_work(&priv->sme_work); } static inline void hostif_aplist_init(struct ks_wlan_private *priv) { size_t size = LOCAL_APLIST_MAX * sizeof(struct local_ap); priv->aplist.size = 0; memset(&priv->aplist.ap[0], 0, size); } static inline void hostif_status_init(struct ks_wlan_private *priv) { priv->infra_status = 0; priv->current_rate = 4; priv->connect_status = DISCONNECT_STATUS; } static inline void hostif_sme_init(struct ks_wlan_private *priv) { priv->sme_i.sme_status = SME_IDLE; priv->sme_i.qhead = 0; priv->sme_i.qtail = 0; spin_lock_init(&priv->sme_i.sme_spin); priv->sme_i.sme_flag = 0; INIT_WORK(&priv->sme_work, hostif_sme_work); } static inline void hostif_wpa_init(struct ks_wlan_private *priv) { memset(&priv->wpa, 0, sizeof(priv->wpa)); priv->wpa.rsn_enabled = false; priv->wpa.mic_failure.failure = 0; priv->wpa.mic_failure.last_failure_time = 0; priv->wpa.mic_failure.stop = 0; } static inline void hostif_power_save_init(struct ks_wlan_private *priv) { atomic_set(&priv->psstatus.status, PS_NONE); atomic_set(&priv->psstatus.confirm_wait, 0); atomic_set(&priv->psstatus.snooze_guard, 0); init_completion(&priv->psstatus.wakeup_wait); INIT_WORK(&priv->wakeup_work, ks_wlan_hw_wakeup_task); } static inline void hostif_pmklist_init(struct ks_wlan_private *priv) { int i; memset(&priv->pmklist, 0, sizeof(priv->pmklist)); INIT_LIST_HEAD(&priv->pmklist.head); for (i = 0; i < PMK_LIST_MAX; i++) INIT_LIST_HEAD(&priv->pmklist.pmk[i].list); } static inline void hostif_counters_init(struct ks_wlan_private *priv) { priv->dev_count = 0; atomic_set(&priv->event_count, 0); atomic_set(&priv->rec_count, 0); } int hostif_init(struct ks_wlan_private *priv) { hostif_aplist_init(priv); hostif_status_init(priv); spin_lock_init(&priv->multicast_spin); spin_lock_init(&priv->dev_read_lock); init_waitqueue_head(&priv->devread_wait); hostif_counters_init(priv); hostif_power_save_init(priv); hostif_wpa_init(priv); hostif_pmklist_init(priv); hostif_sme_init(priv); return 0; } void hostif_exit(struct ks_wlan_private *priv) { cancel_work_sync(&priv->sme_work); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1