Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christian Gromm | 4260 | 89.70% | 20 | 28.57% |
Nikita Yushchenko | 166 | 3.50% | 6 | 8.57% |
Andrey Shvetsov | 154 | 3.24% | 9 | 12.86% |
Bhumika Goyal | 58 | 1.22% | 2 | 2.86% |
Amitoj Kaur Chawla | 25 | 0.53% | 3 | 4.29% |
Menna Mahmoud | 21 | 0.44% | 1 | 1.43% |
Chaehyun Lim | 20 | 0.42% | 15 | 21.43% |
Davidlohr Bueso A | 11 | 0.23% | 1 | 1.43% |
Lee Jones | 6 | 0.13% | 1 | 1.43% |
Li Yang | 4 | 0.08% | 1 | 1.43% |
Sidong Yang | 3 | 0.06% | 1 | 1.43% |
Sudip Mukherjee | 3 | 0.06% | 1 | 1.43% |
Nícolas F. R. A. Prado | 3 | 0.06% | 1 | 1.43% |
Ravi Eluri | 3 | 0.06% | 1 | 1.43% |
Marcus Wolf | 3 | 0.06% | 1 | 1.43% |
Deepak R Varma | 2 | 0.04% | 1 | 1.43% |
Uwe Kleine-König | 2 | 0.04% | 1 | 1.43% |
Gustavo A. R. Silva | 2 | 0.04% | 1 | 1.43% |
stephen knipe | 1 | 0.02% | 1 | 1.43% |
Hugo Camboulive | 1 | 0.02% | 1 | 1.43% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 1.43% |
Total | 4749 | 70 |
// SPDX-License-Identifier: GPL-2.0 /* * dim2.c - MediaLB DIM2 Hardware Dependent Module * * Copyright (C) 2015-2016, Microchip Technology Germany II GmbH & Co. KG */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/printk.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/dma-mapping.h> #include <linux/sched.h> #include <linux/kthread.h> #include <linux/most.h> #include <linux/of.h> #include "hal.h" #include "errors.h" #include "sysfs.h" #define DMA_CHANNELS (32 - 1) /* channel 0 is a system channel */ #define MAX_BUFFERS_PACKET 32 #define MAX_BUFFERS_STREAMING 32 #define MAX_BUF_SIZE_PACKET 2048 #define MAX_BUF_SIZE_STREAMING (8 * 1024) /* * The parameter representing the number of frames per sub-buffer for * synchronous channels. Valid values: [0 .. 6]. * * The values 0, 1, 2, 3, 4, 5, 6 represent corresponding number of frames per * sub-buffer 1, 2, 4, 8, 16, 32, 64. */ static u8 fcnt = 4; /* (1 << fcnt) frames per subbuffer */ module_param(fcnt, byte, 0000); MODULE_PARM_DESC(fcnt, "Num of frames per sub-buffer for sync channels as a power of 2"); static DEFINE_SPINLOCK(dim_lock); /** * struct hdm_channel - private structure to keep channel specific data * @name: channel name * @is_initialized: identifier to know whether the channel is initialized * @ch: HAL specific channel data * @reset_dbr_size: reset DBR data buffer size * @pending_list: list to keep MBO's before starting transfer * @started_list: list to keep MBO's after starting transfer * @direction: channel direction (TX or RX) * @data_type: channel data type */ struct hdm_channel { char name[sizeof "caNNN"]; bool is_initialized; struct dim_channel ch; u16 *reset_dbr_size; struct list_head pending_list; /* before dim_enqueue_buffer() */ struct list_head started_list; /* after dim_enqueue_buffer() */ enum most_channel_direction direction; enum most_channel_data_type data_type; }; /* * struct dim2_hdm - private structure to keep interface specific data * @hch: an array of channel specific data * @most_iface: most interface structure * @capabilities: an array of channel capability data * @io_base: I/O register base address * @netinfo_task: thread to deliver network status * @netinfo_waitq: waitq for the thread to sleep * @deliver_netinfo: to identify whether network status received * @mac_addrs: INIC mac address * @link_state: network link state * @atx_idx: index of async tx channel */ struct dim2_hdm { struct device dev; struct hdm_channel hch[DMA_CHANNELS]; struct most_channel_capability capabilities[DMA_CHANNELS]; struct most_interface most_iface; char name[16 + sizeof "dim2-"]; void __iomem *io_base; u8 clk_speed; struct clk *clk; struct clk *clk_pll; struct task_struct *netinfo_task; wait_queue_head_t netinfo_waitq; int deliver_netinfo; unsigned char mac_addrs[6]; unsigned char link_state; int atx_idx; struct medialb_bus bus; void (*on_netinfo)(struct most_interface *most_iface, unsigned char link_state, unsigned char *addrs); void (*disable_platform)(struct platform_device *pdev); }; struct dim2_platform_data { int (*enable)(struct platform_device *pdev); void (*disable)(struct platform_device *pdev); u8 fcnt; }; static inline struct dim2_hdm *iface_to_hdm(struct most_interface *iface) { return container_of(iface, struct dim2_hdm, most_iface); } /* Macro to identify a network status message */ #define PACKET_IS_NET_INFO(p) \ (((p)[1] == 0x18) && ((p)[2] == 0x05) && ((p)[3] == 0x0C) && \ ((p)[13] == 0x3C) && ((p)[14] == 0x00) && ((p)[15] == 0x0A)) static ssize_t state_show(struct device *dev, struct device_attribute *attr, char *buf) { bool state; unsigned long flags; spin_lock_irqsave(&dim_lock, flags); state = dim_get_lock_state(); spin_unlock_irqrestore(&dim_lock, flags); return sysfs_emit(buf, "%s\n", state ? "locked" : ""); } static DEVICE_ATTR_RO(state); static struct attribute *dim2_attrs[] = { &dev_attr_state.attr, NULL, }; ATTRIBUTE_GROUPS(dim2); /** * dimcb_on_error - callback from HAL to report miscommunication between * HDM and HAL * @error_id: Error ID * @error_message: Error message. Some text in a free format */ void dimcb_on_error(u8 error_id, const char *error_message) { pr_err("%s: error_id - %d, error_message - %s\n", __func__, error_id, error_message); } /** * try_start_dim_transfer - try to transfer a buffer on a channel * @hdm_ch: channel specific data * * Transfer a buffer from pending_list if the channel is ready */ static int try_start_dim_transfer(struct hdm_channel *hdm_ch) { u16 buf_size; struct list_head *head = &hdm_ch->pending_list; struct mbo *mbo; unsigned long flags; struct dim_ch_state st; BUG_ON(!hdm_ch); BUG_ON(!hdm_ch->is_initialized); spin_lock_irqsave(&dim_lock, flags); if (list_empty(head)) { spin_unlock_irqrestore(&dim_lock, flags); return -EAGAIN; } if (!dim_get_channel_state(&hdm_ch->ch, &st)->ready) { spin_unlock_irqrestore(&dim_lock, flags); return -EAGAIN; } mbo = list_first_entry(head, struct mbo, list); buf_size = mbo->buffer_length; if (dim_dbr_space(&hdm_ch->ch) < buf_size) { spin_unlock_irqrestore(&dim_lock, flags); return -EAGAIN; } BUG_ON(mbo->bus_address == 0); if (!dim_enqueue_buffer(&hdm_ch->ch, mbo->bus_address, buf_size)) { list_del(head->next); spin_unlock_irqrestore(&dim_lock, flags); mbo->processed_length = 0; mbo->status = MBO_E_INVAL; mbo->complete(mbo); return -EFAULT; } list_move_tail(head->next, &hdm_ch->started_list); spin_unlock_irqrestore(&dim_lock, flags); return 0; } /** * deliver_netinfo_thread - thread to deliver network status to mostcore * @data: private data * * Wait for network status and deliver it to mostcore once it is received */ static int deliver_netinfo_thread(void *data) { struct dim2_hdm *dev = data; while (!kthread_should_stop()) { wait_event_interruptible(dev->netinfo_waitq, dev->deliver_netinfo || kthread_should_stop()); if (dev->deliver_netinfo) { dev->deliver_netinfo--; if (dev->on_netinfo) { dev->on_netinfo(&dev->most_iface, dev->link_state, dev->mac_addrs); } } } return 0; } /** * retrieve_netinfo - retrieve network status from received buffer * @dev: private data * @mbo: received MBO * * Parse the message in buffer and get node address, link state, MAC address. * Wake up a thread to deliver this status to mostcore */ static void retrieve_netinfo(struct dim2_hdm *dev, struct mbo *mbo) { u8 *data = mbo->virt_address; pr_info("Node Address: 0x%03x\n", (u16)data[16] << 8 | data[17]); dev->link_state = data[18]; pr_info("NIState: %d\n", dev->link_state); memcpy(dev->mac_addrs, data + 19, 6); dev->deliver_netinfo++; wake_up_interruptible(&dev->netinfo_waitq); } /** * service_done_flag - handle completed buffers * @dev: private data * @ch_idx: channel index * * Return back the completed buffers to mostcore, using completion callback */ static void service_done_flag(struct dim2_hdm *dev, int ch_idx) { struct hdm_channel *hdm_ch = dev->hch + ch_idx; struct dim_ch_state st; struct list_head *head; struct mbo *mbo; int done_buffers; unsigned long flags; u8 *data; BUG_ON(!hdm_ch); BUG_ON(!hdm_ch->is_initialized); spin_lock_irqsave(&dim_lock, flags); done_buffers = dim_get_channel_state(&hdm_ch->ch, &st)->done_buffers; if (!done_buffers) { spin_unlock_irqrestore(&dim_lock, flags); return; } if (!dim_detach_buffers(&hdm_ch->ch, done_buffers)) { spin_unlock_irqrestore(&dim_lock, flags); return; } spin_unlock_irqrestore(&dim_lock, flags); head = &hdm_ch->started_list; while (done_buffers) { spin_lock_irqsave(&dim_lock, flags); if (list_empty(head)) { spin_unlock_irqrestore(&dim_lock, flags); pr_crit("hard error: started_mbo list is empty whereas DIM2 has sent buffers\n"); break; } mbo = list_first_entry(head, struct mbo, list); list_del(head->next); spin_unlock_irqrestore(&dim_lock, flags); data = mbo->virt_address; if (hdm_ch->data_type == MOST_CH_ASYNC && hdm_ch->direction == MOST_CH_RX && PACKET_IS_NET_INFO(data)) { retrieve_netinfo(dev, mbo); spin_lock_irqsave(&dim_lock, flags); list_add_tail(&mbo->list, &hdm_ch->pending_list); spin_unlock_irqrestore(&dim_lock, flags); } else { if (hdm_ch->data_type == MOST_CH_CONTROL || hdm_ch->data_type == MOST_CH_ASYNC) { u32 const data_size = (u32)data[0] * 256 + data[1] + 2; mbo->processed_length = min_t(u32, data_size, mbo->buffer_length); } else { mbo->processed_length = mbo->buffer_length; } mbo->status = MBO_SUCCESS; mbo->complete(mbo); } done_buffers--; } } static struct dim_channel **get_active_channels(struct dim2_hdm *dev, struct dim_channel **buffer) { int idx = 0; int ch_idx; for (ch_idx = 0; ch_idx < DMA_CHANNELS; ch_idx++) { if (dev->hch[ch_idx].is_initialized) buffer[idx++] = &dev->hch[ch_idx].ch; } buffer[idx++] = NULL; return buffer; } static irqreturn_t dim2_mlb_isr(int irq, void *_dev) { struct dim2_hdm *dev = _dev; unsigned long flags; spin_lock_irqsave(&dim_lock, flags); dim_service_mlb_int_irq(); spin_unlock_irqrestore(&dim_lock, flags); if (dev->atx_idx >= 0 && dev->hch[dev->atx_idx].is_initialized) while (!try_start_dim_transfer(dev->hch + dev->atx_idx)) continue; return IRQ_HANDLED; } static irqreturn_t dim2_task_irq(int irq, void *_dev) { struct dim2_hdm *dev = _dev; unsigned long flags; int ch_idx; for (ch_idx = 0; ch_idx < DMA_CHANNELS; ch_idx++) { if (!dev->hch[ch_idx].is_initialized) continue; spin_lock_irqsave(&dim_lock, flags); dim_service_channel(&dev->hch[ch_idx].ch); spin_unlock_irqrestore(&dim_lock, flags); service_done_flag(dev, ch_idx); while (!try_start_dim_transfer(dev->hch + ch_idx)) continue; } return IRQ_HANDLED; } /** * dim2_ahb_isr - interrupt service routine * @irq: irq number * @_dev: private data * * Acknowledge the interrupt and service each initialized channel, * if needed, in task context. */ static irqreturn_t dim2_ahb_isr(int irq, void *_dev) { struct dim2_hdm *dev = _dev; struct dim_channel *buffer[DMA_CHANNELS + 1]; unsigned long flags; spin_lock_irqsave(&dim_lock, flags); dim_service_ahb_int_irq(get_active_channels(dev, buffer)); spin_unlock_irqrestore(&dim_lock, flags); return IRQ_WAKE_THREAD; } /** * complete_all_mbos - complete MBO's in a list * @head: list head * * Delete all the entries in list and return back MBO's to mostcore using * completion call back. */ static void complete_all_mbos(struct list_head *head) { unsigned long flags; struct mbo *mbo; for (;;) { spin_lock_irqsave(&dim_lock, flags); if (list_empty(head)) { spin_unlock_irqrestore(&dim_lock, flags); break; } mbo = list_first_entry(head, struct mbo, list); list_del(head->next); spin_unlock_irqrestore(&dim_lock, flags); mbo->processed_length = 0; mbo->status = MBO_E_CLOSE; mbo->complete(mbo); } } /** * configure_channel - initialize a channel * @most_iface: interface the channel belongs to * @ch_idx: channel index to be configured * @ccfg: structure that holds the configuration information * * Receives configuration information from mostcore and initialize * the corresponding channel. Return 0 on success, negative on failure. */ static int configure_channel(struct most_interface *most_iface, int ch_idx, struct most_channel_config *ccfg) { struct dim2_hdm *dev = iface_to_hdm(most_iface); bool const is_tx = ccfg->direction == MOST_CH_TX; u16 const sub_size = ccfg->subbuffer_size; u16 const buf_size = ccfg->buffer_size; u16 new_size; unsigned long flags; u8 hal_ret; int const ch_addr = ch_idx * 2 + 2; struct hdm_channel *const hdm_ch = dev->hch + ch_idx; BUG_ON(ch_idx < 0 || ch_idx >= DMA_CHANNELS); if (hdm_ch->is_initialized) return -EPERM; /* do not reset if the property was set by user, see poison_channel */ hdm_ch->reset_dbr_size = ccfg->dbr_size ? NULL : &ccfg->dbr_size; /* zero value is default dbr_size, see dim2 hal */ hdm_ch->ch.dbr_size = ccfg->dbr_size; switch (ccfg->data_type) { case MOST_CH_CONTROL: new_size = dim_norm_ctrl_async_buffer_size(buf_size); if (new_size == 0) { pr_err("%s: too small buffer size\n", hdm_ch->name); return -EINVAL; } ccfg->buffer_size = new_size; if (new_size != buf_size) pr_warn("%s: fixed buffer size (%d -> %d)\n", hdm_ch->name, buf_size, new_size); spin_lock_irqsave(&dim_lock, flags); hal_ret = dim_init_control(&hdm_ch->ch, is_tx, ch_addr, is_tx ? new_size * 2 : new_size); break; case MOST_CH_ASYNC: new_size = dim_norm_ctrl_async_buffer_size(buf_size); if (new_size == 0) { pr_err("%s: too small buffer size\n", hdm_ch->name); return -EINVAL; } ccfg->buffer_size = new_size; if (new_size != buf_size) pr_warn("%s: fixed buffer size (%d -> %d)\n", hdm_ch->name, buf_size, new_size); spin_lock_irqsave(&dim_lock, flags); hal_ret = dim_init_async(&hdm_ch->ch, is_tx, ch_addr, is_tx ? new_size * 2 : new_size); break; case MOST_CH_ISOC: new_size = dim_norm_isoc_buffer_size(buf_size, sub_size); if (new_size == 0) { pr_err("%s: invalid sub-buffer size or too small buffer size\n", hdm_ch->name); return -EINVAL; } ccfg->buffer_size = new_size; if (new_size != buf_size) pr_warn("%s: fixed buffer size (%d -> %d)\n", hdm_ch->name, buf_size, new_size); spin_lock_irqsave(&dim_lock, flags); hal_ret = dim_init_isoc(&hdm_ch->ch, is_tx, ch_addr, sub_size); break; case MOST_CH_SYNC: new_size = dim_norm_sync_buffer_size(buf_size, sub_size); if (new_size == 0) { pr_err("%s: invalid sub-buffer size or too small buffer size\n", hdm_ch->name); return -EINVAL; } ccfg->buffer_size = new_size; if (new_size != buf_size) pr_warn("%s: fixed buffer size (%d -> %d)\n", hdm_ch->name, buf_size, new_size); spin_lock_irqsave(&dim_lock, flags); hal_ret = dim_init_sync(&hdm_ch->ch, is_tx, ch_addr, sub_size); break; default: pr_err("%s: configure failed, bad channel type: %d\n", hdm_ch->name, ccfg->data_type); return -EINVAL; } if (hal_ret != DIM_NO_ERROR) { spin_unlock_irqrestore(&dim_lock, flags); pr_err("%s: configure failed (%d), type: %d, is_tx: %d\n", hdm_ch->name, hal_ret, ccfg->data_type, (int)is_tx); return -ENODEV; } hdm_ch->data_type = ccfg->data_type; hdm_ch->direction = ccfg->direction; hdm_ch->is_initialized = true; if (hdm_ch->data_type == MOST_CH_ASYNC && hdm_ch->direction == MOST_CH_TX && dev->atx_idx < 0) dev->atx_idx = ch_idx; spin_unlock_irqrestore(&dim_lock, flags); ccfg->dbr_size = hdm_ch->ch.dbr_size; return 0; } /** * enqueue - enqueue a buffer for data transfer * @most_iface: intended interface * @ch_idx: ID of the channel the buffer is intended for * @mbo: pointer to the buffer object * * Push the buffer into pending_list and try to transfer one buffer from * pending_list. Return 0 on success, negative on failure. */ static int enqueue(struct most_interface *most_iface, int ch_idx, struct mbo *mbo) { struct dim2_hdm *dev = iface_to_hdm(most_iface); struct hdm_channel *hdm_ch = dev->hch + ch_idx; unsigned long flags; BUG_ON(ch_idx < 0 || ch_idx >= DMA_CHANNELS); if (!hdm_ch->is_initialized) return -EPERM; if (mbo->bus_address == 0) return -EFAULT; spin_lock_irqsave(&dim_lock, flags); list_add_tail(&mbo->list, &hdm_ch->pending_list); spin_unlock_irqrestore(&dim_lock, flags); (void)try_start_dim_transfer(hdm_ch); return 0; } /** * request_netinfo - triggers retrieving of network info * @most_iface: pointer to the interface * @ch_idx: corresponding channel ID * @on_netinfo: call-back used to deliver network status to mostcore * * Send a command to INIC which triggers retrieving of network info by means of * "Message exchange over MDP/MEP". Return 0 on success, negative on failure. */ static void request_netinfo(struct most_interface *most_iface, int ch_idx, void (*on_netinfo)(struct most_interface *, unsigned char, unsigned char *)) { struct dim2_hdm *dev = iface_to_hdm(most_iface); struct mbo *mbo; u8 *data; dev->on_netinfo = on_netinfo; if (!on_netinfo) return; if (dev->atx_idx < 0) { pr_err("Async Tx Not initialized\n"); return; } mbo = most_get_mbo(&dev->most_iface, dev->atx_idx, NULL); if (!mbo) return; mbo->buffer_length = 5; data = mbo->virt_address; data[0] = 0x00; /* PML High byte */ data[1] = 0x03; /* PML Low byte */ data[2] = 0x02; /* PMHL */ data[3] = 0x08; /* FPH */ data[4] = 0x40; /* FMF (FIFO cmd msg - Triggers NAOverMDP) */ most_submit_mbo(mbo); } /** * poison_channel - poison buffers of a channel * @most_iface: pointer to the interface the channel to be poisoned belongs to * @ch_idx: corresponding channel ID * * Destroy a channel and complete all the buffers in both started_list & * pending_list. Return 0 on success, negative on failure. */ static int poison_channel(struct most_interface *most_iface, int ch_idx) { struct dim2_hdm *dev = iface_to_hdm(most_iface); struct hdm_channel *hdm_ch = dev->hch + ch_idx; unsigned long flags; u8 hal_ret; int ret = 0; BUG_ON(ch_idx < 0 || ch_idx >= DMA_CHANNELS); if (!hdm_ch->is_initialized) return -EPERM; spin_lock_irqsave(&dim_lock, flags); hal_ret = dim_destroy_channel(&hdm_ch->ch); hdm_ch->is_initialized = false; if (ch_idx == dev->atx_idx) dev->atx_idx = -1; spin_unlock_irqrestore(&dim_lock, flags); if (hal_ret != DIM_NO_ERROR) { pr_err("HAL Failed to close channel %s\n", hdm_ch->name); ret = -EFAULT; } complete_all_mbos(&hdm_ch->started_list); complete_all_mbos(&hdm_ch->pending_list); if (hdm_ch->reset_dbr_size) *hdm_ch->reset_dbr_size = 0; return ret; } static void *dma_alloc(struct mbo *mbo, u32 size) { struct device *dev = mbo->ifp->driver_dev; return dma_alloc_coherent(dev, size, &mbo->bus_address, GFP_KERNEL); } static void dma_free(struct mbo *mbo, u32 size) { struct device *dev = mbo->ifp->driver_dev; dma_free_coherent(dev, size, mbo->virt_address, mbo->bus_address); } static const struct of_device_id dim2_of_match[]; static struct { const char *clock_speed; u8 clk_speed; } clk_mt[] = { { "256fs", CLK_256FS }, { "512fs", CLK_512FS }, { "1024fs", CLK_1024FS }, { "2048fs", CLK_2048FS }, { "3072fs", CLK_3072FS }, { "4096fs", CLK_4096FS }, { "6144fs", CLK_6144FS }, { "8192fs", CLK_8192FS }, }; /** * get_dim2_clk_speed - converts string to DIM2 clock speed value * * @clock_speed: string in the format "{NUMBER}fs" * @val: pointer to get one of the CLK_{NUMBER}FS values * * By success stores one of the CLK_{NUMBER}FS in the *val and returns 0, * otherwise returns -EINVAL. */ static int get_dim2_clk_speed(const char *clock_speed, u8 *val) { int i; for (i = 0; i < ARRAY_SIZE(clk_mt); i++) { if (!strcmp(clock_speed, clk_mt[i].clock_speed)) { *val = clk_mt[i].clk_speed; return 0; } } return -EINVAL; } static void dim2_release(struct device *d) { struct dim2_hdm *dev = container_of(d, struct dim2_hdm, dev); unsigned long flags; kthread_stop(dev->netinfo_task); spin_lock_irqsave(&dim_lock, flags); dim_shutdown(); spin_unlock_irqrestore(&dim_lock, flags); if (dev->disable_platform) dev->disable_platform(to_platform_device(d->parent)); kfree(dev); } /* * dim2_probe - dim2 probe handler * @pdev: platform device structure * * Register the dim2 interface with mostcore and initialize it. * Return 0 on success, negative on failure. */ static int dim2_probe(struct platform_device *pdev) { const struct dim2_platform_data *pdata; const struct of_device_id *of_id; const char *clock_speed; struct dim2_hdm *dev; struct resource *res; int ret, i; u8 hal_ret; u8 dev_fcnt = fcnt; int irq; enum { MLB_INT_IDX, AHB0_INT_IDX }; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; dev->atx_idx = -1; platform_set_drvdata(pdev, dev); ret = of_property_read_string(pdev->dev.of_node, "microchip,clock-speed", &clock_speed); if (ret) { dev_err(&pdev->dev, "missing dt property clock-speed\n"); goto err_free_dev; } ret = get_dim2_clk_speed(clock_speed, &dev->clk_speed); if (ret) { dev_err(&pdev->dev, "bad dt property clock-speed\n"); goto err_free_dev; } dev->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(dev->io_base)) { ret = PTR_ERR(dev->io_base); goto err_free_dev; } of_id = of_match_node(dim2_of_match, pdev->dev.of_node); pdata = of_id->data; if (pdata) { if (pdata->enable) { ret = pdata->enable(pdev); if (ret) goto err_free_dev; } dev->disable_platform = pdata->disable; if (pdata->fcnt) dev_fcnt = pdata->fcnt; } dev_info(&pdev->dev, "sync: num of frames per sub-buffer: %u\n", dev_fcnt); hal_ret = dim_startup(dev->io_base, dev->clk_speed, dev_fcnt); if (hal_ret != DIM_NO_ERROR) { dev_err(&pdev->dev, "dim_startup failed: %d\n", hal_ret); ret = -ENODEV; goto err_disable_platform; } irq = platform_get_irq(pdev, AHB0_INT_IDX); if (irq < 0) { ret = irq; goto err_shutdown_dim; } ret = devm_request_threaded_irq(&pdev->dev, irq, dim2_ahb_isr, dim2_task_irq, 0, "dim2_ahb0_int", dev); if (ret) { dev_err(&pdev->dev, "failed to request ahb0_int irq %d\n", irq); goto err_shutdown_dim; } irq = platform_get_irq(pdev, MLB_INT_IDX); if (irq < 0) { ret = irq; goto err_shutdown_dim; } ret = devm_request_irq(&pdev->dev, irq, dim2_mlb_isr, 0, "dim2_mlb_int", dev); if (ret) { dev_err(&pdev->dev, "failed to request mlb_int irq %d\n", irq); goto err_shutdown_dim; } init_waitqueue_head(&dev->netinfo_waitq); dev->deliver_netinfo = 0; dev->netinfo_task = kthread_run(&deliver_netinfo_thread, dev, "dim2_netinfo"); if (IS_ERR(dev->netinfo_task)) { ret = PTR_ERR(dev->netinfo_task); goto err_shutdown_dim; } for (i = 0; i < DMA_CHANNELS; i++) { struct most_channel_capability *cap = dev->capabilities + i; struct hdm_channel *hdm_ch = dev->hch + i; INIT_LIST_HEAD(&hdm_ch->pending_list); INIT_LIST_HEAD(&hdm_ch->started_list); hdm_ch->is_initialized = false; snprintf(hdm_ch->name, sizeof(hdm_ch->name), "ca%d", i * 2 + 2); cap->name_suffix = hdm_ch->name; cap->direction = MOST_CH_RX | MOST_CH_TX; cap->data_type = MOST_CH_CONTROL | MOST_CH_ASYNC | MOST_CH_ISOC | MOST_CH_SYNC; cap->num_buffers_packet = MAX_BUFFERS_PACKET; cap->buffer_size_packet = MAX_BUF_SIZE_PACKET; cap->num_buffers_streaming = MAX_BUFFERS_STREAMING; cap->buffer_size_streaming = MAX_BUF_SIZE_STREAMING; } { const char *fmt; if (sizeof(res->start) == sizeof(long long)) fmt = "dim2-%016llx"; else if (sizeof(res->start) == sizeof(long)) fmt = "dim2-%016lx"; else fmt = "dim2-%016x"; snprintf(dev->name, sizeof(dev->name), fmt, res->start); } dev->most_iface.interface = ITYPE_MEDIALB_DIM2; dev->most_iface.description = dev->name; dev->most_iface.num_channels = DMA_CHANNELS; dev->most_iface.channel_vector = dev->capabilities; dev->most_iface.configure = configure_channel; dev->most_iface.enqueue = enqueue; dev->most_iface.dma_alloc = dma_alloc; dev->most_iface.dma_free = dma_free; dev->most_iface.poison_channel = poison_channel; dev->most_iface.request_netinfo = request_netinfo; dev->most_iface.driver_dev = &pdev->dev; dev->most_iface.dev = &dev->dev; dev->dev.init_name = dev->name; dev->dev.parent = &pdev->dev; dev->dev.release = dim2_release; return most_register_interface(&dev->most_iface); err_shutdown_dim: dim_shutdown(); err_disable_platform: if (dev->disable_platform) dev->disable_platform(pdev); err_free_dev: kfree(dev); return ret; } /** * dim2_remove - dim2 remove handler * @pdev: platform device structure * * Unregister the interface from mostcore */ static void dim2_remove(struct platform_device *pdev) { struct dim2_hdm *dev = platform_get_drvdata(pdev); most_deregister_interface(&dev->most_iface); } /* platform specific functions [[ */ static int fsl_mx6_enable(struct platform_device *pdev) { struct dim2_hdm *dev = platform_get_drvdata(pdev); int ret; dev->clk = devm_clk_get(&pdev->dev, "mlb"); if (IS_ERR_OR_NULL(dev->clk)) { dev_err(&pdev->dev, "unable to get mlb clock\n"); return -EFAULT; } ret = clk_prepare_enable(dev->clk); if (ret) { dev_err(&pdev->dev, "%s\n", "clk_prepare_enable failed"); return ret; } if (dev->clk_speed >= CLK_2048FS) { /* enable pll */ dev->clk_pll = devm_clk_get(&pdev->dev, "pll8_mlb"); if (IS_ERR_OR_NULL(dev->clk_pll)) { dev_err(&pdev->dev, "unable to get mlb pll clock\n"); clk_disable_unprepare(dev->clk); return -EFAULT; } writel(0x888, dev->io_base + 0x38); clk_prepare_enable(dev->clk_pll); } return 0; } static void fsl_mx6_disable(struct platform_device *pdev) { struct dim2_hdm *dev = platform_get_drvdata(pdev); if (dev->clk_speed >= CLK_2048FS) clk_disable_unprepare(dev->clk_pll); clk_disable_unprepare(dev->clk); } static int rcar_gen2_enable(struct platform_device *pdev) { struct dim2_hdm *dev = platform_get_drvdata(pdev); int ret; dev->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dev->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); return PTR_ERR(dev->clk); } ret = clk_prepare_enable(dev->clk); if (ret) { dev_err(&pdev->dev, "%s\n", "clk_prepare_enable failed"); return ret; } if (dev->clk_speed >= CLK_2048FS) { /* enable MLP pll and LVDS drivers */ writel(0x03, dev->io_base + 0x600); /* set bias */ writel(0x888, dev->io_base + 0x38); } else { /* PLL */ writel(0x04, dev->io_base + 0x600); } /* BBCR = 0b11 */ writel(0x03, dev->io_base + 0x500); writel(0x0002FF02, dev->io_base + 0x508); return 0; } static void rcar_gen2_disable(struct platform_device *pdev) { struct dim2_hdm *dev = platform_get_drvdata(pdev); clk_disable_unprepare(dev->clk); /* disable PLLs and LVDS drivers */ writel(0x0, dev->io_base + 0x600); } static int rcar_gen3_enable(struct platform_device *pdev) { struct dim2_hdm *dev = platform_get_drvdata(pdev); u32 enable_512fs = dev->clk_speed == CLK_512FS; int ret; dev->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(dev->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); return PTR_ERR(dev->clk); } ret = clk_prepare_enable(dev->clk); if (ret) { dev_err(&pdev->dev, "%s\n", "clk_prepare_enable failed"); return ret; } /* PLL */ writel(0x04, dev->io_base + 0x600); writel(enable_512fs, dev->io_base + 0x604); /* BBCR = 0b11 */ writel(0x03, dev->io_base + 0x500); writel(0x0002FF02, dev->io_base + 0x508); return 0; } static void rcar_gen3_disable(struct platform_device *pdev) { struct dim2_hdm *dev = platform_get_drvdata(pdev); clk_disable_unprepare(dev->clk); /* disable PLLs and LVDS drivers */ writel(0x0, dev->io_base + 0x600); } /* ]] platform specific functions */ enum dim2_platforms { FSL_MX6, RCAR_GEN2, RCAR_GEN3 }; static struct dim2_platform_data plat_data[] = { [FSL_MX6] = { .enable = fsl_mx6_enable, .disable = fsl_mx6_disable, }, [RCAR_GEN2] = { .enable = rcar_gen2_enable, .disable = rcar_gen2_disable, }, [RCAR_GEN3] = { .enable = rcar_gen3_enable, .disable = rcar_gen3_disable, .fcnt = 3, }, }; static const struct of_device_id dim2_of_match[] = { { .compatible = "fsl,imx6q-mlb150", .data = plat_data + FSL_MX6 }, { .compatible = "renesas,mlp", .data = plat_data + RCAR_GEN2 }, { .compatible = "renesas,rcar-gen3-mlp", .data = plat_data + RCAR_GEN3 }, { .compatible = "xlnx,axi4-os62420_3pin-1.00.a", }, { .compatible = "xlnx,axi4-os62420_6pin-1.00.a", }, {}, }; MODULE_DEVICE_TABLE(of, dim2_of_match); static struct platform_driver dim2_driver = { .probe = dim2_probe, .remove_new = dim2_remove, .driver = { .name = "hdm_dim2", .of_match_table = dim2_of_match, .dev_groups = dim2_groups, }, }; module_platform_driver(dim2_driver); MODULE_AUTHOR("Andrey Shvetsov <andrey.shvetsov@k2l.de>"); MODULE_DESCRIPTION("MediaLB DIM2 Hardware Dependent Module"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1