Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Micky Ching | 3769 | 93.36% | 1 | 3.12% |
Anton Vasilyev | 65 | 1.61% | 1 | 3.12% |
Vaibhav Gupta | 42 | 1.04% | 1 | 3.12% |
Soumya Negi | 34 | 0.84% | 1 | 3.12% |
Suraj Upadhyay | 18 | 0.45% | 1 | 3.12% |
Chuhong Yuan | 18 | 0.45% | 1 | 3.12% |
Wayne Porter | 12 | 0.30% | 4 | 12.50% |
Wei Yongjun | 8 | 0.20% | 2 | 6.25% |
MingChia Chung | 7 | 0.17% | 1 | 3.12% |
Hannes Reinecke | 6 | 0.15% | 1 | 3.12% |
Bart Van Assche | 6 | 0.15% | 2 | 6.25% |
Benoit Taine | 6 | 0.15% | 1 | 3.12% |
Christoph Hellwig | 6 | 0.15% | 2 | 6.25% |
Sergio Paracuellos | 6 | 0.15% | 1 | 3.12% |
Fabio Falzoi | 6 | 0.15% | 1 | 3.12% |
Evgeny Novikov | 5 | 0.12% | 1 | 3.12% |
Eric W. Biedermann | 4 | 0.10% | 1 | 3.12% |
Eva Rachel Retuya | 3 | 0.07% | 1 | 3.12% |
Gaurav Pathak | 3 | 0.07% | 1 | 3.12% |
Vaishali Thakkar | 3 | 0.07% | 1 | 3.12% |
Nicholas Mc Guire | 3 | 0.07% | 1 | 3.12% |
Kim Bradley | 2 | 0.05% | 1 | 3.12% |
Deepanshu Kartikey | 2 | 0.05% | 1 | 3.12% |
Haneen Mohammed | 1 | 0.02% | 1 | 3.12% |
Ronit Halder | 1 | 0.02% | 1 | 3.12% |
Amitoj Kaur Chawla | 1 | 0.02% | 1 | 3.12% |
Total | 4037 | 32 |
// SPDX-License-Identifier: GPL-2.0+ /* * Driver for Realtek PCI-Express card reader * * Copyright(c) 2009-2013 Realtek Semiconductor Corp. All rights reserved. * * Author: * Wei WANG (wei_wang@realsil.com.cn) * Micky Ching (micky_ching@realsil.com.cn) */ #include <linux/blkdev.h> #include <linux/kthread.h> #include <linux/sched.h> #include <linux/workqueue.h> #include "rtsx.h" #include "ms.h" #include "sd.h" #include "xd.h" MODULE_DESCRIPTION("Realtek PCI-Express card reader rts5208/rts5288 driver"); MODULE_LICENSE("GPL"); static unsigned int delay_use = 1; module_param(delay_use, uint, 0644); MODULE_PARM_DESC(delay_use, "seconds to delay before using a new device"); static int ss_en; module_param(ss_en, int, 0644); MODULE_PARM_DESC(ss_en, "enable selective suspend"); static int ss_interval = 50; module_param(ss_interval, int, 0644); MODULE_PARM_DESC(ss_interval, "Interval to enter ss state in seconds"); static int auto_delink_en; module_param(auto_delink_en, int, 0644); MODULE_PARM_DESC(auto_delink_en, "enable auto delink"); static unsigned char aspm_l0s_l1_en; module_param(aspm_l0s_l1_en, byte, 0644); MODULE_PARM_DESC(aspm_l0s_l1_en, "enable device aspm"); static int msi_en; module_param(msi_en, int, 0644); MODULE_PARM_DESC(msi_en, "enable msi"); static irqreturn_t rtsx_interrupt(int irq, void *dev_id); /*********************************************************************** * Host functions ***********************************************************************/ static const char *host_info(struct Scsi_Host *host) { return "SCSI emulation for PCI-Express Mass Storage devices"; } static int slave_alloc(struct scsi_device *sdev) { /* * Set the INQUIRY transfer length to 36. We don't use any of * the extra data and many devices choke if asked for more or * less than 36 bytes. */ sdev->inquiry_len = 36; return 0; } static int slave_configure(struct scsi_device *sdev) { /* Set the SCSI level to at least 2. We'll leave it at 3 if that's * what is originally reported. We need this to avoid confusing * the SCSI layer with devices that report 0 or 1, but need 10-byte * commands (ala ATAPI devices behind certain bridges, or devices * which simply have broken INQUIRY data). * * NOTE: This means /dev/sg programs (ala cdrecord) will get the * actual information. This seems to be the preference for * programs like that. * * NOTE: This also means that /proc/scsi/scsi and sysfs may report * the actual value or the modified one, depending on where the * data comes from. */ if (sdev->scsi_level < SCSI_2) { sdev->scsi_level = SCSI_2; sdev->sdev_target->scsi_level = SCSI_2; } return 0; } /*********************************************************************** * /proc/scsi/ functions ***********************************************************************/ /* we use this macro to help us write into the buffer */ #undef SPRINTF #define SPRINTF(args...) \ do { \ if (pos < buffer + length) \ pos += sprintf(pos, ## args); \ } while (0) /* queue a command */ /* This is always called with spin_lock_irq(host->host_lock) held */ static int queuecommand_lck(struct scsi_cmnd *srb) { void (*done)(struct scsi_cmnd *) = scsi_done; struct rtsx_dev *dev = host_to_rtsx(srb->device->host); struct rtsx_chip *chip = dev->chip; /* check for state-transition errors */ if (chip->srb) { dev_err(&dev->pci->dev, "Error: chip->srb = %p\n", chip->srb); return SCSI_MLQUEUE_HOST_BUSY; } /* fail the command if we are disconnecting */ if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) { dev_info(&dev->pci->dev, "Fail command during disconnect\n"); srb->result = DID_NO_CONNECT << 16; done(srb); return 0; } /* enqueue the command and wake up the control thread */ chip->srb = srb; complete(&dev->cmnd_ready); return 0; } static DEF_SCSI_QCMD(queuecommand) /*********************************************************************** * Error handling functions ***********************************************************************/ /* Command timeout and abort */ static int command_abort(struct scsi_cmnd *srb) { struct Scsi_Host *host = srb->device->host; struct rtsx_dev *dev = host_to_rtsx(host); struct rtsx_chip *chip = dev->chip; spin_lock_irq(host->host_lock); /* Is this command still active? */ if (chip->srb != srb) { spin_unlock_irq(host->host_lock); dev_info(&dev->pci->dev, "-- nothing to abort\n"); return FAILED; } rtsx_set_stat(chip, RTSX_STAT_ABORT); spin_unlock_irq(host->host_lock); /* Wait for the aborted command to finish */ wait_for_completion(&dev->notify); return SUCCESS; } /* * This invokes the transport reset mechanism to reset the state of the * device */ static int device_reset(struct scsi_cmnd *srb) { return SUCCESS; } /* * this defines our host template, with which we'll allocate hosts */ static const struct scsi_host_template rtsx_host_template = { /* basic userland interface stuff */ .name = CR_DRIVER_NAME, .proc_name = CR_DRIVER_NAME, .info = host_info, /* command interface -- queued only */ .queuecommand = queuecommand, /* error and abort handlers */ .eh_abort_handler = command_abort, .eh_device_reset_handler = device_reset, /* queue commands only, only one command per LUN */ .can_queue = 1, /* unknown initiator id */ .this_id = -1, .slave_alloc = slave_alloc, .slave_configure = slave_configure, /* lots of sg segments can be handled */ .sg_tablesize = SG_ALL, /* limit the total size of a transfer to 120 KB */ .max_sectors = 240, /* * Scatter-gather buffers (all but the last) must have a length * divisible by the bulk maxpacket size. Otherwise a data packet * would end up being short, causing a premature end to the data * transfer. Since high-speed bulk pipes have a maxpacket size * of 512, we'll use that as the scsi device queue's DMA alignment * mask. Guaranteeing proper alignment of the first buffer will * have the desired effect because, except at the beginning and * the end, scatter-gather buffers follow page boundaries. */ .dma_alignment = 511, /* emulated HBA */ .emulated = 1, /* we do our own delay after a device or bus reset */ .skip_settle_delay = 1, /* module management */ .module = THIS_MODULE }; static int rtsx_acquire_irq(struct rtsx_dev *dev) { struct rtsx_chip *chip = dev->chip; dev_info(&dev->pci->dev, "%s: chip->msi_en = %d, pci->irq = %d\n", __func__, chip->msi_en, dev->pci->irq); if (request_irq(dev->pci->irq, rtsx_interrupt, chip->msi_en ? 0 : IRQF_SHARED, CR_DRIVER_NAME, dev)) { dev_err(&dev->pci->dev, "rtsx: unable to grab IRQ %d, disabling device\n", dev->pci->irq); return -1; } dev->irq = dev->pci->irq; pci_intx(dev->pci, !chip->msi_en); return 0; } /* * power management */ static int __maybe_unused rtsx_suspend(struct device *dev_d) { struct pci_dev *pci = to_pci_dev(dev_d); struct rtsx_dev *dev = pci_get_drvdata(pci); struct rtsx_chip *chip; if (!dev) return 0; /* lock the device pointers */ mutex_lock(&dev->dev_mutex); chip = dev->chip; rtsx_do_before_power_down(chip, PM_S3); if (dev->irq >= 0) { free_irq(dev->irq, (void *)dev); dev->irq = -1; } if (chip->msi_en) pci_free_irq_vectors(pci); device_wakeup_enable(dev_d); /* unlock the device pointers */ mutex_unlock(&dev->dev_mutex); return 0; } static int __maybe_unused rtsx_resume(struct device *dev_d) { struct pci_dev *pci = to_pci_dev(dev_d); struct rtsx_dev *dev = pci_get_drvdata(pci); struct rtsx_chip *chip; if (!dev) return 0; chip = dev->chip; /* lock the device pointers */ mutex_lock(&dev->dev_mutex); pci_set_master(pci); if (chip->msi_en) { if (pci_alloc_irq_vectors(pci, 1, 1, PCI_IRQ_MSI) < 0) chip->msi_en = 0; } if (rtsx_acquire_irq(dev) < 0) { /* unlock the device pointers */ mutex_unlock(&dev->dev_mutex); return -EIO; } rtsx_write_register(chip, HOST_SLEEP_STATE, 0x03, 0x00); rtsx_init_chip(chip); /* unlock the device pointers */ mutex_unlock(&dev->dev_mutex); return 0; } static void rtsx_shutdown(struct pci_dev *pci) { struct rtsx_dev *dev = pci_get_drvdata(pci); struct rtsx_chip *chip; if (!dev) return; chip = dev->chip; rtsx_do_before_power_down(chip, PM_S1); if (dev->irq >= 0) { free_irq(dev->irq, (void *)dev); dev->irq = -1; } if (chip->msi_en) pci_free_irq_vectors(pci); pci_disable_device(pci); } static int rtsx_control_thread(void *__dev) { struct rtsx_dev *dev = __dev; struct rtsx_chip *chip = dev->chip; struct Scsi_Host *host = rtsx_to_host(dev); for (;;) { if (wait_for_completion_interruptible(&dev->cmnd_ready)) break; /* lock the device pointers */ mutex_lock(&dev->dev_mutex); /* if the device has disconnected, we are free to exit */ if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) { dev_info(&dev->pci->dev, "-- rtsx-control exiting\n"); mutex_unlock(&dev->dev_mutex); break; } /* lock access to the state */ spin_lock_irq(host->host_lock); /* has the command aborted ? */ if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) { chip->srb->result = DID_ABORT << 16; goto skip_for_abort; } spin_unlock_irq(host->host_lock); /* reject the command if the direction indicator * is UNKNOWN */ if (chip->srb->sc_data_direction == DMA_BIDIRECTIONAL) { dev_err(&dev->pci->dev, "UNKNOWN data direction\n"); chip->srb->result = DID_ERROR << 16; } else if (chip->srb->device->id) { /* reject if target != 0 or if LUN is higher than * the maximum known LUN */ dev_err(&dev->pci->dev, "Bad target number (%d:%d)\n", chip->srb->device->id, (u8)chip->srb->device->lun); chip->srb->result = DID_BAD_TARGET << 16; } else if (chip->srb->device->lun > chip->max_lun) { dev_err(&dev->pci->dev, "Bad LUN (%d:%d)\n", chip->srb->device->id, (u8)chip->srb->device->lun); chip->srb->result = DID_BAD_TARGET << 16; } else { /* we've got a command, let's do it! */ scsi_show_command(chip); rtsx_invoke_transport(chip->srb, chip); } /* lock access to the state */ spin_lock_irq(host->host_lock); /* did the command already complete because of a disconnect? */ if (!chip->srb) ; /* nothing to do */ /* indicate that the command is done */ else if (chip->srb->result != DID_ABORT << 16) { scsi_done(chip->srb); } else { skip_for_abort: dev_err(&dev->pci->dev, "scsi command aborted\n"); } if (rtsx_chk_stat(chip, RTSX_STAT_ABORT)) { complete(&dev->notify); rtsx_set_stat(chip, RTSX_STAT_IDLE); } /* finished working on this command */ chip->srb = NULL; spin_unlock_irq(host->host_lock); /* unlock the device pointers */ mutex_unlock(&dev->dev_mutex); } /* for (;;) */ /* notify the exit routine that we're actually exiting now * * complete()/wait_for_completion() is similar to up()/down(), * except that complete() is safe in the case where the structure * is getting deleted in a parallel mode of execution (i.e. just * after the down() -- that's necessary for the thread-shutdown * case. * * kthread_complete_and_exit() goes even further than this -- * it is safe in the case that the thread of the caller is going away * (not just the structure) -- this is necessary for the module-remove * case. This is important in preemption kernels, which transfer the * flow of execution immediately upon a complete(). */ kthread_complete_and_exit(&dev->control_exit, 0); } static int rtsx_polling_thread(void *__dev) { struct rtsx_dev *dev = __dev; struct rtsx_chip *chip = dev->chip; struct sd_info *sd_card = &chip->sd_card; struct xd_info *xd_card = &chip->xd_card; struct ms_info *ms_card = &chip->ms_card; sd_card->cleanup_counter = 0; xd_card->cleanup_counter = 0; ms_card->cleanup_counter = 0; /* Wait until SCSI scan finished */ wait_timeout((delay_use + 5) * 1000); for (;;) { set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(msecs_to_jiffies(POLLING_INTERVAL)); /* lock the device pointers */ mutex_lock(&dev->dev_mutex); /* if the device has disconnected, we are free to exit */ if (rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) { dev_info(&dev->pci->dev, "-- rtsx-polling exiting\n"); mutex_unlock(&dev->dev_mutex); break; } mutex_unlock(&dev->dev_mutex); mspro_polling_format_status(chip); /* lock the device pointers */ mutex_lock(&dev->dev_mutex); rtsx_polling_func(chip); /* unlock the device pointers */ mutex_unlock(&dev->dev_mutex); } kthread_complete_and_exit(&dev->polling_exit, 0); } /* * interrupt handler */ static irqreturn_t rtsx_interrupt(int irq, void *dev_id) { struct rtsx_dev *dev = dev_id; struct rtsx_chip *chip; int retval; u32 status; if (dev) chip = dev->chip; else return IRQ_NONE; if (!chip) return IRQ_NONE; spin_lock(&dev->reg_lock); retval = rtsx_pre_handle_interrupt(chip); if (retval == STATUS_FAIL) { spin_unlock(&dev->reg_lock); if (chip->int_reg == 0xFFFFFFFF) return IRQ_HANDLED; return IRQ_NONE; } status = chip->int_reg; if (dev->check_card_cd) { if (!(dev->check_card_cd & status)) { /* card not exist, return TRANS_RESULT_FAIL */ dev->trans_result = TRANS_RESULT_FAIL; if (dev->done) complete(dev->done); goto exit; } } if (status & (NEED_COMPLETE_INT | DELINK_INT)) { if (status & (TRANS_FAIL_INT | DELINK_INT)) { if (status & DELINK_INT) RTSX_SET_DELINK(chip); dev->trans_result = TRANS_RESULT_FAIL; if (dev->done) complete(dev->done); } else if (status & TRANS_OK_INT) { dev->trans_result = TRANS_RESULT_OK; if (dev->done) complete(dev->done); } else if (status & DATA_DONE_INT) { dev->trans_result = TRANS_NOT_READY; if (dev->done && dev->trans_state == STATE_TRANS_SG) complete(dev->done); } } exit: spin_unlock(&dev->reg_lock); return IRQ_HANDLED; } /* Release all our dynamic resources */ static void rtsx_release_resources(struct rtsx_dev *dev) { dev_info(&dev->pci->dev, "-- %s\n", __func__); /* Tell the control thread to exit. The SCSI host must * already have been removed so it won't try to queue * any more commands. */ dev_info(&dev->pci->dev, "-- sending exit command to thread\n"); complete(&dev->cmnd_ready); if (dev->ctl_thread) wait_for_completion(&dev->control_exit); if (dev->polling_thread) wait_for_completion(&dev->polling_exit); wait_timeout(200); if (dev->rtsx_resv_buf) { dev->chip->host_cmds_ptr = NULL; dev->chip->host_sg_tbl_ptr = NULL; } if (dev->irq > 0) free_irq(dev->irq, (void *)dev); if (dev->chip->msi_en) pci_free_irq_vectors(dev->pci); if (dev->remap_addr) iounmap(dev->remap_addr); rtsx_release_chip(dev->chip); kfree(dev->chip); } /* * First stage of disconnect processing: stop all commands and remove * the host */ static void quiesce_and_remove_host(struct rtsx_dev *dev) { struct Scsi_Host *host = rtsx_to_host(dev); struct rtsx_chip *chip = dev->chip; /* * Prevent new transfers, stop the current command, and * interrupt a SCSI-scan or device-reset delay */ mutex_lock(&dev->dev_mutex); spin_lock_irq(host->host_lock); rtsx_set_stat(chip, RTSX_STAT_DISCONNECT); spin_unlock_irq(host->host_lock); mutex_unlock(&dev->dev_mutex); wake_up(&dev->delay_wait); wait_for_completion(&dev->scanning_done); /* Wait some time to let other threads exist */ wait_timeout(100); /* * queuecommand won't accept any new commands and the control * thread won't execute a previously-queued command. If there * is such a command pending, complete it with an error. */ mutex_lock(&dev->dev_mutex); if (chip->srb) { chip->srb->result = DID_NO_CONNECT << 16; spin_lock_irq(host->host_lock); scsi_done(dev->chip->srb); chip->srb = NULL; spin_unlock_irq(host->host_lock); } mutex_unlock(&dev->dev_mutex); /* Now we own no commands so it's safe to remove the SCSI host */ scsi_remove_host(host); } /* Second stage of disconnect processing: deallocate all resources */ static void release_everything(struct rtsx_dev *dev) { rtsx_release_resources(dev); /* * Drop our reference to the host; the SCSI core will free it * when the refcount becomes 0. */ scsi_host_put(rtsx_to_host(dev)); } /* Thread to carry out delayed SCSI-device scanning */ static int rtsx_scan_thread(void *__dev) { struct rtsx_dev *dev = __dev; struct rtsx_chip *chip = dev->chip; /* Wait for the timeout to expire or for a disconnect */ if (delay_use > 0) { dev_info(&dev->pci->dev, "%s: waiting for device to settle before scanning\n", CR_DRIVER_NAME); wait_event_interruptible_timeout (dev->delay_wait, rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT), delay_use * HZ); } /* If the device is still connected, perform the scanning */ if (!rtsx_chk_stat(chip, RTSX_STAT_DISCONNECT)) { scsi_scan_host(rtsx_to_host(dev)); dev_info(&dev->pci->dev, "%s: device scan complete\n", CR_DRIVER_NAME); /* Should we unbind if no devices were detected? */ } kthread_complete_and_exit(&dev->scanning_done, 0); } static void rtsx_init_options(struct rtsx_chip *chip) { chip->vendor_id = chip->rtsx->pci->vendor; chip->product_id = chip->rtsx->pci->device; chip->adma_mode = 1; chip->lun_mc = 0; chip->driver_first_load = 1; #ifdef HW_AUTO_SWITCH_SD_BUS chip->sdio_in_charge = 0; #endif chip->mspro_formatter_enable = 1; chip->ignore_sd = 0; chip->use_hw_setting = 0; chip->lun_mode = DEFAULT_SINGLE; chip->auto_delink_en = auto_delink_en; chip->ss_en = ss_en; chip->ss_idle_period = ss_interval * 1000; chip->remote_wakeup_en = 0; chip->aspm_l0s_l1_en = aspm_l0s_l1_en; chip->dynamic_aspm = 1; chip->fpga_sd_sdr104_clk = CLK_200; chip->fpga_sd_ddr50_clk = CLK_100; chip->fpga_sd_sdr50_clk = CLK_100; chip->fpga_sd_hs_clk = CLK_100; chip->fpga_mmc_52m_clk = CLK_80; chip->fpga_ms_hg_clk = CLK_80; chip->fpga_ms_4bit_clk = CLK_80; chip->fpga_ms_1bit_clk = CLK_40; chip->asic_sd_sdr104_clk = 203; chip->asic_sd_sdr50_clk = 98; chip->asic_sd_ddr50_clk = 98; chip->asic_sd_hs_clk = 98; chip->asic_mmc_52m_clk = 98; chip->asic_ms_hg_clk = 117; chip->asic_ms_4bit_clk = 78; chip->asic_ms_1bit_clk = 39; chip->ssc_depth_sd_sdr104 = SSC_DEPTH_2M; chip->ssc_depth_sd_sdr50 = SSC_DEPTH_2M; chip->ssc_depth_sd_ddr50 = SSC_DEPTH_1M; chip->ssc_depth_sd_hs = SSC_DEPTH_1M; chip->ssc_depth_mmc_52m = SSC_DEPTH_1M; chip->ssc_depth_ms_hg = SSC_DEPTH_1M; chip->ssc_depth_ms_4bit = SSC_DEPTH_512K; chip->ssc_depth_low_speed = SSC_DEPTH_512K; chip->ssc_en = 1; chip->sd_speed_prior = 0x01040203; chip->sd_current_prior = 0x00010203; chip->sd_ctl = SD_PUSH_POINT_AUTO | SD_SAMPLE_POINT_AUTO | SUPPORT_MMC_DDR_MODE; chip->sd_ddr_tx_phase = 0; chip->mmc_ddr_tx_phase = 1; chip->sd_default_tx_phase = 15; chip->sd_default_rx_phase = 15; chip->pmos_pwr_on_interval = 200; chip->sd_voltage_switch_delay = 1000; chip->ms_power_class_en = 3; chip->sd_400mA_ocp_thd = 1; chip->sd_800mA_ocp_thd = 5; chip->ms_ocp_thd = 2; chip->card_drive_sel = 0x55; chip->sd30_drive_sel_1v8 = 0x03; chip->sd30_drive_sel_3v3 = 0x01; chip->do_delink_before_power_down = 1; chip->auto_power_down = 1; chip->polling_config = 0; chip->force_clkreq_0 = 1; chip->ft2_fast_mode = 0; chip->sdio_retry_cnt = 1; chip->xd_timeout = 2000; chip->sd_timeout = 10000; chip->ms_timeout = 2000; chip->mspro_timeout = 15000; chip->power_down_in_ss = 1; chip->sdr104_en = 1; chip->sdr50_en = 1; chip->ddr50_en = 1; chip->delink_stage1_step = 100; chip->delink_stage2_step = 40; chip->delink_stage3_step = 20; chip->auto_delink_in_L1 = 1; chip->blink_led = 1; chip->msi_en = msi_en; chip->hp_watch_bios_hotplug = 0; chip->max_payload = 0; chip->phy_voltage = 0; chip->support_ms_8bit = 1; chip->s3_pwr_off_delay = 1000; } static int rtsx_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { struct Scsi_Host *host; struct rtsx_dev *dev; int err = 0; struct task_struct *th; dev_dbg(&pci->dev, "Realtek PCI-E card reader detected\n"); err = pcim_enable_device(pci); if (err < 0) { dev_err(&pci->dev, "PCI enable device failed!\n"); return err; } err = pci_request_regions(pci, CR_DRIVER_NAME); if (err < 0) { dev_err(&pci->dev, "PCI request regions for %s failed!\n", CR_DRIVER_NAME); return err; } /* * Ask the SCSI layer to allocate a host structure, with extra * space at the end for our private rtsx_dev structure. */ host = scsi_host_alloc(&rtsx_host_template, sizeof(*dev)); if (!host) { dev_err(&pci->dev, "Unable to allocate the scsi host\n"); err = -ENOMEM; goto scsi_host_alloc_fail; } dev = host_to_rtsx(host); memset(dev, 0, sizeof(struct rtsx_dev)); dev->chip = kzalloc(sizeof(*dev->chip), GFP_KERNEL); if (!dev->chip) { err = -ENOMEM; goto chip_alloc_fail; } spin_lock_init(&dev->reg_lock); mutex_init(&dev->dev_mutex); init_completion(&dev->cmnd_ready); init_completion(&dev->control_exit); init_completion(&dev->polling_exit); init_completion(&dev->notify); init_completion(&dev->scanning_done); init_waitqueue_head(&dev->delay_wait); dev->pci = pci; dev->irq = -1; dev_info(&pci->dev, "Resource length: 0x%x\n", (unsigned int)pci_resource_len(pci, 0)); dev->addr = pci_resource_start(pci, 0); dev->remap_addr = ioremap(dev->addr, pci_resource_len(pci, 0)); if (!dev->remap_addr) { dev_err(&pci->dev, "ioremap error\n"); err = -ENXIO; goto ioremap_fail; } /* * Using "unsigned long" cast here to eliminate gcc warning in * 64-bit system */ dev_info(&pci->dev, "Original address: 0x%lx, remapped address: 0x%lx\n", (unsigned long)(dev->addr), (unsigned long)(dev->remap_addr)); dev->rtsx_resv_buf = dmam_alloc_coherent(&pci->dev, RTSX_RESV_BUF_LEN, &dev->rtsx_resv_buf_addr, GFP_KERNEL); if (!dev->rtsx_resv_buf) { dev_err(&pci->dev, "alloc dma buffer fail\n"); err = -ENXIO; goto dma_alloc_fail; } dev->chip->host_cmds_ptr = dev->rtsx_resv_buf; dev->chip->host_cmds_addr = dev->rtsx_resv_buf_addr; dev->chip->host_sg_tbl_ptr = dev->rtsx_resv_buf + HOST_CMDS_BUF_LEN; dev->chip->host_sg_tbl_addr = dev->rtsx_resv_buf_addr + HOST_CMDS_BUF_LEN; dev->chip->rtsx = dev; rtsx_init_options(dev->chip); dev_info(&pci->dev, "pci->irq = %d\n", pci->irq); if (dev->chip->msi_en) { if (pci_alloc_irq_vectors(pci, 1, 1, PCI_IRQ_MSI) < 0) dev->chip->msi_en = 0; } if (rtsx_acquire_irq(dev) < 0) { err = -EBUSY; goto irq_acquire_fail; } pci_set_master(pci); synchronize_irq(dev->irq); rtsx_init_chip(dev->chip); /* * set the supported max_lun and max_id for the scsi host * NOTE: the minimal value of max_id is 1 */ host->max_id = 1; host->max_lun = dev->chip->max_lun; /* Start up our control thread */ th = kthread_run(rtsx_control_thread, dev, CR_DRIVER_NAME); if (IS_ERR(th)) { dev_err(&pci->dev, "Unable to start control thread\n"); err = PTR_ERR(th); goto control_thread_fail; } dev->ctl_thread = th; err = scsi_add_host(host, &pci->dev); if (err) { dev_err(&pci->dev, "Unable to add the scsi host\n"); goto scsi_add_host_fail; } /* Start up the thread for delayed SCSI-device scanning */ th = kthread_run(rtsx_scan_thread, dev, "rtsx-scan"); if (IS_ERR(th)) { dev_err(&pci->dev, "Unable to start the device-scanning thread\n"); complete(&dev->scanning_done); err = PTR_ERR(th); goto scan_thread_fail; } /* Start up the thread for polling thread */ th = kthread_run(rtsx_polling_thread, dev, "rtsx-polling"); if (IS_ERR(th)) { dev_err(&pci->dev, "Unable to start the device-polling thread\n"); err = PTR_ERR(th); goto scan_thread_fail; } dev->polling_thread = th; pci_set_drvdata(pci, dev); return 0; /* We come here if there are any problems */ scan_thread_fail: quiesce_and_remove_host(dev); scsi_add_host_fail: complete(&dev->cmnd_ready); wait_for_completion(&dev->control_exit); control_thread_fail: free_irq(dev->irq, (void *)dev); rtsx_release_chip(dev->chip); irq_acquire_fail: dev->chip->host_cmds_ptr = NULL; dev->chip->host_sg_tbl_ptr = NULL; if (dev->chip->msi_en) pci_free_irq_vectors(dev->pci); dma_alloc_fail: iounmap(dev->remap_addr); ioremap_fail: kfree(dev->chip); chip_alloc_fail: dev_err(&pci->dev, "%s failed\n", __func__); scsi_host_put(host); scsi_host_alloc_fail: pci_release_regions(pci); return err; } static void rtsx_remove(struct pci_dev *pci) { struct rtsx_dev *dev = pci_get_drvdata(pci); quiesce_and_remove_host(dev); release_everything(dev); pci_release_regions(pci); } /* PCI IDs */ static const struct pci_device_id rtsx_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x5208), PCI_CLASS_OTHERS << 16, 0xFF0000 }, { PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x5288), PCI_CLASS_OTHERS << 16, 0xFF0000 }, { 0, }, }; MODULE_DEVICE_TABLE(pci, rtsx_ids); static SIMPLE_DEV_PM_OPS(rtsx_pm_ops, rtsx_suspend, rtsx_resume); /* pci_driver definition */ static struct pci_driver rtsx_driver = { .name = CR_DRIVER_NAME, .id_table = rtsx_ids, .probe = rtsx_probe, .remove = rtsx_remove, .driver.pm = &rtsx_pm_ops, .shutdown = rtsx_shutdown, }; module_pci_driver(rtsx_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1