Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ricardo Neri | 1421 | 70.77% | 11 | 37.93% |
Srinivas Pandruvada | 342 | 17.03% | 5 | 17.24% |
Stanislaw Gruszka | 217 | 10.81% | 1 | 3.45% |
Thomas Gleixner | 8 | 0.40% | 3 | 10.34% |
Dmitriy Zavin | 5 | 0.25% | 1 | 3.45% |
Zwane Mwaikambo | 3 | 0.15% | 1 | 3.45% |
Daniel Lezcano | 3 | 0.15% | 1 | 3.45% |
Ingo Molnar | 2 | 0.10% | 2 | 6.90% |
Seiji Aguchi | 2 | 0.10% | 1 | 3.45% |
Linus Torvalds (pre-git) | 2 | 0.10% | 1 | 3.45% |
Sebastian Andrzej Siewior | 2 | 0.10% | 1 | 3.45% |
Borislav Petkov | 1 | 0.05% | 1 | 3.45% |
Total | 2008 | 29 |
// SPDX-License-Identifier: GPL-2.0-only /* * Hardware Feedback Interface Driver * * Copyright (c) 2021, Intel Corporation. * * Authors: Aubrey Li <aubrey.li@linux.intel.com> * Ricardo Neri <ricardo.neri-calderon@linux.intel.com> * * * The Hardware Feedback Interface provides a performance and energy efficiency * capability information for each CPU in the system. Depending on the processor * model, hardware may periodically update these capabilities as a result of * changes in the operating conditions (e.g., power limits or thermal * constraints). On other processor models, there is a single HFI update * at boot. * * This file provides functionality to process HFI updates and relay these * updates to userspace. */ #define pr_fmt(fmt) "intel-hfi: " fmt #include <linux/bitops.h> #include <linux/cpufeature.h> #include <linux/cpumask.h> #include <linux/delay.h> #include <linux/gfp.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/math.h> #include <linux/mutex.h> #include <linux/percpu-defs.h> #include <linux/printk.h> #include <linux/processor.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/suspend.h> #include <linux/string.h> #include <linux/syscore_ops.h> #include <linux/topology.h> #include <linux/workqueue.h> #include <asm/msr.h> #include "intel_hfi.h" #include "thermal_interrupt.h" #include "../thermal_netlink.h" /* Hardware Feedback Interface MSR configuration bits */ #define HW_FEEDBACK_PTR_VALID_BIT BIT(0) #define HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT BIT(0) /* CPUID detection and enumeration definitions for HFI */ #define CPUID_HFI_LEAF 6 union hfi_capabilities { struct { u8 performance:1; u8 energy_efficiency:1; u8 __reserved:6; } split; u8 bits; }; union cpuid6_edx { struct { union hfi_capabilities capabilities; u32 table_pages:4; u32 __reserved:4; s32 index:16; } split; u32 full; }; /** * struct hfi_cpu_data - HFI capabilities per CPU * @perf_cap: Performance capability * @ee_cap: Energy efficiency capability * * Capabilities of a logical processor in the HFI table. These capabilities are * unitless. */ struct hfi_cpu_data { u8 perf_cap; u8 ee_cap; } __packed; /** * struct hfi_hdr - Header of the HFI table * @perf_updated: Hardware updated performance capabilities * @ee_updated: Hardware updated energy efficiency capabilities * * Properties of the data in an HFI table. */ struct hfi_hdr { u8 perf_updated; u8 ee_updated; } __packed; /** * struct hfi_instance - Representation of an HFI instance (i.e., a table) * @local_table: Base of the local copy of the HFI table * @timestamp: Timestamp of the last update of the local table. * Located at the base of the local table. * @hdr: Base address of the header of the local table * @data: Base address of the data of the local table * @cpus: CPUs represented in this HFI table instance * @hw_table: Pointer to the HFI table of this instance * @update_work: Delayed work to process HFI updates * @table_lock: Lock to protect acceses to the table of this instance * @event_lock: Lock to process HFI interrupts * * A set of parameters to parse and navigate a specific HFI table. */ struct hfi_instance { union { void *local_table; u64 *timestamp; }; void *hdr; void *data; cpumask_var_t cpus; void *hw_table; struct delayed_work update_work; raw_spinlock_t table_lock; raw_spinlock_t event_lock; }; /** * struct hfi_features - Supported HFI features * @nr_table_pages: Size of the HFI table in 4KB pages * @cpu_stride: Stride size to locate the capability data of a logical * processor within the table (i.e., row stride) * @hdr_size: Size of the table header * * Parameters and supported features that are common to all HFI instances */ struct hfi_features { size_t nr_table_pages; unsigned int cpu_stride; unsigned int hdr_size; }; /** * struct hfi_cpu_info - Per-CPU attributes to consume HFI data * @index: Row of this CPU in its HFI table * @hfi_instance: Attributes of the HFI table to which this CPU belongs * * Parameters to link a logical processor to an HFI table and a row within it. */ struct hfi_cpu_info { s16 index; struct hfi_instance *hfi_instance; }; static DEFINE_PER_CPU(struct hfi_cpu_info, hfi_cpu_info) = { .index = -1 }; static int max_hfi_instances; static int hfi_clients_nr; static struct hfi_instance *hfi_instances; static struct hfi_features hfi_features; static DEFINE_MUTEX(hfi_instance_lock); static struct workqueue_struct *hfi_updates_wq; #define HFI_UPDATE_DELAY_MS 100 #define HFI_THERMNL_CAPS_PER_EVENT 64 static void get_hfi_caps(struct hfi_instance *hfi_instance, struct thermal_genl_cpu_caps *cpu_caps) { int cpu, i = 0; raw_spin_lock_irq(&hfi_instance->table_lock); for_each_cpu(cpu, hfi_instance->cpus) { struct hfi_cpu_data *caps; s16 index; index = per_cpu(hfi_cpu_info, cpu).index; caps = hfi_instance->data + index * hfi_features.cpu_stride; cpu_caps[i].cpu = cpu; /* * Scale performance and energy efficiency to * the [0, 1023] interval that thermal netlink uses. */ cpu_caps[i].performance = caps->perf_cap << 2; cpu_caps[i].efficiency = caps->ee_cap << 2; ++i; } raw_spin_unlock_irq(&hfi_instance->table_lock); } /* * Call update_capabilities() when there are changes in the HFI table. */ static void update_capabilities(struct hfi_instance *hfi_instance) { struct thermal_genl_cpu_caps *cpu_caps; int i = 0, cpu_count; /* CPUs may come online/offline while processing an HFI update. */ mutex_lock(&hfi_instance_lock); cpu_count = cpumask_weight(hfi_instance->cpus); /* No CPUs to report in this hfi_instance. */ if (!cpu_count) goto out; cpu_caps = kcalloc(cpu_count, sizeof(*cpu_caps), GFP_KERNEL); if (!cpu_caps) goto out; get_hfi_caps(hfi_instance, cpu_caps); if (cpu_count < HFI_THERMNL_CAPS_PER_EVENT) goto last_cmd; /* Process complete chunks of HFI_THERMNL_CAPS_PER_EVENT capabilities. */ for (i = 0; (i + HFI_THERMNL_CAPS_PER_EVENT) <= cpu_count; i += HFI_THERMNL_CAPS_PER_EVENT) thermal_genl_cpu_capability_event(HFI_THERMNL_CAPS_PER_EVENT, &cpu_caps[i]); cpu_count = cpu_count - i; last_cmd: /* Process the remaining capabilities if any. */ if (cpu_count) thermal_genl_cpu_capability_event(cpu_count, &cpu_caps[i]); kfree(cpu_caps); out: mutex_unlock(&hfi_instance_lock); } static void hfi_update_work_fn(struct work_struct *work) { struct hfi_instance *hfi_instance; hfi_instance = container_of(to_delayed_work(work), struct hfi_instance, update_work); update_capabilities(hfi_instance); } void intel_hfi_process_event(__u64 pkg_therm_status_msr_val) { struct hfi_instance *hfi_instance; int cpu = smp_processor_id(); struct hfi_cpu_info *info; u64 new_timestamp, msr, hfi; if (!pkg_therm_status_msr_val) return; info = &per_cpu(hfi_cpu_info, cpu); if (!info) return; /* * A CPU is linked to its HFI instance before the thermal vector in the * local APIC is unmasked. Hence, info->hfi_instance cannot be NULL * when receiving an HFI event. */ hfi_instance = info->hfi_instance; if (unlikely(!hfi_instance)) { pr_debug("Received event on CPU %d but instance was null", cpu); return; } /* * On most systems, all CPUs in the package receive a package-level * thermal interrupt when there is an HFI update. It is sufficient to * let a single CPU to acknowledge the update and queue work to * process it. The remaining CPUs can resume their work. */ if (!raw_spin_trylock(&hfi_instance->event_lock)) return; rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr); hfi = msr & PACKAGE_THERM_STATUS_HFI_UPDATED; if (!hfi) { raw_spin_unlock(&hfi_instance->event_lock); return; } /* * Ack duplicate update. Since there is an active HFI * status from HW, it must be a new event, not a case * where a lagging CPU entered the locked region. */ new_timestamp = *(u64 *)hfi_instance->hw_table; if (*hfi_instance->timestamp == new_timestamp) { thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED); raw_spin_unlock(&hfi_instance->event_lock); return; } raw_spin_lock(&hfi_instance->table_lock); /* * Copy the updated table into our local copy. This includes the new * timestamp. */ memcpy(hfi_instance->local_table, hfi_instance->hw_table, hfi_features.nr_table_pages << PAGE_SHIFT); /* * Let hardware know that we are done reading the HFI table and it is * free to update it again. */ thermal_clear_package_intr_status(PACKAGE_LEVEL, PACKAGE_THERM_STATUS_HFI_UPDATED); raw_spin_unlock(&hfi_instance->table_lock); raw_spin_unlock(&hfi_instance->event_lock); queue_delayed_work(hfi_updates_wq, &hfi_instance->update_work, msecs_to_jiffies(HFI_UPDATE_DELAY_MS)); } static void init_hfi_cpu_index(struct hfi_cpu_info *info) { union cpuid6_edx edx; /* Do not re-read @cpu's index if it has already been initialized. */ if (info->index > -1) return; edx.full = cpuid_edx(CPUID_HFI_LEAF); info->index = edx.split.index; } /* * The format of the HFI table depends on the number of capabilities that the * hardware supports. Keep a data structure to navigate the table. */ static void init_hfi_instance(struct hfi_instance *hfi_instance) { /* The HFI header is below the time-stamp. */ hfi_instance->hdr = hfi_instance->local_table + sizeof(*hfi_instance->timestamp); /* The HFI data starts below the header. */ hfi_instance->data = hfi_instance->hdr + hfi_features.hdr_size; } /* Caller must hold hfi_instance_lock. */ static void hfi_enable(void) { u64 msr_val; rdmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val); msr_val |= HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT; wrmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val); } static void hfi_set_hw_table(struct hfi_instance *hfi_instance) { phys_addr_t hw_table_pa; u64 msr_val; hw_table_pa = virt_to_phys(hfi_instance->hw_table); msr_val = hw_table_pa | HW_FEEDBACK_PTR_VALID_BIT; wrmsrl(MSR_IA32_HW_FEEDBACK_PTR, msr_val); } /* Caller must hold hfi_instance_lock. */ static void hfi_disable(void) { u64 msr_val; int i; rdmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val); msr_val &= ~HW_FEEDBACK_CONFIG_HFI_ENABLE_BIT; wrmsrl(MSR_IA32_HW_FEEDBACK_CONFIG, msr_val); /* * Wait for hardware to acknowledge the disabling of HFI. Some * processors may not do it. Wait for ~2ms. This is a reasonable * time for hardware to complete any pending actions on the HFI * memory. */ for (i = 0; i < 2000; i++) { rdmsrl(MSR_IA32_PACKAGE_THERM_STATUS, msr_val); if (msr_val & PACKAGE_THERM_STATUS_HFI_UPDATED) break; udelay(1); cpu_relax(); } } /** * intel_hfi_online() - Enable HFI on @cpu * @cpu: CPU in which the HFI will be enabled * * Enable the HFI to be used in @cpu. The HFI is enabled at the die/package * level. The first CPU in the die/package to come online does the full HFI * initialization. Subsequent CPUs will just link themselves to the HFI * instance of their die/package. * * This function is called before enabling the thermal vector in the local APIC * in order to ensure that @cpu has an associated HFI instance when it receives * an HFI event. */ void intel_hfi_online(unsigned int cpu) { struct hfi_instance *hfi_instance; struct hfi_cpu_info *info; u16 die_id; /* Nothing to do if hfi_instances are missing. */ if (!hfi_instances) return; /* * Link @cpu to the HFI instance of its package/die. It does not * matter whether the instance has been initialized. */ info = &per_cpu(hfi_cpu_info, cpu); die_id = topology_logical_die_id(cpu); hfi_instance = info->hfi_instance; if (!hfi_instance) { if (die_id >= max_hfi_instances) return; hfi_instance = &hfi_instances[die_id]; info->hfi_instance = hfi_instance; } init_hfi_cpu_index(info); /* * Now check if the HFI instance of the package/die of @cpu has been * initialized (by checking its header). In such case, all we have to * do is to add @cpu to this instance's cpumask and enable the instance * if needed. */ mutex_lock(&hfi_instance_lock); if (hfi_instance->hdr) goto enable; /* * Hardware is programmed with the physical address of the first page * frame of the table. Hence, the allocated memory must be page-aligned. * * Some processors do not forget the initial address of the HFI table * even after having been reprogrammed. Keep using the same pages. Do * not free them. */ hfi_instance->hw_table = alloc_pages_exact(hfi_features.nr_table_pages, GFP_KERNEL | __GFP_ZERO); if (!hfi_instance->hw_table) goto unlock; /* * Allocate memory to keep a local copy of the table that * hardware generates. */ hfi_instance->local_table = kzalloc(hfi_features.nr_table_pages << PAGE_SHIFT, GFP_KERNEL); if (!hfi_instance->local_table) goto free_hw_table; init_hfi_instance(hfi_instance); INIT_DELAYED_WORK(&hfi_instance->update_work, hfi_update_work_fn); raw_spin_lock_init(&hfi_instance->table_lock); raw_spin_lock_init(&hfi_instance->event_lock); enable: cpumask_set_cpu(cpu, hfi_instance->cpus); /* * Enable this HFI instance if this is its first online CPU and * there are user-space clients of thermal events. */ if (cpumask_weight(hfi_instance->cpus) == 1 && hfi_clients_nr > 0) { hfi_set_hw_table(hfi_instance); hfi_enable(); } unlock: mutex_unlock(&hfi_instance_lock); return; free_hw_table: free_pages_exact(hfi_instance->hw_table, hfi_features.nr_table_pages); goto unlock; } /** * intel_hfi_offline() - Disable HFI on @cpu * @cpu: CPU in which the HFI will be disabled * * Remove @cpu from those covered by its HFI instance. * * On some processors, hardware remembers previous programming settings even * after being reprogrammed. Thus, keep HFI enabled even if all CPUs in the * die/package of @cpu are offline. See note in intel_hfi_online(). */ void intel_hfi_offline(unsigned int cpu) { struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, cpu); struct hfi_instance *hfi_instance; /* * Check if @cpu as an associated, initialized (i.e., with a non-NULL * header). Also, HFI instances are only initialized if X86_FEATURE_HFI * is present. */ hfi_instance = info->hfi_instance; if (!hfi_instance) return; if (!hfi_instance->hdr) return; mutex_lock(&hfi_instance_lock); cpumask_clear_cpu(cpu, hfi_instance->cpus); if (!cpumask_weight(hfi_instance->cpus)) hfi_disable(); mutex_unlock(&hfi_instance_lock); } static __init int hfi_parse_features(void) { unsigned int nr_capabilities; union cpuid6_edx edx; if (!boot_cpu_has(X86_FEATURE_HFI)) return -ENODEV; /* * If we are here we know that CPUID_HFI_LEAF exists. Parse the * supported capabilities and the size of the HFI table. */ edx.full = cpuid_edx(CPUID_HFI_LEAF); if (!edx.split.capabilities.split.performance) { pr_debug("Performance reporting not supported! Not using HFI\n"); return -ENODEV; } /* * The number of supported capabilities determines the number of * columns in the HFI table. Exclude the reserved bits. */ edx.split.capabilities.split.__reserved = 0; nr_capabilities = hweight8(edx.split.capabilities.bits); /* The number of 4KB pages required by the table */ hfi_features.nr_table_pages = edx.split.table_pages + 1; /* * The header contains change indications for each supported feature. * The size of the table header is rounded up to be a multiple of 8 * bytes. */ hfi_features.hdr_size = DIV_ROUND_UP(nr_capabilities, 8) * 8; /* * Data of each logical processor is also rounded up to be a multiple * of 8 bytes. */ hfi_features.cpu_stride = DIV_ROUND_UP(nr_capabilities, 8) * 8; return 0; } /* * If concurrency is not prevented by other means, the HFI enable/disable * routines must be called under hfi_instance_lock." */ static void hfi_enable_instance(void *ptr) { hfi_set_hw_table(ptr); hfi_enable(); } static void hfi_disable_instance(void *ptr) { hfi_disable(); } static void hfi_syscore_resume(void) { /* This code runs only on the boot CPU. */ struct hfi_cpu_info *info = &per_cpu(hfi_cpu_info, 0); struct hfi_instance *hfi_instance = info->hfi_instance; /* No locking needed. There is no concurrency with CPU online. */ if (hfi_clients_nr > 0) hfi_enable_instance(hfi_instance); } static int hfi_syscore_suspend(void) { /* No locking needed. There is no concurrency with CPU offline. */ hfi_disable(); return 0; } static struct syscore_ops hfi_pm_ops = { .resume = hfi_syscore_resume, .suspend = hfi_syscore_suspend, }; static int hfi_thermal_notify(struct notifier_block *nb, unsigned long state, void *_notify) { struct thermal_genl_notify *notify = _notify; struct hfi_instance *hfi_instance; smp_call_func_t func = NULL; unsigned int cpu; int i; if (notify->mcgrp != THERMAL_GENL_EVENT_GROUP) return NOTIFY_DONE; if (state != THERMAL_NOTIFY_BIND && state != THERMAL_NOTIFY_UNBIND) return NOTIFY_DONE; mutex_lock(&hfi_instance_lock); switch (state) { case THERMAL_NOTIFY_BIND: if (++hfi_clients_nr == 1) func = hfi_enable_instance; break; case THERMAL_NOTIFY_UNBIND: if (--hfi_clients_nr == 0) func = hfi_disable_instance; break; } if (!func) goto out; for (i = 0; i < max_hfi_instances; i++) { hfi_instance = &hfi_instances[i]; if (cpumask_empty(hfi_instance->cpus)) continue; cpu = cpumask_any(hfi_instance->cpus); smp_call_function_single(cpu, func, hfi_instance, true); } out: mutex_unlock(&hfi_instance_lock); return NOTIFY_OK; } static struct notifier_block hfi_thermal_nb = { .notifier_call = hfi_thermal_notify, }; void __init intel_hfi_init(void) { struct hfi_instance *hfi_instance; int i, j; if (hfi_parse_features()) return; /* There is one HFI instance per die/package. */ max_hfi_instances = topology_max_packages() * topology_max_dies_per_package(); /* * This allocation may fail. CPU hotplug callbacks must check * for a null pointer. */ hfi_instances = kcalloc(max_hfi_instances, sizeof(*hfi_instances), GFP_KERNEL); if (!hfi_instances) return; for (i = 0; i < max_hfi_instances; i++) { hfi_instance = &hfi_instances[i]; if (!zalloc_cpumask_var(&hfi_instance->cpus, GFP_KERNEL)) goto err_nomem; } hfi_updates_wq = create_singlethread_workqueue("hfi-updates"); if (!hfi_updates_wq) goto err_nomem; /* * Both thermal core and Intel HFI can not be build as modules. * As kernel build-in drivers they are initialized before user-space * starts, hence we can not miss BIND/UNBIND events when applications * add/remove thermal multicast group to/from a netlink socket. */ if (thermal_genl_register_notifier(&hfi_thermal_nb)) goto err_nl_notif; register_syscore_ops(&hfi_pm_ops); return; err_nl_notif: destroy_workqueue(hfi_updates_wq); err_nomem: for (j = 0; j < i; ++j) { hfi_instance = &hfi_instances[j]; free_cpumask_var(hfi_instance->cpus); } kfree(hfi_instances); hfi_instances = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1