Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jingchang Lu | 6416 | 41.48% | 3 | 1.78% |
Sherry Sun | 1890 | 12.22% | 35 | 20.71% |
Bhuvanchandra DV | 1640 | 10.60% | 5 | 2.96% |
Michael Walle | 767 | 4.96% | 14 | 8.28% |
Dong Aisheng | 698 | 4.51% | 6 | 3.55% |
Stefan Agner | 532 | 3.44% | 15 | 8.88% |
Fugang Duan | 498 | 3.22% | 11 | 6.51% |
Yao Yuan | 488 | 3.15% | 2 | 1.18% |
Andrey Smirnov | 474 | 3.06% | 14 | 8.28% |
Atsushi Nemoto | 403 | 2.61% | 3 | 1.78% |
shenwei.wang at nxp.com | 331 | 2.14% | 4 | 2.37% |
Angelo Dureghello | 247 | 1.60% | 1 | 0.59% |
Nicolae Rosia | 230 | 1.49% | 1 | 0.59% |
Marius Vlad | 179 | 1.16% | 1 | 0.59% |
Philippe Schenker | 112 | 0.72% | 2 | 1.18% |
Jiri Slaby (SUSE) | 78 | 0.50% | 2 | 1.18% |
Fabio Estevam | 72 | 0.47% | 6 | 3.55% |
Thomas Gleixner | 63 | 0.41% | 1 | 0.59% |
Ilpo Järvinen | 51 | 0.33% | 4 | 2.37% |
Indan Zupancic | 38 | 0.25% | 1 | 0.59% |
Jesse Taube | 36 | 0.23% | 1 | 0.59% |
Andy Shevchenko | 29 | 0.19% | 1 | 0.59% |
Peng Fan | 26 | 0.17% | 4 | 2.37% |
Lukas Wunner | 26 | 0.17% | 4 | 2.37% |
Jiri Slaby | 22 | 0.14% | 2 | 1.18% |
Alexander Stein | 17 | 0.11% | 2 | 1.18% |
Kees Cook | 14 | 0.09% | 1 | 0.59% |
Sascha Hauer | 12 | 0.08% | 1 | 0.59% |
Russell King | 11 | 0.07% | 3 | 1.78% |
Vladimir Oltean | 11 | 0.07% | 1 | 0.59% |
Dmitry Safonov | 11 | 0.07% | 1 | 0.59% |
Nikita Yushchenko | 10 | 0.06% | 1 | 0.59% |
Vabhav Sharma | 7 | 0.05% | 1 | 0.59% |
Peter Hurley | 4 | 0.03% | 1 | 0.59% |
Yangtao Li | 4 | 0.03% | 1 | 0.59% |
Rob Herring | 3 | 0.02% | 1 | 0.59% |
Axel Lin | 3 | 0.02% | 1 | 0.59% |
Shawn Guo | 3 | 0.02% | 1 | 0.59% |
Uwe Kleine-König | 2 | 0.01% | 1 | 0.59% |
Julia Lawall | 2 | 0.01% | 1 | 0.59% |
Alan Cox | 2 | 0.01% | 1 | 0.59% |
Greg Kroah-Hartman | 2 | 0.01% | 2 | 1.18% |
Nate Drude | 1 | 0.01% | 1 | 0.59% |
Tomonori Sakita | 1 | 0.01% | 1 | 0.59% |
Wei Yongjun | 1 | 0.01% | 1 | 0.59% |
Fabian Frederick | 1 | 0.01% | 1 | 0.59% |
Robert Hodaszi | 1 | 0.01% | 1 | 0.59% |
Total | 15469 | 169 |
// SPDX-License-Identifier: GPL-2.0+ /* * Freescale lpuart serial port driver * * Copyright 2012-2014 Freescale Semiconductor, Inc. */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/circ_buf.h> #include <linux/clk.h> #include <linux/console.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/dmapool.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_dma.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/serial_core.h> #include <linux/slab.h> #include <linux/tty_flip.h> /* All registers are 8-bit width */ #define UARTBDH 0x00 #define UARTBDL 0x01 #define UARTCR1 0x02 #define UARTCR2 0x03 #define UARTSR1 0x04 #define UARTCR3 0x06 #define UARTDR 0x07 #define UARTCR4 0x0a #define UARTCR5 0x0b #define UARTMODEM 0x0d #define UARTPFIFO 0x10 #define UARTCFIFO 0x11 #define UARTSFIFO 0x12 #define UARTTWFIFO 0x13 #define UARTTCFIFO 0x14 #define UARTRWFIFO 0x15 #define UARTBDH_LBKDIE 0x80 #define UARTBDH_RXEDGIE 0x40 #define UARTBDH_SBR_MASK 0x1f #define UARTCR1_LOOPS 0x80 #define UARTCR1_RSRC 0x20 #define UARTCR1_M 0x10 #define UARTCR1_WAKE 0x08 #define UARTCR1_ILT 0x04 #define UARTCR1_PE 0x02 #define UARTCR1_PT 0x01 #define UARTCR2_TIE 0x80 #define UARTCR2_TCIE 0x40 #define UARTCR2_RIE 0x20 #define UARTCR2_ILIE 0x10 #define UARTCR2_TE 0x08 #define UARTCR2_RE 0x04 #define UARTCR2_RWU 0x02 #define UARTCR2_SBK 0x01 #define UARTSR1_TDRE 0x80 #define UARTSR1_TC 0x40 #define UARTSR1_RDRF 0x20 #define UARTSR1_IDLE 0x10 #define UARTSR1_OR 0x08 #define UARTSR1_NF 0x04 #define UARTSR1_FE 0x02 #define UARTSR1_PE 0x01 #define UARTCR3_R8 0x80 #define UARTCR3_T8 0x40 #define UARTCR3_TXDIR 0x20 #define UARTCR3_TXINV 0x10 #define UARTCR3_ORIE 0x08 #define UARTCR3_NEIE 0x04 #define UARTCR3_FEIE 0x02 #define UARTCR3_PEIE 0x01 #define UARTCR4_MAEN1 0x80 #define UARTCR4_MAEN2 0x40 #define UARTCR4_M10 0x20 #define UARTCR4_BRFA_MASK 0x1f #define UARTCR4_BRFA_OFF 0 #define UARTCR5_TDMAS 0x80 #define UARTCR5_RDMAS 0x20 #define UARTMODEM_RXRTSE 0x08 #define UARTMODEM_TXRTSPOL 0x04 #define UARTMODEM_TXRTSE 0x02 #define UARTMODEM_TXCTSE 0x01 #define UARTPFIFO_TXFE 0x80 #define UARTPFIFO_FIFOSIZE_MASK 0x7 #define UARTPFIFO_TXSIZE_OFF 4 #define UARTPFIFO_RXFE 0x08 #define UARTPFIFO_RXSIZE_OFF 0 #define UARTCFIFO_TXFLUSH 0x80 #define UARTCFIFO_RXFLUSH 0x40 #define UARTCFIFO_RXOFE 0x04 #define UARTCFIFO_TXOFE 0x02 #define UARTCFIFO_RXUFE 0x01 #define UARTSFIFO_TXEMPT 0x80 #define UARTSFIFO_RXEMPT 0x40 #define UARTSFIFO_RXOF 0x04 #define UARTSFIFO_TXOF 0x02 #define UARTSFIFO_RXUF 0x01 /* 32-bit global registers only for i.MX7ULP/i.MX8x * Used to reset all internal logic and registers, except the Global Register. */ #define UART_GLOBAL 0x8 /* 32-bit register definition */ #define UARTBAUD 0x00 #define UARTSTAT 0x04 #define UARTCTRL 0x08 #define UARTDATA 0x0C #define UARTMATCH 0x10 #define UARTMODIR 0x14 #define UARTFIFO 0x18 #define UARTWATER 0x1c #define UARTBAUD_MAEN1 0x80000000 #define UARTBAUD_MAEN2 0x40000000 #define UARTBAUD_M10 0x20000000 #define UARTBAUD_TDMAE 0x00800000 #define UARTBAUD_RDMAE 0x00200000 #define UARTBAUD_MATCFG 0x00400000 #define UARTBAUD_BOTHEDGE 0x00020000 #define UARTBAUD_RESYNCDIS 0x00010000 #define UARTBAUD_LBKDIE 0x00008000 #define UARTBAUD_RXEDGIE 0x00004000 #define UARTBAUD_SBNS 0x00002000 #define UARTBAUD_SBR 0x00000000 #define UARTBAUD_SBR_MASK 0x1fff #define UARTBAUD_OSR_MASK 0x1f #define UARTBAUD_OSR_SHIFT 24 #define UARTSTAT_LBKDIF 0x80000000 #define UARTSTAT_RXEDGIF 0x40000000 #define UARTSTAT_MSBF 0x20000000 #define UARTSTAT_RXINV 0x10000000 #define UARTSTAT_RWUID 0x08000000 #define UARTSTAT_BRK13 0x04000000 #define UARTSTAT_LBKDE 0x02000000 #define UARTSTAT_RAF 0x01000000 #define UARTSTAT_TDRE 0x00800000 #define UARTSTAT_TC 0x00400000 #define UARTSTAT_RDRF 0x00200000 #define UARTSTAT_IDLE 0x00100000 #define UARTSTAT_OR 0x00080000 #define UARTSTAT_NF 0x00040000 #define UARTSTAT_FE 0x00020000 #define UARTSTAT_PE 0x00010000 #define UARTSTAT_MA1F 0x00008000 #define UARTSTAT_M21F 0x00004000 #define UARTCTRL_R8T9 0x80000000 #define UARTCTRL_R9T8 0x40000000 #define UARTCTRL_TXDIR 0x20000000 #define UARTCTRL_TXINV 0x10000000 #define UARTCTRL_ORIE 0x08000000 #define UARTCTRL_NEIE 0x04000000 #define UARTCTRL_FEIE 0x02000000 #define UARTCTRL_PEIE 0x01000000 #define UARTCTRL_TIE 0x00800000 #define UARTCTRL_TCIE 0x00400000 #define UARTCTRL_RIE 0x00200000 #define UARTCTRL_ILIE 0x00100000 #define UARTCTRL_TE 0x00080000 #define UARTCTRL_RE 0x00040000 #define UARTCTRL_RWU 0x00020000 #define UARTCTRL_SBK 0x00010000 #define UARTCTRL_MA1IE 0x00008000 #define UARTCTRL_MA2IE 0x00004000 #define UARTCTRL_IDLECFG GENMASK(10, 8) #define UARTCTRL_LOOPS 0x00000080 #define UARTCTRL_DOZEEN 0x00000040 #define UARTCTRL_RSRC 0x00000020 #define UARTCTRL_M 0x00000010 #define UARTCTRL_WAKE 0x00000008 #define UARTCTRL_ILT 0x00000004 #define UARTCTRL_PE 0x00000002 #define UARTCTRL_PT 0x00000001 #define UARTDATA_NOISY 0x00008000 #define UARTDATA_PARITYE 0x00004000 #define UARTDATA_FRETSC 0x00002000 #define UARTDATA_RXEMPT 0x00001000 #define UARTDATA_IDLINE 0x00000800 #define UARTDATA_MASK 0x3ff #define UARTMODIR_IREN 0x00020000 #define UARTMODIR_RTSWATER GENMASK(10, 8) #define UARTMODIR_TXCTSSRC 0x00000020 #define UARTMODIR_TXCTSC 0x00000010 #define UARTMODIR_RXRTSE 0x00000008 #define UARTMODIR_TXRTSPOL 0x00000004 #define UARTMODIR_TXRTSE 0x00000002 #define UARTMODIR_TXCTSE 0x00000001 #define UARTFIFO_TXEMPT 0x00800000 #define UARTFIFO_RXEMPT 0x00400000 #define UARTFIFO_TXOF 0x00020000 #define UARTFIFO_RXUF 0x00010000 #define UARTFIFO_TXFLUSH 0x00008000 #define UARTFIFO_RXFLUSH 0x00004000 #define UARTFIFO_RXIDEN GENMASK(12, 10) #define UARTFIFO_TXOFE 0x00000200 #define UARTFIFO_RXUFE 0x00000100 #define UARTFIFO_TXFE 0x00000080 #define UARTFIFO_FIFOSIZE_MASK 0x7 #define UARTFIFO_TXSIZE_OFF 4 #define UARTFIFO_RXFE 0x00000008 #define UARTFIFO_RXSIZE_OFF 0 #define UARTFIFO_DEPTH(x) (0x1 << ((x) ? ((x) + 1) : 0)) #define UARTWATER_COUNT_MASK 0xff #define UARTWATER_TXCNT_OFF 8 #define UARTWATER_RXCNT_OFF 24 #define UARTWATER_WATER_MASK 0xff #define UARTWATER_TXWATER_OFF 0 #define UARTWATER_RXWATER_OFF 16 #define UART_GLOBAL_RST 0x2 #define GLOBAL_RST_MIN_US 20 #define GLOBAL_RST_MAX_US 40 /* Rx DMA timeout in ms, which is used to calculate Rx ring buffer size */ #define DMA_RX_TIMEOUT (10) #define DMA_RX_IDLE_CHARS 8 #define UART_AUTOSUSPEND_TIMEOUT 3000 #define DRIVER_NAME "fsl-lpuart" #define DEV_NAME "ttyLP" #define UART_NR 8 /* IMX lpuart has four extra unused regs located at the beginning */ #define IMX_REG_OFF 0x10 enum lpuart_type { VF610_LPUART, LS1021A_LPUART, LS1028A_LPUART, IMX7ULP_LPUART, IMX8ULP_LPUART, IMX8QXP_LPUART, IMXRT1050_LPUART, }; struct lpuart_port { struct uart_port port; enum lpuart_type devtype; struct clk *ipg_clk; struct clk *baud_clk; unsigned int txfifo_size; unsigned int rxfifo_size; u8 rx_watermark; bool lpuart_dma_tx_use; bool lpuart_dma_rx_use; struct dma_chan *dma_tx_chan; struct dma_chan *dma_rx_chan; struct dma_async_tx_descriptor *dma_tx_desc; struct dma_async_tx_descriptor *dma_rx_desc; dma_cookie_t dma_tx_cookie; dma_cookie_t dma_rx_cookie; unsigned int dma_tx_bytes; unsigned int dma_rx_bytes; bool dma_tx_in_progress; unsigned int dma_rx_timeout; struct timer_list lpuart_timer; struct scatterlist rx_sgl, tx_sgl[2]; struct circ_buf rx_ring; int rx_dma_rng_buf_len; int last_residue; unsigned int dma_tx_nents; wait_queue_head_t dma_wait; bool is_cs7; /* Set to true when character size is 7 */ /* and the parity is enabled */ bool dma_idle_int; }; struct lpuart_soc_data { enum lpuart_type devtype; char iotype; u8 reg_off; u8 rx_watermark; }; static const struct lpuart_soc_data vf_data = { .devtype = VF610_LPUART, .iotype = UPIO_MEM, .rx_watermark = 1, }; static const struct lpuart_soc_data ls1021a_data = { .devtype = LS1021A_LPUART, .iotype = UPIO_MEM32BE, .rx_watermark = 1, }; static const struct lpuart_soc_data ls1028a_data = { .devtype = LS1028A_LPUART, .iotype = UPIO_MEM32, .rx_watermark = 0, }; static struct lpuart_soc_data imx7ulp_data = { .devtype = IMX7ULP_LPUART, .iotype = UPIO_MEM32, .reg_off = IMX_REG_OFF, .rx_watermark = 1, }; static struct lpuart_soc_data imx8ulp_data = { .devtype = IMX8ULP_LPUART, .iotype = UPIO_MEM32, .reg_off = IMX_REG_OFF, .rx_watermark = 3, }; static struct lpuart_soc_data imx8qxp_data = { .devtype = IMX8QXP_LPUART, .iotype = UPIO_MEM32, .reg_off = IMX_REG_OFF, .rx_watermark = 7, /* A lower watermark is ideal for low baud rates. */ }; static struct lpuart_soc_data imxrt1050_data = { .devtype = IMXRT1050_LPUART, .iotype = UPIO_MEM32, .reg_off = IMX_REG_OFF, .rx_watermark = 1, }; static const struct of_device_id lpuart_dt_ids[] = { { .compatible = "fsl,vf610-lpuart", .data = &vf_data, }, { .compatible = "fsl,ls1021a-lpuart", .data = &ls1021a_data, }, { .compatible = "fsl,ls1028a-lpuart", .data = &ls1028a_data, }, { .compatible = "fsl,imx7ulp-lpuart", .data = &imx7ulp_data, }, { .compatible = "fsl,imx8ulp-lpuart", .data = &imx8ulp_data, }, { .compatible = "fsl,imx8qxp-lpuart", .data = &imx8qxp_data, }, { .compatible = "fsl,imxrt1050-lpuart", .data = &imxrt1050_data}, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, lpuart_dt_ids); /* Forward declare this for the dma callbacks*/ static void lpuart_dma_tx_complete(void *arg); static inline bool is_layerscape_lpuart(struct lpuart_port *sport) { return (sport->devtype == LS1021A_LPUART || sport->devtype == LS1028A_LPUART); } static inline bool is_imx7ulp_lpuart(struct lpuart_port *sport) { return sport->devtype == IMX7ULP_LPUART; } static inline bool is_imx8ulp_lpuart(struct lpuart_port *sport) { return sport->devtype == IMX8ULP_LPUART; } static inline bool is_imx8qxp_lpuart(struct lpuart_port *sport) { return sport->devtype == IMX8QXP_LPUART; } static inline u32 lpuart32_read(struct uart_port *port, u32 off) { switch (port->iotype) { case UPIO_MEM32: return readl(port->membase + off); case UPIO_MEM32BE: return ioread32be(port->membase + off); default: return 0; } } static inline void lpuart32_write(struct uart_port *port, u32 val, u32 off) { switch (port->iotype) { case UPIO_MEM32: writel(val, port->membase + off); break; case UPIO_MEM32BE: iowrite32be(val, port->membase + off); break; } } static int __lpuart_enable_clks(struct lpuart_port *sport, bool is_en) { int ret = 0; if (is_en) { ret = clk_prepare_enable(sport->ipg_clk); if (ret) return ret; ret = clk_prepare_enable(sport->baud_clk); if (ret) { clk_disable_unprepare(sport->ipg_clk); return ret; } } else { clk_disable_unprepare(sport->baud_clk); clk_disable_unprepare(sport->ipg_clk); } return 0; } static unsigned int lpuart_get_baud_clk_rate(struct lpuart_port *sport) { if (is_imx8qxp_lpuart(sport)) return clk_get_rate(sport->baud_clk); return clk_get_rate(sport->ipg_clk); } #define lpuart_enable_clks(x) __lpuart_enable_clks(x, true) #define lpuart_disable_clks(x) __lpuart_enable_clks(x, false) static void lpuart_stop_tx(struct uart_port *port) { unsigned char temp; temp = readb(port->membase + UARTCR2); temp &= ~(UARTCR2_TIE | UARTCR2_TCIE); writeb(temp, port->membase + UARTCR2); } static void lpuart32_stop_tx(struct uart_port *port) { unsigned long temp; temp = lpuart32_read(port, UARTCTRL); temp &= ~(UARTCTRL_TIE | UARTCTRL_TCIE); lpuart32_write(port, temp, UARTCTRL); } static void lpuart_stop_rx(struct uart_port *port) { unsigned char temp; temp = readb(port->membase + UARTCR2); writeb(temp & ~UARTCR2_RE, port->membase + UARTCR2); } static void lpuart32_stop_rx(struct uart_port *port) { unsigned long temp; temp = lpuart32_read(port, UARTCTRL); lpuart32_write(port, temp & ~UARTCTRL_RE, UARTCTRL); } static void lpuart_dma_tx(struct lpuart_port *sport) { struct tty_port *tport = &sport->port.state->port; struct scatterlist *sgl = sport->tx_sgl; struct device *dev = sport->port.dev; struct dma_chan *chan = sport->dma_tx_chan; int ret; if (sport->dma_tx_in_progress) return; sg_init_table(sgl, ARRAY_SIZE(sport->tx_sgl)); sport->dma_tx_bytes = kfifo_len(&tport->xmit_fifo); sport->dma_tx_nents = kfifo_dma_out_prepare(&tport->xmit_fifo, sgl, ARRAY_SIZE(sport->tx_sgl), sport->dma_tx_bytes); ret = dma_map_sg(chan->device->dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); if (!ret) { dev_err(dev, "DMA mapping error for TX.\n"); return; } sport->dma_tx_desc = dmaengine_prep_slave_sg(chan, sgl, ret, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); if (!sport->dma_tx_desc) { dma_unmap_sg(chan->device->dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); dev_err(dev, "Cannot prepare TX slave DMA!\n"); return; } sport->dma_tx_desc->callback = lpuart_dma_tx_complete; sport->dma_tx_desc->callback_param = sport; sport->dma_tx_in_progress = true; sport->dma_tx_cookie = dmaengine_submit(sport->dma_tx_desc); dma_async_issue_pending(chan); } static bool lpuart_stopped_or_empty(struct uart_port *port) { return kfifo_is_empty(&port->state->port.xmit_fifo) || uart_tx_stopped(port); } static void lpuart_dma_tx_complete(void *arg) { struct lpuart_port *sport = arg; struct scatterlist *sgl = &sport->tx_sgl[0]; struct tty_port *tport = &sport->port.state->port; struct dma_chan *chan = sport->dma_tx_chan; unsigned long flags; uart_port_lock_irqsave(&sport->port, &flags); if (!sport->dma_tx_in_progress) { uart_port_unlock_irqrestore(&sport->port, flags); return; } dma_unmap_sg(chan->device->dev, sgl, sport->dma_tx_nents, DMA_TO_DEVICE); uart_xmit_advance(&sport->port, sport->dma_tx_bytes); sport->dma_tx_in_progress = false; uart_port_unlock_irqrestore(&sport->port, flags); if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) uart_write_wakeup(&sport->port); if (waitqueue_active(&sport->dma_wait)) { wake_up(&sport->dma_wait); return; } uart_port_lock_irqsave(&sport->port, &flags); if (!lpuart_stopped_or_empty(&sport->port)) lpuart_dma_tx(sport); uart_port_unlock_irqrestore(&sport->port, flags); } static dma_addr_t lpuart_dma_datareg_addr(struct lpuart_port *sport) { switch (sport->port.iotype) { case UPIO_MEM32: return sport->port.mapbase + UARTDATA; case UPIO_MEM32BE: return sport->port.mapbase + UARTDATA + sizeof(u32) - 1; } return sport->port.mapbase + UARTDR; } static int lpuart_dma_tx_request(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); struct dma_slave_config dma_tx_sconfig = {}; int ret; dma_tx_sconfig.dst_addr = lpuart_dma_datareg_addr(sport); dma_tx_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; dma_tx_sconfig.dst_maxburst = 1; dma_tx_sconfig.direction = DMA_MEM_TO_DEV; ret = dmaengine_slave_config(sport->dma_tx_chan, &dma_tx_sconfig); if (ret) { dev_err(sport->port.dev, "DMA slave config failed, err = %d\n", ret); return ret; } return 0; } static bool lpuart_is_32(struct lpuart_port *sport) { return sport->port.iotype == UPIO_MEM32 || sport->port.iotype == UPIO_MEM32BE; } static void lpuart_flush_buffer(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); struct dma_chan *chan = sport->dma_tx_chan; u32 val; if (sport->lpuart_dma_tx_use) { if (sport->dma_tx_in_progress) { dma_unmap_sg(chan->device->dev, &sport->tx_sgl[0], sport->dma_tx_nents, DMA_TO_DEVICE); sport->dma_tx_in_progress = false; } dmaengine_terminate_async(chan); } if (lpuart_is_32(sport)) { val = lpuart32_read(&sport->port, UARTFIFO); val |= UARTFIFO_TXFLUSH | UARTFIFO_RXFLUSH; lpuart32_write(&sport->port, val, UARTFIFO); } else { val = readb(sport->port.membase + UARTCFIFO); val |= UARTCFIFO_TXFLUSH | UARTCFIFO_RXFLUSH; writeb(val, sport->port.membase + UARTCFIFO); } } static void lpuart_wait_bit_set(struct uart_port *port, unsigned int offset, u8 bit) { while (!(readb(port->membase + offset) & bit)) cpu_relax(); } static void lpuart32_wait_bit_set(struct uart_port *port, unsigned int offset, u32 bit) { while (!(lpuart32_read(port, offset) & bit)) cpu_relax(); } #if defined(CONFIG_CONSOLE_POLL) static int lpuart_poll_init(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned long flags; unsigned char temp; sport->port.fifosize = 0; uart_port_lock_irqsave(&sport->port, &flags); /* Disable Rx & Tx */ writeb(0, sport->port.membase + UARTCR2); temp = readb(sport->port.membase + UARTPFIFO); /* Enable Rx and Tx FIFO */ writeb(temp | UARTPFIFO_RXFE | UARTPFIFO_TXFE, sport->port.membase + UARTPFIFO); /* flush Tx and Rx FIFO */ writeb(UARTCFIFO_TXFLUSH | UARTCFIFO_RXFLUSH, sport->port.membase + UARTCFIFO); /* explicitly clear RDRF */ if (readb(sport->port.membase + UARTSR1) & UARTSR1_RDRF) { readb(sport->port.membase + UARTDR); writeb(UARTSFIFO_RXUF, sport->port.membase + UARTSFIFO); } writeb(0, sport->port.membase + UARTTWFIFO); writeb(1, sport->port.membase + UARTRWFIFO); /* Enable Rx and Tx */ writeb(UARTCR2_RE | UARTCR2_TE, sport->port.membase + UARTCR2); uart_port_unlock_irqrestore(&sport->port, flags); return 0; } static void lpuart_poll_put_char(struct uart_port *port, unsigned char c) { /* drain */ lpuart_wait_bit_set(port, UARTSR1, UARTSR1_TDRE); writeb(c, port->membase + UARTDR); } static int lpuart_poll_get_char(struct uart_port *port) { if (!(readb(port->membase + UARTSR1) & UARTSR1_RDRF)) return NO_POLL_CHAR; return readb(port->membase + UARTDR); } static int lpuart32_poll_init(struct uart_port *port) { unsigned long flags; struct lpuart_port *sport = container_of(port, struct lpuart_port, port); u32 temp; sport->port.fifosize = 0; uart_port_lock_irqsave(&sport->port, &flags); /* Disable Rx & Tx */ lpuart32_write(&sport->port, 0, UARTCTRL); temp = lpuart32_read(&sport->port, UARTFIFO); /* Enable Rx and Tx FIFO */ lpuart32_write(&sport->port, temp | UARTFIFO_RXFE | UARTFIFO_TXFE, UARTFIFO); /* flush Tx and Rx FIFO */ lpuart32_write(&sport->port, UARTFIFO_TXFLUSH | UARTFIFO_RXFLUSH, UARTFIFO); /* explicitly clear RDRF */ if (lpuart32_read(&sport->port, UARTSTAT) & UARTSTAT_RDRF) { lpuart32_read(&sport->port, UARTDATA); lpuart32_write(&sport->port, UARTFIFO_RXUF, UARTFIFO); } /* Enable Rx and Tx */ lpuart32_write(&sport->port, UARTCTRL_RE | UARTCTRL_TE, UARTCTRL); uart_port_unlock_irqrestore(&sport->port, flags); return 0; } static void lpuart32_poll_put_char(struct uart_port *port, unsigned char c) { lpuart32_wait_bit_set(port, UARTSTAT, UARTSTAT_TDRE); lpuart32_write(port, c, UARTDATA); } static int lpuart32_poll_get_char(struct uart_port *port) { if (!(lpuart32_read(port, UARTWATER) >> UARTWATER_RXCNT_OFF)) return NO_POLL_CHAR; return lpuart32_read(port, UARTDATA); } #endif static inline void lpuart_transmit_buffer(struct lpuart_port *sport) { struct uart_port *port = &sport->port; u8 ch; uart_port_tx(port, ch, readb(port->membase + UARTTCFIFO) < sport->txfifo_size, writeb(ch, port->membase + UARTDR)); } static inline void lpuart32_transmit_buffer(struct lpuart_port *sport) { struct tty_port *tport = &sport->port.state->port; unsigned long txcnt; unsigned char c; if (sport->port.x_char) { lpuart32_write(&sport->port, sport->port.x_char, UARTDATA); sport->port.icount.tx++; sport->port.x_char = 0; return; } if (lpuart_stopped_or_empty(&sport->port)) { lpuart32_stop_tx(&sport->port); return; } txcnt = lpuart32_read(&sport->port, UARTWATER); txcnt = txcnt >> UARTWATER_TXCNT_OFF; txcnt &= UARTWATER_COUNT_MASK; while (txcnt < sport->txfifo_size && uart_fifo_get(&sport->port, &c)) { lpuart32_write(&sport->port, c, UARTDATA); txcnt = lpuart32_read(&sport->port, UARTWATER); txcnt = txcnt >> UARTWATER_TXCNT_OFF; txcnt &= UARTWATER_COUNT_MASK; } if (kfifo_len(&tport->xmit_fifo) < WAKEUP_CHARS) uart_write_wakeup(&sport->port); if (kfifo_is_empty(&tport->xmit_fifo)) lpuart32_stop_tx(&sport->port); } static void lpuart_start_tx(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned char temp; temp = readb(port->membase + UARTCR2); writeb(temp | UARTCR2_TIE, port->membase + UARTCR2); if (sport->lpuart_dma_tx_use) { if (!lpuart_stopped_or_empty(port)) lpuart_dma_tx(sport); } else { if (readb(port->membase + UARTSR1) & UARTSR1_TDRE) lpuart_transmit_buffer(sport); } } static void lpuart32_start_tx(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned long temp; if (sport->lpuart_dma_tx_use) { if (!lpuart_stopped_or_empty(port)) lpuart_dma_tx(sport); } else { temp = lpuart32_read(port, UARTCTRL); lpuart32_write(port, temp | UARTCTRL_TIE, UARTCTRL); if (lpuart32_read(port, UARTSTAT) & UARTSTAT_TDRE) lpuart32_transmit_buffer(sport); } } static void lpuart_uart_pm(struct uart_port *port, unsigned int state, unsigned int oldstate) { switch (state) { case UART_PM_STATE_OFF: pm_runtime_mark_last_busy(port->dev); pm_runtime_put_autosuspend(port->dev); break; default: pm_runtime_get_sync(port->dev); break; } } /* return TIOCSER_TEMT when transmitter is not busy */ static unsigned int lpuart_tx_empty(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned char sr1 = readb(port->membase + UARTSR1); unsigned char sfifo = readb(port->membase + UARTSFIFO); if (sport->dma_tx_in_progress) return 0; if (sr1 & UARTSR1_TC && sfifo & UARTSFIFO_TXEMPT) return TIOCSER_TEMT; return 0; } static unsigned int lpuart32_tx_empty(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned long stat = lpuart32_read(port, UARTSTAT); unsigned long sfifo = lpuart32_read(port, UARTFIFO); unsigned long ctrl = lpuart32_read(port, UARTCTRL); if (sport->dma_tx_in_progress) return 0; /* * LPUART Transmission Complete Flag may never be set while queuing a break * character, so avoid checking for transmission complete when UARTCTRL_SBK * is asserted. */ if ((stat & UARTSTAT_TC && sfifo & UARTFIFO_TXEMPT) || ctrl & UARTCTRL_SBK) return TIOCSER_TEMT; return 0; } static void lpuart_txint(struct lpuart_port *sport) { uart_port_lock(&sport->port); lpuart_transmit_buffer(sport); uart_port_unlock(&sport->port); } static void lpuart_rxint(struct lpuart_port *sport) { unsigned int flg, ignored = 0, overrun = 0; struct tty_port *port = &sport->port.state->port; unsigned char rx, sr; uart_port_lock(&sport->port); while (!(readb(sport->port.membase + UARTSFIFO) & UARTSFIFO_RXEMPT)) { flg = TTY_NORMAL; sport->port.icount.rx++; /* * to clear the FE, OR, NF, FE, PE flags, * read SR1 then read DR */ sr = readb(sport->port.membase + UARTSR1); rx = readb(sport->port.membase + UARTDR); if (uart_prepare_sysrq_char(&sport->port, rx)) continue; if (sr & (UARTSR1_PE | UARTSR1_OR | UARTSR1_FE)) { if (sr & UARTSR1_PE) sport->port.icount.parity++; else if (sr & UARTSR1_FE) sport->port.icount.frame++; if (sr & UARTSR1_OR) overrun++; if (sr & sport->port.ignore_status_mask) { if (++ignored > 100) goto out; continue; } sr &= sport->port.read_status_mask; if (sr & UARTSR1_PE) flg = TTY_PARITY; else if (sr & UARTSR1_FE) flg = TTY_FRAME; if (sr & UARTSR1_OR) flg = TTY_OVERRUN; sport->port.sysrq = 0; } if (tty_insert_flip_char(port, rx, flg) == 0) sport->port.icount.buf_overrun++; } out: if (overrun) { sport->port.icount.overrun += overrun; /* * Overruns cause FIFO pointers to become missaligned. * Flushing the receive FIFO reinitializes the pointers. */ writeb(UARTCFIFO_RXFLUSH, sport->port.membase + UARTCFIFO); writeb(UARTSFIFO_RXOF, sport->port.membase + UARTSFIFO); } uart_unlock_and_check_sysrq(&sport->port); tty_flip_buffer_push(port); } static void lpuart32_txint(struct lpuart_port *sport) { uart_port_lock(&sport->port); lpuart32_transmit_buffer(sport); uart_port_unlock(&sport->port); } static void lpuart32_rxint(struct lpuart_port *sport) { unsigned int flg, ignored = 0; struct tty_port *port = &sport->port.state->port; unsigned long rx, sr; bool is_break; uart_port_lock(&sport->port); while (!(lpuart32_read(&sport->port, UARTFIFO) & UARTFIFO_RXEMPT)) { flg = TTY_NORMAL; sport->port.icount.rx++; /* * to clear the FE, OR, NF, FE, PE flags, * read STAT then read DATA reg */ sr = lpuart32_read(&sport->port, UARTSTAT); rx = lpuart32_read(&sport->port, UARTDATA); rx &= UARTDATA_MASK; /* * The LPUART can't distinguish between a break and a framing error, * thus we assume it is a break if the received data is zero. */ is_break = (sr & UARTSTAT_FE) && !rx; if (is_break && uart_handle_break(&sport->port)) continue; if (uart_prepare_sysrq_char(&sport->port, rx)) continue; if (sr & (UARTSTAT_PE | UARTSTAT_OR | UARTSTAT_FE)) { if (sr & UARTSTAT_PE) { sport->port.icount.parity++; } else if (sr & UARTSTAT_FE) { if (is_break) sport->port.icount.brk++; else sport->port.icount.frame++; } if (sr & UARTSTAT_OR) sport->port.icount.overrun++; if (sr & sport->port.ignore_status_mask) { if (++ignored > 100) goto out; continue; } sr &= sport->port.read_status_mask; if (sr & UARTSTAT_PE) { flg = TTY_PARITY; } else if (sr & UARTSTAT_FE) { if (is_break) flg = TTY_BREAK; else flg = TTY_FRAME; } if (sr & UARTSTAT_OR) flg = TTY_OVERRUN; } if (sport->is_cs7) rx &= 0x7F; if (tty_insert_flip_char(port, rx, flg) == 0) sport->port.icount.buf_overrun++; } out: uart_unlock_and_check_sysrq(&sport->port); tty_flip_buffer_push(port); } static irqreturn_t lpuart_int(int irq, void *dev_id) { struct lpuart_port *sport = dev_id; unsigned char sts; sts = readb(sport->port.membase + UARTSR1); /* SysRq, using dma, check for linebreak by framing err. */ if (sts & UARTSR1_FE && sport->lpuart_dma_rx_use) { readb(sport->port.membase + UARTDR); uart_handle_break(&sport->port); /* linebreak produces some garbage, removing it */ writeb(UARTCFIFO_RXFLUSH, sport->port.membase + UARTCFIFO); return IRQ_HANDLED; } if (sts & UARTSR1_RDRF && !sport->lpuart_dma_rx_use) lpuart_rxint(sport); if (sts & UARTSR1_TDRE && !sport->lpuart_dma_tx_use) lpuart_txint(sport); return IRQ_HANDLED; } static inline void lpuart_handle_sysrq_chars(struct uart_port *port, unsigned char *p, int count) { while (count--) { if (*p && uart_handle_sysrq_char(port, *p)) return; p++; } } static void lpuart_handle_sysrq(struct lpuart_port *sport) { struct circ_buf *ring = &sport->rx_ring; int count; if (ring->head < ring->tail) { count = sport->rx_sgl.length - ring->tail; lpuart_handle_sysrq_chars(&sport->port, ring->buf + ring->tail, count); ring->tail = 0; } if (ring->head > ring->tail) { count = ring->head - ring->tail; lpuart_handle_sysrq_chars(&sport->port, ring->buf + ring->tail, count); ring->tail = ring->head; } } static int lpuart_tty_insert_flip_string(struct tty_port *port, unsigned char *chars, size_t size, bool is_cs7) { int i; if (is_cs7) for (i = 0; i < size; i++) chars[i] &= 0x7F; return tty_insert_flip_string(port, chars, size); } static void lpuart_copy_rx_to_tty(struct lpuart_port *sport) { struct tty_port *port = &sport->port.state->port; struct dma_tx_state state; enum dma_status dmastat; struct dma_chan *chan = sport->dma_rx_chan; struct circ_buf *ring = &sport->rx_ring; unsigned long flags; int count, copied; if (lpuart_is_32(sport)) { unsigned long sr = lpuart32_read(&sport->port, UARTSTAT); if (sr & (UARTSTAT_PE | UARTSTAT_FE)) { /* Clear the error flags */ lpuart32_write(&sport->port, sr, UARTSTAT); if (sr & UARTSTAT_PE) sport->port.icount.parity++; else if (sr & UARTSTAT_FE) sport->port.icount.frame++; } } else { unsigned char sr = readb(sport->port.membase + UARTSR1); if (sr & (UARTSR1_PE | UARTSR1_FE)) { unsigned char cr2; /* Disable receiver during this operation... */ cr2 = readb(sport->port.membase + UARTCR2); cr2 &= ~UARTCR2_RE; writeb(cr2, sport->port.membase + UARTCR2); /* Read DR to clear the error flags */ readb(sport->port.membase + UARTDR); if (sr & UARTSR1_PE) sport->port.icount.parity++; else if (sr & UARTSR1_FE) sport->port.icount.frame++; /* * At this point parity/framing error is * cleared However, since the DMA already read * the data register and we had to read it * again after reading the status register to * properly clear the flags, the FIFO actually * underflowed... This requires a clearing of * the FIFO... */ if (readb(sport->port.membase + UARTSFIFO) & UARTSFIFO_RXUF) { writeb(UARTSFIFO_RXUF, sport->port.membase + UARTSFIFO); writeb(UARTCFIFO_RXFLUSH, sport->port.membase + UARTCFIFO); } cr2 |= UARTCR2_RE; writeb(cr2, sport->port.membase + UARTCR2); } } async_tx_ack(sport->dma_rx_desc); uart_port_lock_irqsave(&sport->port, &flags); dmastat = dmaengine_tx_status(chan, sport->dma_rx_cookie, &state); if (dmastat == DMA_ERROR) { dev_err(sport->port.dev, "Rx DMA transfer failed!\n"); uart_port_unlock_irqrestore(&sport->port, flags); return; } /* CPU claims ownership of RX DMA buffer */ dma_sync_sg_for_cpu(chan->device->dev, &sport->rx_sgl, 1, DMA_FROM_DEVICE); /* * ring->head points to the end of data already written by the DMA. * ring->tail points to the beginning of data to be read by the * framework. * The current transfer size should not be larger than the dma buffer * length. */ ring->head = sport->rx_sgl.length - state.residue; BUG_ON(ring->head > sport->rx_sgl.length); /* * Silent handling of keys pressed in the sysrq timeframe */ if (sport->port.sysrq) { lpuart_handle_sysrq(sport); goto exit; } /* * At this point ring->head may point to the first byte right after the * last byte of the dma buffer: * 0 <= ring->head <= sport->rx_sgl.length * * However ring->tail must always points inside the dma buffer: * 0 <= ring->tail <= sport->rx_sgl.length - 1 * * Since we use a ring buffer, we have to handle the case * where head is lower than tail. In such a case, we first read from * tail to the end of the buffer then reset tail. */ if (ring->head < ring->tail) { count = sport->rx_sgl.length - ring->tail; copied = lpuart_tty_insert_flip_string(port, ring->buf + ring->tail, count, sport->is_cs7); if (copied != count) sport->port.icount.buf_overrun++; ring->tail = 0; sport->port.icount.rx += copied; } /* Finally we read data from tail to head */ if (ring->tail < ring->head) { count = ring->head - ring->tail; copied = lpuart_tty_insert_flip_string(port, ring->buf + ring->tail, count, sport->is_cs7); if (copied != count) sport->port.icount.buf_overrun++; /* Wrap ring->head if needed */ if (ring->head >= sport->rx_sgl.length) ring->head = 0; ring->tail = ring->head; sport->port.icount.rx += copied; } sport->last_residue = state.residue; exit: dma_sync_sg_for_device(chan->device->dev, &sport->rx_sgl, 1, DMA_FROM_DEVICE); uart_port_unlock_irqrestore(&sport->port, flags); tty_flip_buffer_push(port); if (!sport->dma_idle_int) mod_timer(&sport->lpuart_timer, jiffies + sport->dma_rx_timeout); } static void lpuart_dma_rx_complete(void *arg) { struct lpuart_port *sport = arg; lpuart_copy_rx_to_tty(sport); } static void lpuart32_dma_idleint(struct lpuart_port *sport) { enum dma_status dmastat; struct dma_chan *chan = sport->dma_rx_chan; struct circ_buf *ring = &sport->rx_ring; struct dma_tx_state state; int count = 0; dmastat = dmaengine_tx_status(chan, sport->dma_rx_cookie, &state); if (dmastat == DMA_ERROR) { dev_err(sport->port.dev, "Rx DMA transfer failed!\n"); return; } ring->head = sport->rx_sgl.length - state.residue; count = CIRC_CNT(ring->head, ring->tail, sport->rx_sgl.length); /* Check if new data received before copying */ if (count) lpuart_copy_rx_to_tty(sport); } static irqreturn_t lpuart32_int(int irq, void *dev_id) { struct lpuart_port *sport = dev_id; unsigned long sts, rxcount; sts = lpuart32_read(&sport->port, UARTSTAT); rxcount = lpuart32_read(&sport->port, UARTWATER); rxcount = rxcount >> UARTWATER_RXCNT_OFF; if ((sts & UARTSTAT_RDRF || rxcount > 0) && !sport->lpuart_dma_rx_use) lpuart32_rxint(sport); if ((sts & UARTSTAT_TDRE) && !sport->lpuart_dma_tx_use) lpuart32_txint(sport); if ((sts & UARTSTAT_IDLE) && sport->lpuart_dma_rx_use && sport->dma_idle_int) lpuart32_dma_idleint(sport); lpuart32_write(&sport->port, sts, UARTSTAT); return IRQ_HANDLED; } /* * Timer function to simulate the hardware EOP (End Of Package) event. * The timer callback is to check for new RX data and copy to TTY buffer. * If no new data are received since last interval, the EOP condition is * met, complete the DMA transfer by copying the data. Otherwise, just * restart timer. */ static void lpuart_timer_func(struct timer_list *t) { struct lpuart_port *sport = from_timer(sport, t, lpuart_timer); enum dma_status dmastat; struct dma_chan *chan = sport->dma_rx_chan; struct circ_buf *ring = &sport->rx_ring; struct dma_tx_state state; unsigned long flags; int count; dmastat = dmaengine_tx_status(chan, sport->dma_rx_cookie, &state); if (dmastat == DMA_ERROR) { dev_err(sport->port.dev, "Rx DMA transfer failed!\n"); return; } ring->head = sport->rx_sgl.length - state.residue; count = CIRC_CNT(ring->head, ring->tail, sport->rx_sgl.length); /* Check if new data received before copying */ if ((count != 0) && (sport->last_residue == state.residue)) lpuart_copy_rx_to_tty(sport); else mod_timer(&sport->lpuart_timer, jiffies + sport->dma_rx_timeout); if (uart_port_trylock_irqsave(&sport->port, &flags)) { sport->last_residue = state.residue; uart_port_unlock_irqrestore(&sport->port, flags); } } static inline int lpuart_start_rx_dma(struct lpuart_port *sport) { struct dma_slave_config dma_rx_sconfig = {}; struct circ_buf *ring = &sport->rx_ring; int ret, nent; struct tty_port *port = &sport->port.state->port; struct tty_struct *tty = port->tty; struct ktermios *termios = &tty->termios; struct dma_chan *chan = sport->dma_rx_chan; unsigned int bits = tty_get_frame_size(termios->c_cflag); unsigned int baud = tty_get_baud_rate(tty); /* * Calculate length of one DMA buffer size to keep latency below * 10ms at any baud rate. */ sport->rx_dma_rng_buf_len = (DMA_RX_TIMEOUT * baud / bits / 1000) * 2; sport->rx_dma_rng_buf_len = (1 << fls(sport->rx_dma_rng_buf_len)); sport->rx_dma_rng_buf_len = max_t(int, sport->rxfifo_size * 2, sport->rx_dma_rng_buf_len); /* * Keep this condition check in case rxfifo_size is unavailable * for some SoCs. */ if (sport->rx_dma_rng_buf_len < 16) sport->rx_dma_rng_buf_len = 16; sport->last_residue = 0; sport->dma_rx_timeout = max(nsecs_to_jiffies( sport->port.frame_time * DMA_RX_IDLE_CHARS), 1UL); ring->buf = kzalloc(sport->rx_dma_rng_buf_len, GFP_ATOMIC); if (!ring->buf) return -ENOMEM; sg_init_one(&sport->rx_sgl, ring->buf, sport->rx_dma_rng_buf_len); nent = dma_map_sg(chan->device->dev, &sport->rx_sgl, 1, DMA_FROM_DEVICE); if (!nent) { dev_err(sport->port.dev, "DMA Rx mapping error\n"); return -EINVAL; } dma_rx_sconfig.src_addr = lpuart_dma_datareg_addr(sport); dma_rx_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; dma_rx_sconfig.src_maxburst = 1; dma_rx_sconfig.direction = DMA_DEV_TO_MEM; ret = dmaengine_slave_config(chan, &dma_rx_sconfig); if (ret < 0) { dev_err(sport->port.dev, "DMA Rx slave config failed, err = %d\n", ret); return ret; } sport->dma_rx_desc = dmaengine_prep_dma_cyclic(chan, sg_dma_address(&sport->rx_sgl), sport->rx_sgl.length, sport->rx_sgl.length / 2, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); if (!sport->dma_rx_desc) { dev_err(sport->port.dev, "Cannot prepare cyclic DMA\n"); return -EFAULT; } sport->dma_rx_desc->callback = lpuart_dma_rx_complete; sport->dma_rx_desc->callback_param = sport; sport->dma_rx_cookie = dmaengine_submit(sport->dma_rx_desc); dma_async_issue_pending(chan); if (lpuart_is_32(sport)) { unsigned long temp = lpuart32_read(&sport->port, UARTBAUD); lpuart32_write(&sport->port, temp | UARTBAUD_RDMAE, UARTBAUD); if (sport->dma_idle_int) { unsigned long ctrl = lpuart32_read(&sport->port, UARTCTRL); lpuart32_write(&sport->port, ctrl | UARTCTRL_ILIE, UARTCTRL); } } else { writeb(readb(sport->port.membase + UARTCR5) | UARTCR5_RDMAS, sport->port.membase + UARTCR5); } return 0; } static void lpuart_dma_rx_free(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); struct dma_chan *chan = sport->dma_rx_chan; dmaengine_terminate_sync(chan); if (!sport->dma_idle_int) del_timer_sync(&sport->lpuart_timer); dma_unmap_sg(chan->device->dev, &sport->rx_sgl, 1, DMA_FROM_DEVICE); kfree(sport->rx_ring.buf); sport->rx_ring.tail = 0; sport->rx_ring.head = 0; sport->dma_rx_desc = NULL; sport->dma_rx_cookie = -EINVAL; } static int lpuart_config_rs485(struct uart_port *port, struct ktermios *termios, struct serial_rs485 *rs485) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); u8 modem = readb(sport->port.membase + UARTMODEM) & ~(UARTMODEM_TXRTSPOL | UARTMODEM_TXRTSE); writeb(modem, sport->port.membase + UARTMODEM); if (rs485->flags & SER_RS485_ENABLED) { /* Enable auto RS-485 RTS mode */ modem |= UARTMODEM_TXRTSE; /* * The hardware defaults to RTS logic HIGH while transfer. * Switch polarity in case RTS shall be logic HIGH * after transfer. * Note: UART is assumed to be active high. */ if (rs485->flags & SER_RS485_RTS_ON_SEND) modem |= UARTMODEM_TXRTSPOL; else if (rs485->flags & SER_RS485_RTS_AFTER_SEND) modem &= ~UARTMODEM_TXRTSPOL; } writeb(modem, sport->port.membase + UARTMODEM); return 0; } static int lpuart32_config_rs485(struct uart_port *port, struct ktermios *termios, struct serial_rs485 *rs485) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned long modem = lpuart32_read(&sport->port, UARTMODIR) & ~(UARTMODIR_TXRTSPOL | UARTMODIR_TXRTSE); lpuart32_write(&sport->port, modem, UARTMODIR); if (rs485->flags & SER_RS485_ENABLED) { /* Enable auto RS-485 RTS mode */ modem |= UARTMODIR_TXRTSE; /* * The hardware defaults to RTS logic HIGH while transfer. * Switch polarity in case RTS shall be logic HIGH * after transfer. * Note: UART is assumed to be active high. */ if (rs485->flags & SER_RS485_RTS_ON_SEND) modem |= UARTMODIR_TXRTSPOL; else if (rs485->flags & SER_RS485_RTS_AFTER_SEND) modem &= ~UARTMODIR_TXRTSPOL; } lpuart32_write(&sport->port, modem, UARTMODIR); return 0; } static unsigned int lpuart_get_mctrl(struct uart_port *port) { unsigned int mctrl = 0; u8 reg; reg = readb(port->membase + UARTCR1); if (reg & UARTCR1_LOOPS) mctrl |= TIOCM_LOOP; return mctrl; } static unsigned int lpuart32_get_mctrl(struct uart_port *port) { unsigned int mctrl = TIOCM_CAR | TIOCM_DSR | TIOCM_CTS; u32 reg; reg = lpuart32_read(port, UARTCTRL); if (reg & UARTCTRL_LOOPS) mctrl |= TIOCM_LOOP; return mctrl; } static void lpuart_set_mctrl(struct uart_port *port, unsigned int mctrl) { u8 reg; reg = readb(port->membase + UARTCR1); /* for internal loopback we need LOOPS=1 and RSRC=0 */ reg &= ~(UARTCR1_LOOPS | UARTCR1_RSRC); if (mctrl & TIOCM_LOOP) reg |= UARTCR1_LOOPS; writeb(reg, port->membase + UARTCR1); } static void lpuart32_set_mctrl(struct uart_port *port, unsigned int mctrl) { u32 reg; reg = lpuart32_read(port, UARTCTRL); /* for internal loopback we need LOOPS=1 and RSRC=0 */ reg &= ~(UARTCTRL_LOOPS | UARTCTRL_RSRC); if (mctrl & TIOCM_LOOP) reg |= UARTCTRL_LOOPS; lpuart32_write(port, reg, UARTCTRL); } static void lpuart_break_ctl(struct uart_port *port, int break_state) { unsigned char temp; temp = readb(port->membase + UARTCR2) & ~UARTCR2_SBK; if (break_state != 0) temp |= UARTCR2_SBK; writeb(temp, port->membase + UARTCR2); } static void lpuart32_break_ctl(struct uart_port *port, int break_state) { unsigned long temp; temp = lpuart32_read(port, UARTCTRL); /* * LPUART IP now has two known bugs, one is CTS has higher priority than the * break signal, which causes the break signal sending through UARTCTRL_SBK * may impacted by the CTS input if the HW flow control is enabled. It * exists on all platforms we support in this driver. * Another bug is i.MX8QM LPUART may have an additional break character * being sent after SBK was cleared. * To avoid above two bugs, we use Transmit Data Inversion function to send * the break signal instead of UARTCTRL_SBK. */ if (break_state != 0) { /* * Disable the transmitter to prevent any data from being sent out * during break, then invert the TX line to send break. */ temp &= ~UARTCTRL_TE; lpuart32_write(port, temp, UARTCTRL); temp |= UARTCTRL_TXINV; lpuart32_write(port, temp, UARTCTRL); } else { /* Disable the TXINV to turn off break and re-enable transmitter. */ temp &= ~UARTCTRL_TXINV; lpuart32_write(port, temp, UARTCTRL); temp |= UARTCTRL_TE; lpuart32_write(port, temp, UARTCTRL); } } static void lpuart_setup_watermark(struct lpuart_port *sport) { unsigned char val, cr2; unsigned char cr2_saved; cr2 = readb(sport->port.membase + UARTCR2); cr2_saved = cr2; cr2 &= ~(UARTCR2_TIE | UARTCR2_TCIE | UARTCR2_TE | UARTCR2_RIE | UARTCR2_RE); writeb(cr2, sport->port.membase + UARTCR2); val = readb(sport->port.membase + UARTPFIFO); writeb(val | UARTPFIFO_TXFE | UARTPFIFO_RXFE, sport->port.membase + UARTPFIFO); /* flush Tx and Rx FIFO */ writeb(UARTCFIFO_TXFLUSH | UARTCFIFO_RXFLUSH, sport->port.membase + UARTCFIFO); /* explicitly clear RDRF */ if (readb(sport->port.membase + UARTSR1) & UARTSR1_RDRF) { readb(sport->port.membase + UARTDR); writeb(UARTSFIFO_RXUF, sport->port.membase + UARTSFIFO); } if (uart_console(&sport->port)) sport->rx_watermark = 1; writeb(0, sport->port.membase + UARTTWFIFO); writeb(sport->rx_watermark, sport->port.membase + UARTRWFIFO); /* Restore cr2 */ writeb(cr2_saved, sport->port.membase + UARTCR2); } static void lpuart_setup_watermark_enable(struct lpuart_port *sport) { unsigned char cr2; lpuart_setup_watermark(sport); cr2 = readb(sport->port.membase + UARTCR2); cr2 |= UARTCR2_RIE | UARTCR2_RE | UARTCR2_TE; writeb(cr2, sport->port.membase + UARTCR2); } static void lpuart32_setup_watermark(struct lpuart_port *sport) { unsigned long val, ctrl; unsigned long ctrl_saved; ctrl = lpuart32_read(&sport->port, UARTCTRL); ctrl_saved = ctrl; ctrl &= ~(UARTCTRL_TIE | UARTCTRL_TCIE | UARTCTRL_TE | UARTCTRL_RIE | UARTCTRL_RE | UARTCTRL_ILIE); lpuart32_write(&sport->port, ctrl, UARTCTRL); /* enable FIFO mode */ val = lpuart32_read(&sport->port, UARTFIFO); val |= UARTFIFO_TXFE | UARTFIFO_RXFE; val |= UARTFIFO_TXFLUSH | UARTFIFO_RXFLUSH; val |= FIELD_PREP(UARTFIFO_RXIDEN, 0x3); lpuart32_write(&sport->port, val, UARTFIFO); /* set the watermark */ if (uart_console(&sport->port)) sport->rx_watermark = 1; val = (sport->rx_watermark << UARTWATER_RXWATER_OFF) | (0x0 << UARTWATER_TXWATER_OFF); lpuart32_write(&sport->port, val, UARTWATER); /* set RTS watermark */ if (!uart_console(&sport->port)) { val = lpuart32_read(&sport->port, UARTMODIR); val |= FIELD_PREP(UARTMODIR_RTSWATER, sport->rxfifo_size >> 1); lpuart32_write(&sport->port, val, UARTMODIR); } /* Restore cr2 */ lpuart32_write(&sport->port, ctrl_saved, UARTCTRL); } static void lpuart32_setup_watermark_enable(struct lpuart_port *sport) { u32 temp; lpuart32_setup_watermark(sport); temp = lpuart32_read(&sport->port, UARTCTRL); temp |= UARTCTRL_RE | UARTCTRL_TE; temp |= FIELD_PREP(UARTCTRL_IDLECFG, 0x7); lpuart32_write(&sport->port, temp, UARTCTRL); } static void rx_dma_timer_init(struct lpuart_port *sport) { if (sport->dma_idle_int) return; timer_setup(&sport->lpuart_timer, lpuart_timer_func, 0); sport->lpuart_timer.expires = jiffies + sport->dma_rx_timeout; add_timer(&sport->lpuart_timer); } static void lpuart_request_dma(struct lpuart_port *sport) { sport->dma_tx_chan = dma_request_chan(sport->port.dev, "tx"); if (IS_ERR(sport->dma_tx_chan)) { dev_dbg_once(sport->port.dev, "DMA tx channel request failed, operating without tx DMA (%ld)\n", PTR_ERR(sport->dma_tx_chan)); sport->dma_tx_chan = NULL; } sport->dma_rx_chan = dma_request_chan(sport->port.dev, "rx"); if (IS_ERR(sport->dma_rx_chan)) { dev_dbg_once(sport->port.dev, "DMA rx channel request failed, operating without rx DMA (%ld)\n", PTR_ERR(sport->dma_rx_chan)); sport->dma_rx_chan = NULL; } } static void lpuart_tx_dma_startup(struct lpuart_port *sport) { u32 uartbaud; int ret; if (uart_console(&sport->port)) goto err; if (!sport->dma_tx_chan) goto err; ret = lpuart_dma_tx_request(&sport->port); if (ret) goto err; init_waitqueue_head(&sport->dma_wait); sport->lpuart_dma_tx_use = true; if (lpuart_is_32(sport)) { uartbaud = lpuart32_read(&sport->port, UARTBAUD); lpuart32_write(&sport->port, uartbaud | UARTBAUD_TDMAE, UARTBAUD); } else { writeb(readb(sport->port.membase + UARTCR5) | UARTCR5_TDMAS, sport->port.membase + UARTCR5); } return; err: sport->lpuart_dma_tx_use = false; } static void lpuart_rx_dma_startup(struct lpuart_port *sport) { int ret; unsigned char cr3; if (uart_console(&sport->port)) goto err; if (!sport->dma_rx_chan) goto err; /* set default Rx DMA timeout */ sport->dma_rx_timeout = msecs_to_jiffies(DMA_RX_TIMEOUT); ret = lpuart_start_rx_dma(sport); if (ret) goto err; if (!sport->dma_rx_timeout) sport->dma_rx_timeout = 1; sport->lpuart_dma_rx_use = true; rx_dma_timer_init(sport); if (sport->port.has_sysrq && !lpuart_is_32(sport)) { cr3 = readb(sport->port.membase + UARTCR3); cr3 |= UARTCR3_FEIE; writeb(cr3, sport->port.membase + UARTCR3); } return; err: sport->lpuart_dma_rx_use = false; } static void lpuart_hw_setup(struct lpuart_port *sport) { unsigned long flags; uart_port_lock_irqsave(&sport->port, &flags); lpuart_setup_watermark_enable(sport); lpuart_rx_dma_startup(sport); lpuart_tx_dma_startup(sport); uart_port_unlock_irqrestore(&sport->port, flags); } static int lpuart_startup(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned char temp; /* determine FIFO size and enable FIFO mode */ temp = readb(sport->port.membase + UARTPFIFO); sport->txfifo_size = UARTFIFO_DEPTH((temp >> UARTPFIFO_TXSIZE_OFF) & UARTPFIFO_FIFOSIZE_MASK); sport->port.fifosize = sport->txfifo_size; sport->rxfifo_size = UARTFIFO_DEPTH((temp >> UARTPFIFO_RXSIZE_OFF) & UARTPFIFO_FIFOSIZE_MASK); lpuart_request_dma(sport); lpuart_hw_setup(sport); return 0; } static void lpuart32_hw_disable(struct lpuart_port *sport) { unsigned long temp; temp = lpuart32_read(&sport->port, UARTCTRL); temp &= ~(UARTCTRL_RIE | UARTCTRL_ILIE | UARTCTRL_RE | UARTCTRL_TIE | UARTCTRL_TE); lpuart32_write(&sport->port, temp, UARTCTRL); } static void lpuart32_configure(struct lpuart_port *sport) { unsigned long temp; temp = lpuart32_read(&sport->port, UARTCTRL); if (!sport->lpuart_dma_rx_use) temp |= UARTCTRL_RIE | UARTCTRL_ILIE; if (!sport->lpuart_dma_tx_use) temp |= UARTCTRL_TIE; lpuart32_write(&sport->port, temp, UARTCTRL); } static void lpuart32_hw_setup(struct lpuart_port *sport) { unsigned long flags; uart_port_lock_irqsave(&sport->port, &flags); lpuart32_hw_disable(sport); lpuart_rx_dma_startup(sport); lpuart_tx_dma_startup(sport); lpuart32_setup_watermark_enable(sport); lpuart32_configure(sport); uart_port_unlock_irqrestore(&sport->port, flags); } static int lpuart32_startup(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned long temp; /* determine FIFO size */ temp = lpuart32_read(&sport->port, UARTFIFO); sport->txfifo_size = UARTFIFO_DEPTH((temp >> UARTFIFO_TXSIZE_OFF) & UARTFIFO_FIFOSIZE_MASK); sport->port.fifosize = sport->txfifo_size; sport->rxfifo_size = UARTFIFO_DEPTH((temp >> UARTFIFO_RXSIZE_OFF) & UARTFIFO_FIFOSIZE_MASK); /* * The LS1021A and LS1028A have a fixed FIFO depth of 16 words. * Although they support the RX/TXSIZE fields, their encoding is * different. Eg the reference manual states 0b101 is 16 words. */ if (is_layerscape_lpuart(sport)) { sport->rxfifo_size = 16; sport->txfifo_size = 16; sport->port.fifosize = sport->txfifo_size; } lpuart_request_dma(sport); lpuart32_hw_setup(sport); return 0; } static void lpuart_dma_shutdown(struct lpuart_port *sport) { if (sport->lpuart_dma_rx_use) { lpuart_dma_rx_free(&sport->port); sport->lpuart_dma_rx_use = false; } if (sport->lpuart_dma_tx_use) { if (wait_event_interruptible_timeout(sport->dma_wait, !sport->dma_tx_in_progress, msecs_to_jiffies(300)) <= 0) { sport->dma_tx_in_progress = false; dmaengine_terminate_sync(sport->dma_tx_chan); } sport->lpuart_dma_tx_use = false; } if (sport->dma_tx_chan) dma_release_channel(sport->dma_tx_chan); if (sport->dma_rx_chan) dma_release_channel(sport->dma_rx_chan); } static void lpuart_shutdown(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned char temp; unsigned long flags; uart_port_lock_irqsave(port, &flags); /* disable Rx/Tx and interrupts */ temp = readb(port->membase + UARTCR2); temp &= ~(UARTCR2_TE | UARTCR2_RE | UARTCR2_TIE | UARTCR2_TCIE | UARTCR2_RIE); writeb(temp, port->membase + UARTCR2); uart_port_unlock_irqrestore(port, flags); lpuart_dma_shutdown(sport); } static void lpuart32_shutdown(struct uart_port *port) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned long temp; unsigned long flags; uart_port_lock_irqsave(port, &flags); /* clear status */ temp = lpuart32_read(&sport->port, UARTSTAT); lpuart32_write(&sport->port, temp, UARTSTAT); /* disable Rx/Tx DMA */ temp = lpuart32_read(port, UARTBAUD); temp &= ~(UARTBAUD_TDMAE | UARTBAUD_RDMAE); lpuart32_write(port, temp, UARTBAUD); /* disable Rx/Tx and interrupts and break condition */ temp = lpuart32_read(port, UARTCTRL); temp &= ~(UARTCTRL_TE | UARTCTRL_RE | UARTCTRL_ILIE | UARTCTRL_TIE | UARTCTRL_TCIE | UARTCTRL_RIE | UARTCTRL_SBK); lpuart32_write(port, temp, UARTCTRL); uart_port_unlock_irqrestore(port, flags); lpuart_dma_shutdown(sport); } static void lpuart_set_termios(struct uart_port *port, struct ktermios *termios, const struct ktermios *old) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned long flags; unsigned char cr1, old_cr1, old_cr2, cr3, cr4, bdh, modem; unsigned int baud; unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; unsigned int sbr, brfa; cr1 = old_cr1 = readb(sport->port.membase + UARTCR1); old_cr2 = readb(sport->port.membase + UARTCR2); cr3 = readb(sport->port.membase + UARTCR3); cr4 = readb(sport->port.membase + UARTCR4); bdh = readb(sport->port.membase + UARTBDH); modem = readb(sport->port.membase + UARTMODEM); /* * only support CS8 and CS7, and for CS7 must enable PE. * supported mode: * - (7,e/o,1) * - (8,n,1) * - (8,m/s,1) * - (8,e/o,1) */ while ((termios->c_cflag & CSIZE) != CS8 && (termios->c_cflag & CSIZE) != CS7) { termios->c_cflag &= ~CSIZE; termios->c_cflag |= old_csize; old_csize = CS8; } if ((termios->c_cflag & CSIZE) == CS8 || (termios->c_cflag & CSIZE) == CS7) cr1 = old_cr1 & ~UARTCR1_M; if (termios->c_cflag & CMSPAR) { if ((termios->c_cflag & CSIZE) != CS8) { termios->c_cflag &= ~CSIZE; termios->c_cflag |= CS8; } cr1 |= UARTCR1_M; } /* * When auto RS-485 RTS mode is enabled, * hardware flow control need to be disabled. */ if (sport->port.rs485.flags & SER_RS485_ENABLED) termios->c_cflag &= ~CRTSCTS; if (termios->c_cflag & CRTSCTS) modem |= UARTMODEM_RXRTSE | UARTMODEM_TXCTSE; else modem &= ~(UARTMODEM_RXRTSE | UARTMODEM_TXCTSE); termios->c_cflag &= ~CSTOPB; /* parity must be enabled when CS7 to match 8-bits format */ if ((termios->c_cflag & CSIZE) == CS7) termios->c_cflag |= PARENB; if (termios->c_cflag & PARENB) { if (termios->c_cflag & CMSPAR) { cr1 &= ~UARTCR1_PE; if (termios->c_cflag & PARODD) cr3 |= UARTCR3_T8; else cr3 &= ~UARTCR3_T8; } else { cr1 |= UARTCR1_PE; if ((termios->c_cflag & CSIZE) == CS8) cr1 |= UARTCR1_M; if (termios->c_cflag & PARODD) cr1 |= UARTCR1_PT; else cr1 &= ~UARTCR1_PT; } } else { cr1 &= ~UARTCR1_PE; } /* ask the core to calculate the divisor */ baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 16); /* * Need to update the Ring buffer length according to the selected * baud rate and restart Rx DMA path. * * Since timer function acqures sport->port.lock, need to stop before * acquring same lock because otherwise del_timer_sync() can deadlock. */ if (old && sport->lpuart_dma_rx_use) lpuart_dma_rx_free(&sport->port); uart_port_lock_irqsave(&sport->port, &flags); sport->port.read_status_mask = 0; if (termios->c_iflag & INPCK) sport->port.read_status_mask |= UARTSR1_FE | UARTSR1_PE; if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) sport->port.read_status_mask |= UARTSR1_FE; /* characters to ignore */ sport->port.ignore_status_mask = 0; if (termios->c_iflag & IGNPAR) sport->port.ignore_status_mask |= UARTSR1_PE; if (termios->c_iflag & IGNBRK) { sport->port.ignore_status_mask |= UARTSR1_FE; /* * if we're ignoring parity and break indicators, * ignore overruns too (for real raw support). */ if (termios->c_iflag & IGNPAR) sport->port.ignore_status_mask |= UARTSR1_OR; } /* update the per-port timeout */ uart_update_timeout(port, termios->c_cflag, baud); /* wait transmit engin complete */ lpuart_wait_bit_set(&sport->port, UARTSR1, UARTSR1_TC); /* disable transmit and receive */ writeb(old_cr2 & ~(UARTCR2_TE | UARTCR2_RE), sport->port.membase + UARTCR2); sbr = sport->port.uartclk / (16 * baud); brfa = ((sport->port.uartclk - (16 * sbr * baud)) * 2) / baud; bdh &= ~UARTBDH_SBR_MASK; bdh |= (sbr >> 8) & 0x1F; cr4 &= ~UARTCR4_BRFA_MASK; brfa &= UARTCR4_BRFA_MASK; writeb(cr4 | brfa, sport->port.membase + UARTCR4); writeb(bdh, sport->port.membase + UARTBDH); writeb(sbr & 0xFF, sport->port.membase + UARTBDL); writeb(cr3, sport->port.membase + UARTCR3); writeb(cr1, sport->port.membase + UARTCR1); writeb(modem, sport->port.membase + UARTMODEM); /* restore control register */ writeb(old_cr2, sport->port.membase + UARTCR2); if (old && sport->lpuart_dma_rx_use) { if (!lpuart_start_rx_dma(sport)) rx_dma_timer_init(sport); else sport->lpuart_dma_rx_use = false; } uart_port_unlock_irqrestore(&sport->port, flags); } static void __lpuart32_serial_setbrg(struct uart_port *port, unsigned int baudrate, bool use_rx_dma, bool use_tx_dma) { u32 sbr, osr, baud_diff, tmp_osr, tmp_sbr, tmp_diff, tmp; u32 clk = port->uartclk; /* * The idea is to use the best OSR (over-sampling rate) possible. * Note, OSR is typically hard-set to 16 in other LPUART instantiations. * Loop to find the best OSR value possible, one that generates minimum * baud_diff iterate through the rest of the supported values of OSR. * * Calculation Formula: * Baud Rate = baud clock / ((OSR+1) × SBR) */ baud_diff = baudrate; osr = 0; sbr = 0; for (tmp_osr = 4; tmp_osr <= 32; tmp_osr++) { /* calculate the temporary sbr value */ tmp_sbr = (clk / (baudrate * tmp_osr)); if (tmp_sbr == 0) tmp_sbr = 1; /* * calculate the baud rate difference based on the temporary * osr and sbr values */ tmp_diff = clk / (tmp_osr * tmp_sbr) - baudrate; /* select best values between sbr and sbr+1 */ tmp = clk / (tmp_osr * (tmp_sbr + 1)); if (tmp_diff > (baudrate - tmp)) { tmp_diff = baudrate - tmp; tmp_sbr++; } if (tmp_sbr > UARTBAUD_SBR_MASK) continue; if (tmp_diff <= baud_diff) { baud_diff = tmp_diff; osr = tmp_osr; sbr = tmp_sbr; if (!baud_diff) break; } } /* handle buadrate outside acceptable rate */ if (baud_diff > ((baudrate / 100) * 3)) dev_warn(port->dev, "unacceptable baud rate difference of more than 3%%\n"); tmp = lpuart32_read(port, UARTBAUD); if ((osr > 3) && (osr < 8)) tmp |= UARTBAUD_BOTHEDGE; tmp &= ~(UARTBAUD_OSR_MASK << UARTBAUD_OSR_SHIFT); tmp |= ((osr-1) & UARTBAUD_OSR_MASK) << UARTBAUD_OSR_SHIFT; tmp &= ~UARTBAUD_SBR_MASK; tmp |= sbr & UARTBAUD_SBR_MASK; if (!use_rx_dma) tmp &= ~UARTBAUD_RDMAE; if (!use_tx_dma) tmp &= ~UARTBAUD_TDMAE; lpuart32_write(port, tmp, UARTBAUD); } static void lpuart32_serial_setbrg(struct lpuart_port *sport, unsigned int baudrate) { __lpuart32_serial_setbrg(&sport->port, baudrate, sport->lpuart_dma_rx_use, sport->lpuart_dma_tx_use); } static void lpuart32_set_termios(struct uart_port *port, struct ktermios *termios, const struct ktermios *old) { struct lpuart_port *sport = container_of(port, struct lpuart_port, port); unsigned long flags; unsigned long ctrl, old_ctrl, bd, modem; unsigned int baud; unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8; ctrl = old_ctrl = lpuart32_read(&sport->port, UARTCTRL); bd = lpuart32_read(&sport->port, UARTBAUD); modem = lpuart32_read(&sport->port, UARTMODIR); sport->is_cs7 = false; /* * only support CS8 and CS7, and for CS7 must enable PE. * supported mode: * - (7,e/o,1) * - (8,n,1) * - (8,m/s,1) * - (8,e/o,1) */ while ((termios->c_cflag & CSIZE) != CS8 && (termios->c_cflag & CSIZE) != CS7) { termios->c_cflag &= ~CSIZE; termios->c_cflag |= old_csize; old_csize = CS8; } if ((termios->c_cflag & CSIZE) == CS8 || (termios->c_cflag & CSIZE) == CS7) ctrl = old_ctrl & ~UARTCTRL_M; if (termios->c_cflag & CMSPAR) { if ((termios->c_cflag & CSIZE) != CS8) { termios->c_cflag &= ~CSIZE; termios->c_cflag |= CS8; } ctrl |= UARTCTRL_M; } /* * When auto RS-485 RTS mode is enabled, * hardware flow control need to be disabled. */ if (sport->port.rs485.flags & SER_RS485_ENABLED) termios->c_cflag &= ~CRTSCTS; if (termios->c_cflag & CRTSCTS) modem |= UARTMODIR_RXRTSE | UARTMODIR_TXCTSE; else modem &= ~(UARTMODIR_RXRTSE | UARTMODIR_TXCTSE); if (termios->c_cflag & CSTOPB) bd |= UARTBAUD_SBNS; else bd &= ~UARTBAUD_SBNS; /* parity must be enabled when CS7 to match 8-bits format */ if ((termios->c_cflag & CSIZE) == CS7) termios->c_cflag |= PARENB; if ((termios->c_cflag & PARENB)) { if (termios->c_cflag & CMSPAR) { ctrl &= ~UARTCTRL_PE; ctrl |= UARTCTRL_M; } else { ctrl |= UARTCTRL_PE; if ((termios->c_cflag & CSIZE) == CS8) ctrl |= UARTCTRL_M; if (termios->c_cflag & PARODD) ctrl |= UARTCTRL_PT; else ctrl &= ~UARTCTRL_PT; } } else { ctrl &= ~UARTCTRL_PE; } /* ask the core to calculate the divisor */ baud = uart_get_baud_rate(port, termios, old, 50, port->uartclk / 4); /* * Need to update the Ring buffer length according to the selected * baud rate and restart Rx DMA path. * * Since timer function acqures sport->port.lock, need to stop before * acquring same lock because otherwise del_timer_sync() can deadlock. */ if (old && sport->lpuart_dma_rx_use) lpuart_dma_rx_free(&sport->port); uart_port_lock_irqsave(&sport->port, &flags); sport->port.read_status_mask = 0; if (termios->c_iflag & INPCK) sport->port.read_status_mask |= UARTSTAT_FE | UARTSTAT_PE; if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK)) sport->port.read_status_mask |= UARTSTAT_FE; /* characters to ignore */ sport->port.ignore_status_mask = 0; if (termios->c_iflag & IGNPAR) sport->port.ignore_status_mask |= UARTSTAT_PE; if (termios->c_iflag & IGNBRK) { sport->port.ignore_status_mask |= UARTSTAT_FE; /* * if we're ignoring parity and break indicators, * ignore overruns too (for real raw support). */ if (termios->c_iflag & IGNPAR) sport->port.ignore_status_mask |= UARTSTAT_OR; } /* update the per-port timeout */ uart_update_timeout(port, termios->c_cflag, baud); /* * LPUART Transmission Complete Flag may never be set while queuing a break * character, so skip waiting for transmission complete when UARTCTRL_SBK is * asserted. */ if (!(old_ctrl & UARTCTRL_SBK)) { lpuart32_write(&sport->port, 0, UARTMODIR); lpuart32_wait_bit_set(&sport->port, UARTSTAT, UARTSTAT_TC); } /* disable transmit and receive */ lpuart32_write(&sport->port, old_ctrl & ~(UARTCTRL_TE | UARTCTRL_RE), UARTCTRL); lpuart32_write(&sport->port, bd, UARTBAUD); lpuart32_serial_setbrg(sport, baud); /* disable CTS before enabling UARTCTRL_TE to avoid pending idle preamble */ lpuart32_write(&sport->port, modem & ~UARTMODIR_TXCTSE, UARTMODIR); /* restore control register */ lpuart32_write(&sport->port, ctrl, UARTCTRL); /* re-enable the CTS if needed */ lpuart32_write(&sport->port, modem, UARTMODIR); if ((ctrl & (UARTCTRL_PE | UARTCTRL_M)) == UARTCTRL_PE) sport->is_cs7 = true; if (old && sport->lpuart_dma_rx_use) { if (!lpuart_start_rx_dma(sport)) rx_dma_timer_init(sport); else sport->lpuart_dma_rx_use = false; } uart_port_unlock_irqrestore(&sport->port, flags); } static const char *lpuart_type(struct uart_port *port) { return "FSL_LPUART"; } static void lpuart_release_port(struct uart_port *port) { /* nothing to do */ } static int lpuart_request_port(struct uart_port *port) { return 0; } /* configure/autoconfigure the port */ static void lpuart_config_port(struct uart_port *port, int flags) { if (flags & UART_CONFIG_TYPE) port->type = PORT_LPUART; } static int lpuart_verify_port(struct uart_port *port, struct serial_struct *ser) { int ret = 0; if (ser->type != PORT_UNKNOWN && ser->type != PORT_LPUART) ret = -EINVAL; if (port->irq != ser->irq) ret = -EINVAL; if (ser->io_type != UPIO_MEM) ret = -EINVAL; if (port->uartclk / 16 != ser->baud_base) ret = -EINVAL; if (port->iobase != ser->port) ret = -EINVAL; if (ser->hub6 != 0) ret = -EINVAL; return ret; } static const struct uart_ops lpuart_pops = { .tx_empty = lpuart_tx_empty, .set_mctrl = lpuart_set_mctrl, .get_mctrl = lpuart_get_mctrl, .stop_tx = lpuart_stop_tx, .start_tx = lpuart_start_tx, .stop_rx = lpuart_stop_rx, .break_ctl = lpuart_break_ctl, .startup = lpuart_startup, .shutdown = lpuart_shutdown, .set_termios = lpuart_set_termios, .pm = lpuart_uart_pm, .type = lpuart_type, .request_port = lpuart_request_port, .release_port = lpuart_release_port, .config_port = lpuart_config_port, .verify_port = lpuart_verify_port, .flush_buffer = lpuart_flush_buffer, #if defined(CONFIG_CONSOLE_POLL) .poll_init = lpuart_poll_init, .poll_get_char = lpuart_poll_get_char, .poll_put_char = lpuart_poll_put_char, #endif }; static const struct uart_ops lpuart32_pops = { .tx_empty = lpuart32_tx_empty, .set_mctrl = lpuart32_set_mctrl, .get_mctrl = lpuart32_get_mctrl, .stop_tx = lpuart32_stop_tx, .start_tx = lpuart32_start_tx, .stop_rx = lpuart32_stop_rx, .break_ctl = lpuart32_break_ctl, .startup = lpuart32_startup, .shutdown = lpuart32_shutdown, .set_termios = lpuart32_set_termios, .pm = lpuart_uart_pm, .type = lpuart_type, .request_port = lpuart_request_port, .release_port = lpuart_release_port, .config_port = lpuart_config_port, .verify_port = lpuart_verify_port, .flush_buffer = lpuart_flush_buffer, #if defined(CONFIG_CONSOLE_POLL) .poll_init = lpuart32_poll_init, .poll_get_char = lpuart32_poll_get_char, .poll_put_char = lpuart32_poll_put_char, #endif }; static struct lpuart_port *lpuart_ports[UART_NR]; #ifdef CONFIG_SERIAL_FSL_LPUART_CONSOLE static void lpuart_console_putchar(struct uart_port *port, unsigned char ch) { lpuart_wait_bit_set(port, UARTSR1, UARTSR1_TDRE); writeb(ch, port->membase + UARTDR); } static void lpuart32_console_putchar(struct uart_port *port, unsigned char ch) { lpuart32_wait_bit_set(port, UARTSTAT, UARTSTAT_TDRE); lpuart32_write(port, ch, UARTDATA); } static void lpuart_console_write(struct console *co, const char *s, unsigned int count) { struct lpuart_port *sport = lpuart_ports[co->index]; unsigned char old_cr2, cr2; unsigned long flags; int locked = 1; if (oops_in_progress) locked = uart_port_trylock_irqsave(&sport->port, &flags); else uart_port_lock_irqsave(&sport->port, &flags); /* first save CR2 and then disable interrupts */ cr2 = old_cr2 = readb(sport->port.membase + UARTCR2); cr2 |= UARTCR2_TE | UARTCR2_RE; cr2 &= ~(UARTCR2_TIE | UARTCR2_TCIE | UARTCR2_RIE); writeb(cr2, sport->port.membase + UARTCR2); uart_console_write(&sport->port, s, count, lpuart_console_putchar); /* wait for transmitter finish complete and restore CR2 */ lpuart_wait_bit_set(&sport->port, UARTSR1, UARTSR1_TC); writeb(old_cr2, sport->port.membase + UARTCR2); if (locked) uart_port_unlock_irqrestore(&sport->port, flags); } static void lpuart32_console_write(struct console *co, const char *s, unsigned int count) { struct lpuart_port *sport = lpuart_ports[co->index]; unsigned long old_cr, cr; unsigned long flags; int locked = 1; if (oops_in_progress) locked = uart_port_trylock_irqsave(&sport->port, &flags); else uart_port_lock_irqsave(&sport->port, &flags); /* first save CR2 and then disable interrupts */ cr = old_cr = lpuart32_read(&sport->port, UARTCTRL); cr |= UARTCTRL_TE | UARTCTRL_RE; cr &= ~(UARTCTRL_TIE | UARTCTRL_TCIE | UARTCTRL_RIE); lpuart32_write(&sport->port, cr, UARTCTRL); uart_console_write(&sport->port, s, count, lpuart32_console_putchar); /* wait for transmitter finish complete and restore CR2 */ lpuart32_wait_bit_set(&sport->port, UARTSTAT, UARTSTAT_TC); lpuart32_write(&sport->port, old_cr, UARTCTRL); if (locked) uart_port_unlock_irqrestore(&sport->port, flags); } /* * if the port was already initialised (eg, by a boot loader), * try to determine the current setup. */ static void __init lpuart_console_get_options(struct lpuart_port *sport, int *baud, int *parity, int *bits) { unsigned char cr, bdh, bdl, brfa; unsigned int sbr, uartclk, baud_raw; cr = readb(sport->port.membase + UARTCR2); cr &= UARTCR2_TE | UARTCR2_RE; if (!cr) return; /* ok, the port was enabled */ cr = readb(sport->port.membase + UARTCR1); *parity = 'n'; if (cr & UARTCR1_PE) { if (cr & UARTCR1_PT) *parity = 'o'; else *parity = 'e'; } if (cr & UARTCR1_M) *bits = 9; else *bits = 8; bdh = readb(sport->port.membase + UARTBDH); bdh &= UARTBDH_SBR_MASK; bdl = readb(sport->port.membase + UARTBDL); sbr = bdh; sbr <<= 8; sbr |= bdl; brfa = readb(sport->port.membase + UARTCR4); brfa &= UARTCR4_BRFA_MASK; uartclk = lpuart_get_baud_clk_rate(sport); /* * baud = mod_clk/(16*(sbr[13]+(brfa)/32) */ baud_raw = uartclk / (16 * (sbr + brfa / 32)); if (*baud != baud_raw) dev_info(sport->port.dev, "Serial: Console lpuart rounded baud rate" "from %d to %d\n", baud_raw, *baud); } static void __init lpuart32_console_get_options(struct lpuart_port *sport, int *baud, int *parity, int *bits) { unsigned long cr, bd; unsigned int sbr, uartclk, baud_raw; cr = lpuart32_read(&sport->port, UARTCTRL); cr &= UARTCTRL_TE | UARTCTRL_RE; if (!cr) return; /* ok, the port was enabled */ cr = lpuart32_read(&sport->port, UARTCTRL); *parity = 'n'; if (cr & UARTCTRL_PE) { if (cr & UARTCTRL_PT) *parity = 'o'; else *parity = 'e'; } if (cr & UARTCTRL_M) *bits = 9; else *bits = 8; bd = lpuart32_read(&sport->port, UARTBAUD); bd &= UARTBAUD_SBR_MASK; if (!bd) return; sbr = bd; uartclk = lpuart_get_baud_clk_rate(sport); /* * baud = mod_clk/(16*(sbr[13]+(brfa)/32) */ baud_raw = uartclk / (16 * sbr); if (*baud != baud_raw) dev_info(sport->port.dev, "Serial: Console lpuart rounded baud rate" "from %d to %d\n", baud_raw, *baud); } static int __init lpuart_console_setup(struct console *co, char *options) { struct lpuart_port *sport; int baud = 115200; int bits = 8; int parity = 'n'; int flow = 'n'; /* * check whether an invalid uart number has been specified, and * if so, search for the first available port that does have * console support. */ if (co->index == -1 || co->index >= ARRAY_SIZE(lpuart_ports)) co->index = 0; sport = lpuart_ports[co->index]; if (sport == NULL) return -ENODEV; if (options) uart_parse_options(options, &baud, &parity, &bits, &flow); else if (lpuart_is_32(sport)) lpuart32_console_get_options(sport, &baud, &parity, &bits); else lpuart_console_get_options(sport, &baud, &parity, &bits); if (lpuart_is_32(sport)) lpuart32_setup_watermark(sport); else lpuart_setup_watermark(sport); return uart_set_options(&sport->port, co, baud, parity, bits, flow); } static struct uart_driver lpuart_reg; static struct console lpuart_console = { .name = DEV_NAME, .write = lpuart_console_write, .device = uart_console_device, .setup = lpuart_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &lpuart_reg, }; static struct console lpuart32_console = { .name = DEV_NAME, .write = lpuart32_console_write, .device = uart_console_device, .setup = lpuart_console_setup, .flags = CON_PRINTBUFFER, .index = -1, .data = &lpuart_reg, }; static void lpuart_early_write(struct console *con, const char *s, unsigned n) { struct earlycon_device *dev = con->data; uart_console_write(&dev->port, s, n, lpuart_console_putchar); } static void lpuart32_early_write(struct console *con, const char *s, unsigned n) { struct earlycon_device *dev = con->data; uart_console_write(&dev->port, s, n, lpuart32_console_putchar); } static int __init lpuart_early_console_setup(struct earlycon_device *device, const char *opt) { if (!device->port.membase) return -ENODEV; device->con->write = lpuart_early_write; return 0; } static int __init lpuart32_early_console_setup(struct earlycon_device *device, const char *opt) { if (!device->port.membase) return -ENODEV; if (device->port.iotype != UPIO_MEM32) device->port.iotype = UPIO_MEM32BE; device->con->write = lpuart32_early_write; return 0; } static int __init ls1028a_early_console_setup(struct earlycon_device *device, const char *opt) { u32 cr; if (!device->port.membase) return -ENODEV; device->port.iotype = UPIO_MEM32; device->con->write = lpuart32_early_write; /* set the baudrate */ if (device->port.uartclk && device->baud) __lpuart32_serial_setbrg(&device->port, device->baud, false, false); /* enable transmitter */ cr = lpuart32_read(&device->port, UARTCTRL); cr |= UARTCTRL_TE; lpuart32_write(&device->port, cr, UARTCTRL); return 0; } static int __init lpuart32_imx_early_console_setup(struct earlycon_device *device, const char *opt) { if (!device->port.membase) return -ENODEV; device->port.iotype = UPIO_MEM32; device->port.membase += IMX_REG_OFF; device->con->write = lpuart32_early_write; return 0; } OF_EARLYCON_DECLARE(lpuart, "fsl,vf610-lpuart", lpuart_early_console_setup); OF_EARLYCON_DECLARE(lpuart32, "fsl,ls1021a-lpuart", lpuart32_early_console_setup); OF_EARLYCON_DECLARE(lpuart32, "fsl,ls1028a-lpuart", ls1028a_early_console_setup); OF_EARLYCON_DECLARE(lpuart32, "fsl,imx7ulp-lpuart", lpuart32_imx_early_console_setup); OF_EARLYCON_DECLARE(lpuart32, "fsl,imx8ulp-lpuart", lpuart32_imx_early_console_setup); OF_EARLYCON_DECLARE(lpuart32, "fsl,imx8qxp-lpuart", lpuart32_imx_early_console_setup); OF_EARLYCON_DECLARE(lpuart32, "fsl,imxrt1050-lpuart", lpuart32_imx_early_console_setup); EARLYCON_DECLARE(lpuart, lpuart_early_console_setup); EARLYCON_DECLARE(lpuart32, lpuart32_early_console_setup); #define LPUART_CONSOLE (&lpuart_console) #define LPUART32_CONSOLE (&lpuart32_console) #else #define LPUART_CONSOLE NULL #define LPUART32_CONSOLE NULL #endif static struct uart_driver lpuart_reg = { .owner = THIS_MODULE, .driver_name = DRIVER_NAME, .dev_name = DEV_NAME, .nr = ARRAY_SIZE(lpuart_ports), .cons = LPUART_CONSOLE, }; static const struct serial_rs485 lpuart_rs485_supported = { .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND, /* delay_rts_* and RX_DURING_TX are not supported */ }; static int lpuart_global_reset(struct lpuart_port *sport) { struct uart_port *port = &sport->port; void __iomem *global_addr; unsigned long ctrl, bd; unsigned int val = 0; int ret; ret = clk_prepare_enable(sport->ipg_clk); if (ret) { dev_err(sport->port.dev, "failed to enable uart ipg clk: %d\n", ret); return ret; } if (is_imx7ulp_lpuart(sport) || is_imx8ulp_lpuart(sport) || is_imx8qxp_lpuart(sport)) { /* * If the transmitter is used by earlycon, wait for transmit engine to * complete and then reset. */ ctrl = lpuart32_read(port, UARTCTRL); if (ctrl & UARTCTRL_TE) { bd = lpuart32_read(&sport->port, UARTBAUD); if (read_poll_timeout(lpuart32_tx_empty, val, val, 1, 100000, false, port)) { dev_warn(sport->port.dev, "timeout waiting for transmit engine to complete\n"); clk_disable_unprepare(sport->ipg_clk); return 0; } } global_addr = port->membase + UART_GLOBAL - IMX_REG_OFF; writel(UART_GLOBAL_RST, global_addr); usleep_range(GLOBAL_RST_MIN_US, GLOBAL_RST_MAX_US); writel(0, global_addr); usleep_range(GLOBAL_RST_MIN_US, GLOBAL_RST_MAX_US); /* Recover the transmitter for earlycon. */ if (ctrl & UARTCTRL_TE) { lpuart32_write(port, bd, UARTBAUD); lpuart32_write(port, ctrl, UARTCTRL); } } clk_disable_unprepare(sport->ipg_clk); return 0; } static int lpuart_probe(struct platform_device *pdev) { const struct lpuart_soc_data *sdata = of_device_get_match_data(&pdev->dev); struct device_node *np = pdev->dev.of_node; struct lpuart_port *sport; struct resource *res; irq_handler_t handler; int ret; sport = devm_kzalloc(&pdev->dev, sizeof(*sport), GFP_KERNEL); if (!sport) return -ENOMEM; sport->port.membase = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(sport->port.membase)) return PTR_ERR(sport->port.membase); sport->port.membase += sdata->reg_off; sport->port.mapbase = res->start + sdata->reg_off; sport->port.dev = &pdev->dev; sport->port.type = PORT_LPUART; sport->devtype = sdata->devtype; sport->rx_watermark = sdata->rx_watermark; sport->dma_idle_int = is_imx7ulp_lpuart(sport) || is_imx8ulp_lpuart(sport) || is_imx8qxp_lpuart(sport); ret = platform_get_irq(pdev, 0); if (ret < 0) return ret; sport->port.irq = ret; sport->port.iotype = sdata->iotype; if (lpuart_is_32(sport)) sport->port.ops = &lpuart32_pops; else sport->port.ops = &lpuart_pops; sport->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_FSL_LPUART_CONSOLE); sport->port.flags = UPF_BOOT_AUTOCONF; if (lpuart_is_32(sport)) sport->port.rs485_config = lpuart32_config_rs485; else sport->port.rs485_config = lpuart_config_rs485; sport->port.rs485_supported = lpuart_rs485_supported; sport->ipg_clk = devm_clk_get(&pdev->dev, "ipg"); if (IS_ERR(sport->ipg_clk)) { ret = PTR_ERR(sport->ipg_clk); return dev_err_probe(&pdev->dev, ret, "failed to get uart ipg clk\n"); } sport->baud_clk = NULL; if (is_imx8qxp_lpuart(sport)) { sport->baud_clk = devm_clk_get(&pdev->dev, "baud"); if (IS_ERR(sport->baud_clk)) { ret = PTR_ERR(sport->baud_clk); return dev_err_probe(&pdev->dev, ret, "failed to get uart baud clk\n"); } } ret = of_alias_get_id(np, "serial"); if (ret < 0) { dev_err(&pdev->dev, "failed to get alias id, errno %d\n", ret); return ret; } if (ret >= ARRAY_SIZE(lpuart_ports)) { dev_err(&pdev->dev, "serial%d out of range\n", ret); return -EINVAL; } sport->port.line = ret; ret = lpuart_enable_clks(sport); if (ret) return ret; sport->port.uartclk = lpuart_get_baud_clk_rate(sport); lpuart_ports[sport->port.line] = sport; platform_set_drvdata(pdev, &sport->port); if (lpuart_is_32(sport)) { lpuart_reg.cons = LPUART32_CONSOLE; handler = lpuart32_int; } else { lpuart_reg.cons = LPUART_CONSOLE; handler = lpuart_int; } pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, UART_AUTOSUSPEND_TIMEOUT); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = lpuart_global_reset(sport); if (ret) goto failed_reset; ret = uart_get_rs485_mode(&sport->port); if (ret) goto failed_get_rs485; ret = uart_add_one_port(&lpuart_reg, &sport->port); if (ret) goto failed_attach_port; ret = devm_request_irq(&pdev->dev, sport->port.irq, handler, 0, DRIVER_NAME, sport); if (ret) goto failed_irq_request; return 0; failed_irq_request: uart_remove_one_port(&lpuart_reg, &sport->port); failed_attach_port: failed_get_rs485: failed_reset: pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_dont_use_autosuspend(&pdev->dev); lpuart_disable_clks(sport); return ret; } static void lpuart_remove(struct platform_device *pdev) { struct lpuart_port *sport = platform_get_drvdata(pdev); uart_remove_one_port(&lpuart_reg, &sport->port); lpuart_disable_clks(sport); if (sport->dma_tx_chan) dma_release_channel(sport->dma_tx_chan); if (sport->dma_rx_chan) dma_release_channel(sport->dma_rx_chan); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); pm_runtime_dont_use_autosuspend(&pdev->dev); } static int lpuart_runtime_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct lpuart_port *sport = platform_get_drvdata(pdev); lpuart_disable_clks(sport); return 0; }; static int lpuart_runtime_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct lpuart_port *sport = platform_get_drvdata(pdev); return lpuart_enable_clks(sport); }; static void serial_lpuart_enable_wakeup(struct lpuart_port *sport, bool on) { unsigned int val, baud; if (lpuart_is_32(sport)) { val = lpuart32_read(&sport->port, UARTCTRL); baud = lpuart32_read(&sport->port, UARTBAUD); if (on) { /* set rx_watermark to 0 in wakeup source mode */ lpuart32_write(&sport->port, 0, UARTWATER); val |= UARTCTRL_RIE; /* clear RXEDGIF flag before enable RXEDGIE interrupt */ lpuart32_write(&sport->port, UARTSTAT_RXEDGIF, UARTSTAT); baud |= UARTBAUD_RXEDGIE; } else { val &= ~UARTCTRL_RIE; baud &= ~UARTBAUD_RXEDGIE; } lpuart32_write(&sport->port, val, UARTCTRL); lpuart32_write(&sport->port, baud, UARTBAUD); } else { val = readb(sport->port.membase + UARTCR2); if (on) val |= UARTCR2_RIE; else val &= ~UARTCR2_RIE; writeb(val, sport->port.membase + UARTCR2); } } static bool lpuart_uport_is_active(struct lpuart_port *sport) { struct tty_port *port = &sport->port.state->port; struct tty_struct *tty; struct device *tty_dev; int may_wake = 0; tty = tty_port_tty_get(port); if (tty) { tty_dev = tty->dev; may_wake = tty_dev && device_may_wakeup(tty_dev); tty_kref_put(tty); } if ((tty_port_initialized(port) && may_wake) || (!console_suspend_enabled && uart_console(&sport->port))) return true; return false; } static int lpuart_suspend_noirq(struct device *dev) { struct lpuart_port *sport = dev_get_drvdata(dev); bool irq_wake = irqd_is_wakeup_set(irq_get_irq_data(sport->port.irq)); if (lpuart_uport_is_active(sport)) serial_lpuart_enable_wakeup(sport, !!irq_wake); pinctrl_pm_select_sleep_state(dev); return 0; } static int lpuart_resume_noirq(struct device *dev) { struct lpuart_port *sport = dev_get_drvdata(dev); unsigned int val; pinctrl_pm_select_default_state(dev); if (lpuart_uport_is_active(sport)) { serial_lpuart_enable_wakeup(sport, false); /* clear the wakeup flags */ if (lpuart_is_32(sport)) { val = lpuart32_read(&sport->port, UARTSTAT); lpuart32_write(&sport->port, val, UARTSTAT); } } return 0; } static int lpuart_suspend(struct device *dev) { struct lpuart_port *sport = dev_get_drvdata(dev); unsigned long temp, flags; uart_suspend_port(&lpuart_reg, &sport->port); if (lpuart_uport_is_active(sport)) { uart_port_lock_irqsave(&sport->port, &flags); if (lpuart_is_32(sport)) { /* disable Rx/Tx and interrupts */ temp = lpuart32_read(&sport->port, UARTCTRL); temp &= ~(UARTCTRL_TE | UARTCTRL_TIE | UARTCTRL_TCIE); lpuart32_write(&sport->port, temp, UARTCTRL); } else { /* disable Rx/Tx and interrupts */ temp = readb(sport->port.membase + UARTCR2); temp &= ~(UARTCR2_TE | UARTCR2_TIE | UARTCR2_TCIE); writeb(temp, sport->port.membase + UARTCR2); } uart_port_unlock_irqrestore(&sport->port, flags); if (sport->lpuart_dma_rx_use) { /* * EDMA driver during suspend will forcefully release any * non-idle DMA channels. If port wakeup is enabled or if port * is console port or 'no_console_suspend' is set the Rx DMA * cannot resume as expected, hence gracefully release the * Rx DMA path before suspend and start Rx DMA path on resume. */ lpuart_dma_rx_free(&sport->port); /* Disable Rx DMA to use UART port as wakeup source */ uart_port_lock_irqsave(&sport->port, &flags); if (lpuart_is_32(sport)) { temp = lpuart32_read(&sport->port, UARTBAUD); lpuart32_write(&sport->port, temp & ~UARTBAUD_RDMAE, UARTBAUD); } else { writeb(readb(sport->port.membase + UARTCR5) & ~UARTCR5_RDMAS, sport->port.membase + UARTCR5); } uart_port_unlock_irqrestore(&sport->port, flags); } if (sport->lpuart_dma_tx_use) { uart_port_lock_irqsave(&sport->port, &flags); if (lpuart_is_32(sport)) { temp = lpuart32_read(&sport->port, UARTBAUD); temp &= ~UARTBAUD_TDMAE; lpuart32_write(&sport->port, temp, UARTBAUD); } else { temp = readb(sport->port.membase + UARTCR5); temp &= ~UARTCR5_TDMAS; writeb(temp, sport->port.membase + UARTCR5); } uart_port_unlock_irqrestore(&sport->port, flags); sport->dma_tx_in_progress = false; dmaengine_terminate_sync(sport->dma_tx_chan); } } else if (pm_runtime_active(sport->port.dev)) { lpuart_disable_clks(sport); pm_runtime_disable(sport->port.dev); pm_runtime_set_suspended(sport->port.dev); } return 0; } static void lpuart_console_fixup(struct lpuart_port *sport) { struct tty_port *port = &sport->port.state->port; struct uart_port *uport = &sport->port; struct ktermios termios; /* i.MX7ULP enter VLLS mode that lpuart module power off and registers * all lost no matter the port is wakeup source. * For console port, console baud rate setting lost and print messy * log when enable the console port as wakeup source. To avoid the * issue happen, user should not enable uart port as wakeup source * in VLLS mode, or restore console setting here. */ if (is_imx7ulp_lpuart(sport) && lpuart_uport_is_active(sport) && console_suspend_enabled && uart_console(&sport->port)) { mutex_lock(&port->mutex); memset(&termios, 0, sizeof(struct ktermios)); termios.c_cflag = uport->cons->cflag; if (port->tty && termios.c_cflag == 0) termios = port->tty->termios; uport->ops->set_termios(uport, &termios, NULL); mutex_unlock(&port->mutex); } } static int lpuart_resume(struct device *dev) { struct lpuart_port *sport = dev_get_drvdata(dev); int ret; if (lpuart_uport_is_active(sport)) { if (lpuart_is_32(sport)) lpuart32_hw_setup(sport); else lpuart_hw_setup(sport); } else if (pm_runtime_active(sport->port.dev)) { ret = lpuart_enable_clks(sport); if (ret) return ret; pm_runtime_set_active(sport->port.dev); pm_runtime_enable(sport->port.dev); } lpuart_console_fixup(sport); uart_resume_port(&lpuart_reg, &sport->port); return 0; } static const struct dev_pm_ops lpuart_pm_ops = { RUNTIME_PM_OPS(lpuart_runtime_suspend, lpuart_runtime_resume, NULL) NOIRQ_SYSTEM_SLEEP_PM_OPS(lpuart_suspend_noirq, lpuart_resume_noirq) SYSTEM_SLEEP_PM_OPS(lpuart_suspend, lpuart_resume) }; static struct platform_driver lpuart_driver = { .probe = lpuart_probe, .remove_new = lpuart_remove, .driver = { .name = "fsl-lpuart", .of_match_table = lpuart_dt_ids, .pm = pm_ptr(&lpuart_pm_ops), }, }; static int __init lpuart_serial_init(void) { int ret = uart_register_driver(&lpuart_reg); if (ret) return ret; ret = platform_driver_register(&lpuart_driver); if (ret) uart_unregister_driver(&lpuart_reg); return ret; } static void __exit lpuart_serial_exit(void) { platform_driver_unregister(&lpuart_driver); uart_unregister_driver(&lpuart_reg); } module_init(lpuart_serial_init); module_exit(lpuart_serial_exit); MODULE_DESCRIPTION("Freescale lpuart serial port driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1