Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stanislav Nijnikov | 4390 | 60.48% | 11 | 21.57% |
Can Guo | 1230 | 16.94% | 4 | 7.84% |
Bean Huo | 340 | 4.68% | 7 | 13.73% |
Adrian Hunter | 246 | 3.39% | 2 | 3.92% |
Sahitya Tummala | 197 | 2.71% | 3 | 5.88% |
Asutosh Das | 179 | 2.47% | 2 | 3.92% |
Subhash Jadavani | 126 | 1.74% | 1 | 1.96% |
Santosh Yaraganavi | 115 | 1.58% | 1 | 1.96% |
Daniil Lunev | 75 | 1.03% | 1 | 1.96% |
Lu Hongfei | 71 | 0.98% | 1 | 1.96% |
Jinyoung Choi | 65 | 0.90% | 3 | 5.88% |
Vinayak Holikatti | 46 | 0.63% | 1 | 1.96% |
Stanley Chu | 46 | 0.63% | 3 | 5.88% |
Nitin Rawat | 43 | 0.59% | 1 | 1.96% |
Maramaina Naresh | 42 | 0.58% | 1 | 1.96% |
Bao D. Nguyen | 20 | 0.28% | 1 | 1.96% |
Peter Wang | 7 | 0.10% | 1 | 1.96% |
Keoseong Park | 6 | 0.08% | 1 | 1.96% |
Yaniv Gardi | 6 | 0.08% | 1 | 1.96% |
Bart Van Assche | 4 | 0.06% | 3 | 5.88% |
Akinobu Mita | 4 | 0.06% | 1 | 1.96% |
Yue Hu | 1 | 0.01% | 1 | 1.96% |
Total | 7259 | 51 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2018 Western Digital Corporation #include <linux/err.h> #include <linux/string.h> #include <linux/bitfield.h> #include <asm/unaligned.h> #include <ufs/ufs.h> #include <ufs/unipro.h> #include "ufs-sysfs.h" #include "ufshcd-priv.h" static const char *ufs_pa_pwr_mode_to_string(enum ufs_pa_pwr_mode mode) { switch (mode) { case FAST_MODE: return "FAST_MODE"; case SLOW_MODE: return "SLOW_MODE"; case FASTAUTO_MODE: return "FASTAUTO_MODE"; case SLOWAUTO_MODE: return "SLOWAUTO_MODE"; default: return "UNKNOWN"; } } static const char *ufs_hs_gear_rate_to_string(enum ufs_hs_gear_rate rate) { switch (rate) { case PA_HS_MODE_A: return "HS_RATE_A"; case PA_HS_MODE_B: return "HS_RATE_B"; default: return "UNKNOWN"; } } static const char *ufs_pwm_gear_to_string(enum ufs_pwm_gear_tag gear) { switch (gear) { case UFS_PWM_G1: return "PWM_GEAR1"; case UFS_PWM_G2: return "PWM_GEAR2"; case UFS_PWM_G3: return "PWM_GEAR3"; case UFS_PWM_G4: return "PWM_GEAR4"; case UFS_PWM_G5: return "PWM_GEAR5"; case UFS_PWM_G6: return "PWM_GEAR6"; case UFS_PWM_G7: return "PWM_GEAR7"; default: return "UNKNOWN"; } } static const char *ufs_hs_gear_to_string(enum ufs_hs_gear_tag gear) { switch (gear) { case UFS_HS_G1: return "HS_GEAR1"; case UFS_HS_G2: return "HS_GEAR2"; case UFS_HS_G3: return "HS_GEAR3"; case UFS_HS_G4: return "HS_GEAR4"; case UFS_HS_G5: return "HS_GEAR5"; default: return "UNKNOWN"; } } static const char *ufshcd_uic_link_state_to_string( enum uic_link_state state) { switch (state) { case UIC_LINK_OFF_STATE: return "OFF"; case UIC_LINK_ACTIVE_STATE: return "ACTIVE"; case UIC_LINK_HIBERN8_STATE: return "HIBERN8"; case UIC_LINK_BROKEN_STATE: return "BROKEN"; default: return "UNKNOWN"; } } static const char *ufshcd_ufs_dev_pwr_mode_to_string( enum ufs_dev_pwr_mode state) { switch (state) { case UFS_ACTIVE_PWR_MODE: return "ACTIVE"; case UFS_SLEEP_PWR_MODE: return "SLEEP"; case UFS_POWERDOWN_PWR_MODE: return "POWERDOWN"; case UFS_DEEPSLEEP_PWR_MODE: return "DEEPSLEEP"; default: return "UNKNOWN"; } } static inline ssize_t ufs_sysfs_pm_lvl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count, bool rpm) { struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_dev_info *dev_info = &hba->dev_info; unsigned long flags, value; if (kstrtoul(buf, 0, &value)) return -EINVAL; if (value >= UFS_PM_LVL_MAX) return -EINVAL; if (ufs_pm_lvl_states[value].dev_state == UFS_DEEPSLEEP_PWR_MODE && (!(hba->caps & UFSHCD_CAP_DEEPSLEEP) || !(dev_info->wspecversion >= 0x310))) return -EINVAL; spin_lock_irqsave(hba->host->host_lock, flags); if (rpm) hba->rpm_lvl = value; else hba->spm_lvl = value; spin_unlock_irqrestore(hba->host->host_lock, flags); return count; } static ssize_t rpm_lvl_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", hba->rpm_lvl); } static ssize_t rpm_lvl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, true); } static ssize_t rpm_target_dev_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( ufs_pm_lvl_states[hba->rpm_lvl].dev_state)); } static ssize_t rpm_target_link_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( ufs_pm_lvl_states[hba->rpm_lvl].link_state)); } static ssize_t spm_lvl_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", hba->spm_lvl); } static ssize_t spm_lvl_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { return ufs_sysfs_pm_lvl_store(dev, attr, buf, count, false); } static ssize_t spm_target_dev_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string( ufs_pm_lvl_states[hba->spm_lvl].dev_state)); } static ssize_t spm_target_link_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string( ufs_pm_lvl_states[hba->spm_lvl].link_state)); } /* Convert Auto-Hibernate Idle Timer register value to microseconds */ static int ufshcd_ahit_to_us(u32 ahit) { int timer = FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, ahit); int scale = FIELD_GET(UFSHCI_AHIBERN8_SCALE_MASK, ahit); for (; scale > 0; --scale) timer *= UFSHCI_AHIBERN8_SCALE_FACTOR; return timer; } /* Convert microseconds to Auto-Hibernate Idle Timer register value */ static u32 ufshcd_us_to_ahit(unsigned int timer) { unsigned int scale; for (scale = 0; timer > UFSHCI_AHIBERN8_TIMER_MASK; ++scale) timer /= UFSHCI_AHIBERN8_SCALE_FACTOR; return FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, timer) | FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, scale); } static ssize_t auto_hibern8_show(struct device *dev, struct device_attribute *attr, char *buf) { u32 ahit; int ret; struct ufs_hba *hba = dev_get_drvdata(dev); if (!ufshcd_is_auto_hibern8_supported(hba)) return -EOPNOTSUPP; down(&hba->host_sem); if (!ufshcd_is_user_access_allowed(hba)) { ret = -EBUSY; goto out; } pm_runtime_get_sync(hba->dev); ufshcd_hold(hba); ahit = ufshcd_readl(hba, REG_AUTO_HIBERNATE_IDLE_TIMER); ufshcd_release(hba); pm_runtime_put_sync(hba->dev); ret = sysfs_emit(buf, "%d\n", ufshcd_ahit_to_us(ahit)); out: up(&hba->host_sem); return ret; } static ssize_t auto_hibern8_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned int timer; int ret = 0; if (!ufshcd_is_auto_hibern8_supported(hba)) return -EOPNOTSUPP; if (kstrtouint(buf, 0, &timer)) return -EINVAL; if (timer > UFSHCI_AHIBERN8_MAX) return -EINVAL; down(&hba->host_sem); if (!ufshcd_is_user_access_allowed(hba)) { ret = -EBUSY; goto out; } ufshcd_auto_hibern8_update(hba, ufshcd_us_to_ahit(timer)); out: up(&hba->host_sem); return ret ? ret : count; } static ssize_t wb_on_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", hba->dev_info.wb_enabled); } static ssize_t wb_on_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned int wb_enable; ssize_t res; if (!ufshcd_is_wb_allowed(hba) || (ufshcd_is_clkscaling_supported(hba) && ufshcd_enable_wb_if_scaling_up(hba))) { /* * If the platform supports UFSHCD_CAP_CLK_SCALING, turn WB * on/off will be done while clock scaling up/down. */ dev_warn(dev, "It is not allowed to configure WB!\n"); return -EOPNOTSUPP; } if (kstrtouint(buf, 0, &wb_enable)) return -EINVAL; if (wb_enable != 0 && wb_enable != 1) return -EINVAL; down(&hba->host_sem); if (!ufshcd_is_user_access_allowed(hba)) { res = -EBUSY; goto out; } ufshcd_rpm_get_sync(hba); res = ufshcd_wb_toggle(hba, wb_enable); ufshcd_rpm_put_sync(hba); out: up(&hba->host_sem); return res < 0 ? res : count; } static ssize_t rtc_update_ms_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", hba->dev_info.rtc_update_period); } static ssize_t rtc_update_ms_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned int ms; bool resume_period_update = false; if (kstrtouint(buf, 0, &ms)) return -EINVAL; if (!hba->dev_info.rtc_update_period && ms > 0) resume_period_update = true; /* Minimum and maximum update frequency should be synchronized with all UFS vendors */ hba->dev_info.rtc_update_period = ms; if (resume_period_update) schedule_delayed_work(&hba->ufs_rtc_update_work, msecs_to_jiffies(hba->dev_info.rtc_update_period)); return count; } static ssize_t enable_wb_buf_flush_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", hba->dev_info.wb_buf_flush_enabled); } static ssize_t enable_wb_buf_flush_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned int enable_wb_buf_flush; ssize_t res; if (!ufshcd_is_wb_buf_flush_allowed(hba)) { dev_warn(dev, "It is not allowed to configure WB buf flushing!\n"); return -EOPNOTSUPP; } if (kstrtouint(buf, 0, &enable_wb_buf_flush)) return -EINVAL; if (enable_wb_buf_flush != 0 && enable_wb_buf_flush != 1) return -EINVAL; down(&hba->host_sem); if (!ufshcd_is_user_access_allowed(hba)) { res = -EBUSY; goto out; } ufshcd_rpm_get_sync(hba); res = ufshcd_wb_toggle_buf_flush(hba, enable_wb_buf_flush); ufshcd_rpm_put_sync(hba); out: up(&hba->host_sem); return res < 0 ? res : count; } static ssize_t wb_flush_threshold_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%u\n", hba->vps->wb_flush_threshold); } static ssize_t wb_flush_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned int wb_flush_threshold; if (kstrtouint(buf, 0, &wb_flush_threshold)) return -EINVAL; /* The range of values for wb_flush_threshold is (0,10] */ if (wb_flush_threshold > UFS_WB_BUF_REMAIN_PERCENT(100) || wb_flush_threshold == 0) { dev_err(dev, "The value of wb_flush_threshold is invalid!\n"); return -EINVAL; } hba->vps->wb_flush_threshold = wb_flush_threshold; return count; } /** * pm_qos_enable_show - sysfs handler to show pm qos enable value * @dev: device associated with the UFS controller * @attr: sysfs attribute handle * @buf: buffer for sysfs file * * Print 1 if PM QoS feature is enabled, 0 if disabled. * * Returns number of characters written to @buf. */ static ssize_t pm_qos_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", hba->pm_qos_enabled); } /** * pm_qos_enable_store - sysfs handler to store value * @dev: device associated with the UFS controller * @attr: sysfs attribute handle * @buf: buffer for sysfs file * @count: stores buffer characters count * * Input 0 to disable PM QoS and 1 value to enable. * Default state: 1 * * Return: number of characters written to @buf on success, < 0 upon failure. */ static ssize_t pm_qos_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); bool value; if (kstrtobool(buf, &value)) return -EINVAL; if (value) ufshcd_pm_qos_init(hba); else ufshcd_pm_qos_exit(hba); return count; } static DEVICE_ATTR_RW(rpm_lvl); static DEVICE_ATTR_RO(rpm_target_dev_state); static DEVICE_ATTR_RO(rpm_target_link_state); static DEVICE_ATTR_RW(spm_lvl); static DEVICE_ATTR_RO(spm_target_dev_state); static DEVICE_ATTR_RO(spm_target_link_state); static DEVICE_ATTR_RW(auto_hibern8); static DEVICE_ATTR_RW(wb_on); static DEVICE_ATTR_RW(enable_wb_buf_flush); static DEVICE_ATTR_RW(wb_flush_threshold); static DEVICE_ATTR_RW(rtc_update_ms); static DEVICE_ATTR_RW(pm_qos_enable); static struct attribute *ufs_sysfs_ufshcd_attrs[] = { &dev_attr_rpm_lvl.attr, &dev_attr_rpm_target_dev_state.attr, &dev_attr_rpm_target_link_state.attr, &dev_attr_spm_lvl.attr, &dev_attr_spm_target_dev_state.attr, &dev_attr_spm_target_link_state.attr, &dev_attr_auto_hibern8.attr, &dev_attr_wb_on.attr, &dev_attr_enable_wb_buf_flush.attr, &dev_attr_wb_flush_threshold.attr, &dev_attr_rtc_update_ms.attr, &dev_attr_pm_qos_enable.attr, NULL }; static const struct attribute_group ufs_sysfs_default_group = { .attrs = ufs_sysfs_ufshcd_attrs, }; static ssize_t clock_scaling_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", ufshcd_is_clkscaling_supported(hba)); } static ssize_t write_booster_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", ufshcd_is_wb_allowed(hba)); } static DEVICE_ATTR_RO(clock_scaling); static DEVICE_ATTR_RO(write_booster); /* * See Documentation/ABI/testing/sysfs-driver-ufs for the semantics of this * group. */ static struct attribute *ufs_sysfs_capabilities_attrs[] = { &dev_attr_clock_scaling.attr, &dev_attr_write_booster.attr, NULL }; static const struct attribute_group ufs_sysfs_capabilities_group = { .name = "capabilities", .attrs = ufs_sysfs_capabilities_attrs, }; static ssize_t monitor_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", hba->monitor.enabled); } static ssize_t monitor_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long value, flags; if (kstrtoul(buf, 0, &value)) return -EINVAL; value = !!value; spin_lock_irqsave(hba->host->host_lock, flags); if (value == hba->monitor.enabled) goto out_unlock; if (!value) { memset(&hba->monitor, 0, sizeof(hba->monitor)); } else { hba->monitor.enabled = true; hba->monitor.enabled_ts = ktime_get(); } out_unlock: spin_unlock_irqrestore(hba->host->host_lock, flags); return count; } static ssize_t monitor_chunk_size_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%lu\n", hba->monitor.chunk_size); } static ssize_t monitor_chunk_size_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ufs_hba *hba = dev_get_drvdata(dev); unsigned long value, flags; if (kstrtoul(buf, 0, &value)) return -EINVAL; spin_lock_irqsave(hba->host->host_lock, flags); /* Only allow chunk size change when monitor is disabled */ if (!hba->monitor.enabled) hba->monitor.chunk_size = value; spin_unlock_irqrestore(hba->host->host_lock, flags); return count; } static ssize_t read_total_sectors_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[READ]); } static ssize_t read_total_busy_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%llu\n", ktime_to_us(hba->monitor.total_busy[READ])); } static ssize_t read_nr_requests_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[READ]); } static ssize_t read_req_latency_avg_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_hba_monitor *m = &hba->monitor; return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[READ]), m->nr_req[READ])); } static ssize_t read_req_latency_max_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%llu\n", ktime_to_us(hba->monitor.lat_max[READ])); } static ssize_t read_req_latency_min_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%llu\n", ktime_to_us(hba->monitor.lat_min[READ])); } static ssize_t read_req_latency_sum_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%llu\n", ktime_to_us(hba->monitor.lat_sum[READ])); } static ssize_t write_total_sectors_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%lu\n", hba->monitor.nr_sec_rw[WRITE]); } static ssize_t write_total_busy_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%llu\n", ktime_to_us(hba->monitor.total_busy[WRITE])); } static ssize_t write_nr_requests_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%lu\n", hba->monitor.nr_req[WRITE]); } static ssize_t write_req_latency_avg_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); struct ufs_hba_monitor *m = &hba->monitor; return sysfs_emit(buf, "%llu\n", div_u64(ktime_to_us(m->lat_sum[WRITE]), m->nr_req[WRITE])); } static ssize_t write_req_latency_max_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%llu\n", ktime_to_us(hba->monitor.lat_max[WRITE])); } static ssize_t write_req_latency_min_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%llu\n", ktime_to_us(hba->monitor.lat_min[WRITE])); } static ssize_t write_req_latency_sum_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%llu\n", ktime_to_us(hba->monitor.lat_sum[WRITE])); } static DEVICE_ATTR_RW(monitor_enable); static DEVICE_ATTR_RW(monitor_chunk_size); static DEVICE_ATTR_RO(read_total_sectors); static DEVICE_ATTR_RO(read_total_busy); static DEVICE_ATTR_RO(read_nr_requests); static DEVICE_ATTR_RO(read_req_latency_avg); static DEVICE_ATTR_RO(read_req_latency_max); static DEVICE_ATTR_RO(read_req_latency_min); static DEVICE_ATTR_RO(read_req_latency_sum); static DEVICE_ATTR_RO(write_total_sectors); static DEVICE_ATTR_RO(write_total_busy); static DEVICE_ATTR_RO(write_nr_requests); static DEVICE_ATTR_RO(write_req_latency_avg); static DEVICE_ATTR_RO(write_req_latency_max); static DEVICE_ATTR_RO(write_req_latency_min); static DEVICE_ATTR_RO(write_req_latency_sum); static struct attribute *ufs_sysfs_monitor_attrs[] = { &dev_attr_monitor_enable.attr, &dev_attr_monitor_chunk_size.attr, &dev_attr_read_total_sectors.attr, &dev_attr_read_total_busy.attr, &dev_attr_read_nr_requests.attr, &dev_attr_read_req_latency_avg.attr, &dev_attr_read_req_latency_max.attr, &dev_attr_read_req_latency_min.attr, &dev_attr_read_req_latency_sum.attr, &dev_attr_write_total_sectors.attr, &dev_attr_write_total_busy.attr, &dev_attr_write_nr_requests.attr, &dev_attr_write_req_latency_avg.attr, &dev_attr_write_req_latency_max.attr, &dev_attr_write_req_latency_min.attr, &dev_attr_write_req_latency_sum.attr, NULL }; static const struct attribute_group ufs_sysfs_monitor_group = { .name = "monitor", .attrs = ufs_sysfs_monitor_attrs, }; static ssize_t lane_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%u\n", hba->pwr_info.lane_rx); } static ssize_t mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%s\n", ufs_pa_pwr_mode_to_string(hba->pwr_info.pwr_rx)); } static ssize_t rate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%s\n", ufs_hs_gear_rate_to_string(hba->pwr_info.hs_rate)); } static ssize_t gear_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%s\n", hba->pwr_info.hs_rate ? ufs_hs_gear_to_string(hba->pwr_info.gear_rx) : ufs_pwm_gear_to_string(hba->pwr_info.gear_rx)); } static ssize_t dev_pm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%s\n", ufshcd_ufs_dev_pwr_mode_to_string(hba->curr_dev_pwr_mode)); } static ssize_t link_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ufs_hba *hba = dev_get_drvdata(dev); return sysfs_emit(buf, "%s\n", ufshcd_uic_link_state_to_string(hba->uic_link_state)); } static DEVICE_ATTR_RO(lane); static DEVICE_ATTR_RO(mode); static DEVICE_ATTR_RO(rate); static DEVICE_ATTR_RO(gear); static DEVICE_ATTR_RO(dev_pm); static DEVICE_ATTR_RO(link_state); static struct attribute *ufs_power_info_attrs[] = { &dev_attr_lane.attr, &dev_attr_mode.attr, &dev_attr_rate.attr, &dev_attr_gear.attr, &dev_attr_dev_pm.attr, &dev_attr_link_state.attr, NULL }; static const struct attribute_group ufs_sysfs_power_info_group = { .name = "power_info", .attrs = ufs_power_info_attrs, }; static ssize_t ufs_sysfs_read_desc_param(struct ufs_hba *hba, enum desc_idn desc_id, u8 desc_index, u8 param_offset, u8 *sysfs_buf, u8 param_size) { u8 desc_buf[8] = {0}; int ret; if (param_size > 8) return -EINVAL; down(&hba->host_sem); if (!ufshcd_is_user_access_allowed(hba)) { ret = -EBUSY; goto out; } ufshcd_rpm_get_sync(hba); ret = ufshcd_read_desc_param(hba, desc_id, desc_index, param_offset, desc_buf, param_size); ufshcd_rpm_put_sync(hba); if (ret) { ret = -EINVAL; goto out; } switch (param_size) { case 1: ret = sysfs_emit(sysfs_buf, "0x%02X\n", *desc_buf); break; case 2: ret = sysfs_emit(sysfs_buf, "0x%04X\n", get_unaligned_be16(desc_buf)); break; case 4: ret = sysfs_emit(sysfs_buf, "0x%08X\n", get_unaligned_be32(desc_buf)); break; case 8: ret = sysfs_emit(sysfs_buf, "0x%016llX\n", get_unaligned_be64(desc_buf)); break; } out: up(&hba->host_sem); return ret; } #define UFS_DESC_PARAM(_name, _puname, _duname, _size) \ static ssize_t _name##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct ufs_hba *hba = dev_get_drvdata(dev); \ return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ 0, _duname##_DESC_PARAM##_puname, buf, _size); \ } \ static DEVICE_ATTR_RO(_name) #define UFS_DEVICE_DESC_PARAM(_name, _uname, _size) \ UFS_DESC_PARAM(_name, _uname, DEVICE, _size) UFS_DEVICE_DESC_PARAM(device_type, _DEVICE_TYPE, 1); UFS_DEVICE_DESC_PARAM(device_class, _DEVICE_CLASS, 1); UFS_DEVICE_DESC_PARAM(device_sub_class, _DEVICE_SUB_CLASS, 1); UFS_DEVICE_DESC_PARAM(protocol, _PRTCL, 1); UFS_DEVICE_DESC_PARAM(number_of_luns, _NUM_LU, 1); UFS_DEVICE_DESC_PARAM(number_of_wluns, _NUM_WLU, 1); UFS_DEVICE_DESC_PARAM(boot_enable, _BOOT_ENBL, 1); UFS_DEVICE_DESC_PARAM(descriptor_access_enable, _DESC_ACCSS_ENBL, 1); UFS_DEVICE_DESC_PARAM(initial_power_mode, _INIT_PWR_MODE, 1); UFS_DEVICE_DESC_PARAM(high_priority_lun, _HIGH_PR_LUN, 1); UFS_DEVICE_DESC_PARAM(secure_removal_type, _SEC_RMV_TYPE, 1); UFS_DEVICE_DESC_PARAM(support_security_lun, _SEC_LU, 1); UFS_DEVICE_DESC_PARAM(bkops_termination_latency, _BKOP_TERM_LT, 1); UFS_DEVICE_DESC_PARAM(initial_active_icc_level, _ACTVE_ICC_LVL, 1); UFS_DEVICE_DESC_PARAM(specification_version, _SPEC_VER, 2); UFS_DEVICE_DESC_PARAM(manufacturing_date, _MANF_DATE, 2); UFS_DEVICE_DESC_PARAM(manufacturer_id, _MANF_ID, 2); UFS_DEVICE_DESC_PARAM(rtt_capability, _RTT_CAP, 1); UFS_DEVICE_DESC_PARAM(rtc_update, _FRQ_RTC, 2); UFS_DEVICE_DESC_PARAM(ufs_features, _UFS_FEAT, 1); UFS_DEVICE_DESC_PARAM(ffu_timeout, _FFU_TMT, 1); UFS_DEVICE_DESC_PARAM(queue_depth, _Q_DPTH, 1); UFS_DEVICE_DESC_PARAM(device_version, _DEV_VER, 2); UFS_DEVICE_DESC_PARAM(number_of_secure_wpa, _NUM_SEC_WPA, 1); UFS_DEVICE_DESC_PARAM(psa_max_data_size, _PSA_MAX_DATA, 4); UFS_DEVICE_DESC_PARAM(psa_state_timeout, _PSA_TMT, 1); UFS_DEVICE_DESC_PARAM(ext_feature_sup, _EXT_UFS_FEATURE_SUP, 4); UFS_DEVICE_DESC_PARAM(wb_presv_us_en, _WB_PRESRV_USRSPC_EN, 1); UFS_DEVICE_DESC_PARAM(wb_type, _WB_TYPE, 1); UFS_DEVICE_DESC_PARAM(wb_shared_alloc_units, _WB_SHARED_ALLOC_UNITS, 4); static struct attribute *ufs_sysfs_device_descriptor[] = { &dev_attr_device_type.attr, &dev_attr_device_class.attr, &dev_attr_device_sub_class.attr, &dev_attr_protocol.attr, &dev_attr_number_of_luns.attr, &dev_attr_number_of_wluns.attr, &dev_attr_boot_enable.attr, &dev_attr_descriptor_access_enable.attr, &dev_attr_initial_power_mode.attr, &dev_attr_high_priority_lun.attr, &dev_attr_secure_removal_type.attr, &dev_attr_support_security_lun.attr, &dev_attr_bkops_termination_latency.attr, &dev_attr_initial_active_icc_level.attr, &dev_attr_specification_version.attr, &dev_attr_manufacturing_date.attr, &dev_attr_manufacturer_id.attr, &dev_attr_rtt_capability.attr, &dev_attr_rtc_update.attr, &dev_attr_ufs_features.attr, &dev_attr_ffu_timeout.attr, &dev_attr_queue_depth.attr, &dev_attr_device_version.attr, &dev_attr_number_of_secure_wpa.attr, &dev_attr_psa_max_data_size.attr, &dev_attr_psa_state_timeout.attr, &dev_attr_ext_feature_sup.attr, &dev_attr_wb_presv_us_en.attr, &dev_attr_wb_type.attr, &dev_attr_wb_shared_alloc_units.attr, NULL, }; static const struct attribute_group ufs_sysfs_device_descriptor_group = { .name = "device_descriptor", .attrs = ufs_sysfs_device_descriptor, }; #define UFS_INTERCONNECT_DESC_PARAM(_name, _uname, _size) \ UFS_DESC_PARAM(_name, _uname, INTERCONNECT, _size) UFS_INTERCONNECT_DESC_PARAM(unipro_version, _UNIPRO_VER, 2); UFS_INTERCONNECT_DESC_PARAM(mphy_version, _MPHY_VER, 2); static struct attribute *ufs_sysfs_interconnect_descriptor[] = { &dev_attr_unipro_version.attr, &dev_attr_mphy_version.attr, NULL, }; static const struct attribute_group ufs_sysfs_interconnect_descriptor_group = { .name = "interconnect_descriptor", .attrs = ufs_sysfs_interconnect_descriptor, }; #define UFS_GEOMETRY_DESC_PARAM(_name, _uname, _size) \ UFS_DESC_PARAM(_name, _uname, GEOMETRY, _size) UFS_GEOMETRY_DESC_PARAM(raw_device_capacity, _DEV_CAP, 8); UFS_GEOMETRY_DESC_PARAM(max_number_of_luns, _MAX_NUM_LUN, 1); UFS_GEOMETRY_DESC_PARAM(segment_size, _SEG_SIZE, 4); UFS_GEOMETRY_DESC_PARAM(allocation_unit_size, _ALLOC_UNIT_SIZE, 1); UFS_GEOMETRY_DESC_PARAM(min_addressable_block_size, _MIN_BLK_SIZE, 1); UFS_GEOMETRY_DESC_PARAM(optimal_read_block_size, _OPT_RD_BLK_SIZE, 1); UFS_GEOMETRY_DESC_PARAM(optimal_write_block_size, _OPT_WR_BLK_SIZE, 1); UFS_GEOMETRY_DESC_PARAM(max_in_buffer_size, _MAX_IN_BUF_SIZE, 1); UFS_GEOMETRY_DESC_PARAM(max_out_buffer_size, _MAX_OUT_BUF_SIZE, 1); UFS_GEOMETRY_DESC_PARAM(rpmb_rw_size, _RPMB_RW_SIZE, 1); UFS_GEOMETRY_DESC_PARAM(dyn_capacity_resource_policy, _DYN_CAP_RSRC_PLC, 1); UFS_GEOMETRY_DESC_PARAM(data_ordering, _DATA_ORDER, 1); UFS_GEOMETRY_DESC_PARAM(max_number_of_contexts, _MAX_NUM_CTX, 1); UFS_GEOMETRY_DESC_PARAM(sys_data_tag_unit_size, _TAG_UNIT_SIZE, 1); UFS_GEOMETRY_DESC_PARAM(sys_data_tag_resource_size, _TAG_RSRC_SIZE, 1); UFS_GEOMETRY_DESC_PARAM(secure_removal_types, _SEC_RM_TYPES, 1); UFS_GEOMETRY_DESC_PARAM(memory_types, _MEM_TYPES, 2); UFS_GEOMETRY_DESC_PARAM(sys_code_memory_max_alloc_units, _SCM_MAX_NUM_UNITS, 4); UFS_GEOMETRY_DESC_PARAM(sys_code_memory_capacity_adjustment_factor, _SCM_CAP_ADJ_FCTR, 2); UFS_GEOMETRY_DESC_PARAM(non_persist_memory_max_alloc_units, _NPM_MAX_NUM_UNITS, 4); UFS_GEOMETRY_DESC_PARAM(non_persist_memory_capacity_adjustment_factor, _NPM_CAP_ADJ_FCTR, 2); UFS_GEOMETRY_DESC_PARAM(enh1_memory_max_alloc_units, _ENM1_MAX_NUM_UNITS, 4); UFS_GEOMETRY_DESC_PARAM(enh1_memory_capacity_adjustment_factor, _ENM1_CAP_ADJ_FCTR, 2); UFS_GEOMETRY_DESC_PARAM(enh2_memory_max_alloc_units, _ENM2_MAX_NUM_UNITS, 4); UFS_GEOMETRY_DESC_PARAM(enh2_memory_capacity_adjustment_factor, _ENM2_CAP_ADJ_FCTR, 2); UFS_GEOMETRY_DESC_PARAM(enh3_memory_max_alloc_units, _ENM3_MAX_NUM_UNITS, 4); UFS_GEOMETRY_DESC_PARAM(enh3_memory_capacity_adjustment_factor, _ENM3_CAP_ADJ_FCTR, 2); UFS_GEOMETRY_DESC_PARAM(enh4_memory_max_alloc_units, _ENM4_MAX_NUM_UNITS, 4); UFS_GEOMETRY_DESC_PARAM(enh4_memory_capacity_adjustment_factor, _ENM4_CAP_ADJ_FCTR, 2); UFS_GEOMETRY_DESC_PARAM(wb_max_alloc_units, _WB_MAX_ALLOC_UNITS, 4); UFS_GEOMETRY_DESC_PARAM(wb_max_wb_luns, _WB_MAX_WB_LUNS, 1); UFS_GEOMETRY_DESC_PARAM(wb_buff_cap_adj, _WB_BUFF_CAP_ADJ, 1); UFS_GEOMETRY_DESC_PARAM(wb_sup_red_type, _WB_SUP_RED_TYPE, 1); UFS_GEOMETRY_DESC_PARAM(wb_sup_wb_type, _WB_SUP_WB_TYPE, 1); static struct attribute *ufs_sysfs_geometry_descriptor[] = { &dev_attr_raw_device_capacity.attr, &dev_attr_max_number_of_luns.attr, &dev_attr_segment_size.attr, &dev_attr_allocation_unit_size.attr, &dev_attr_min_addressable_block_size.attr, &dev_attr_optimal_read_block_size.attr, &dev_attr_optimal_write_block_size.attr, &dev_attr_max_in_buffer_size.attr, &dev_attr_max_out_buffer_size.attr, &dev_attr_rpmb_rw_size.attr, &dev_attr_dyn_capacity_resource_policy.attr, &dev_attr_data_ordering.attr, &dev_attr_max_number_of_contexts.attr, &dev_attr_sys_data_tag_unit_size.attr, &dev_attr_sys_data_tag_resource_size.attr, &dev_attr_secure_removal_types.attr, &dev_attr_memory_types.attr, &dev_attr_sys_code_memory_max_alloc_units.attr, &dev_attr_sys_code_memory_capacity_adjustment_factor.attr, &dev_attr_non_persist_memory_max_alloc_units.attr, &dev_attr_non_persist_memory_capacity_adjustment_factor.attr, &dev_attr_enh1_memory_max_alloc_units.attr, &dev_attr_enh1_memory_capacity_adjustment_factor.attr, &dev_attr_enh2_memory_max_alloc_units.attr, &dev_attr_enh2_memory_capacity_adjustment_factor.attr, &dev_attr_enh3_memory_max_alloc_units.attr, &dev_attr_enh3_memory_capacity_adjustment_factor.attr, &dev_attr_enh4_memory_max_alloc_units.attr, &dev_attr_enh4_memory_capacity_adjustment_factor.attr, &dev_attr_wb_max_alloc_units.attr, &dev_attr_wb_max_wb_luns.attr, &dev_attr_wb_buff_cap_adj.attr, &dev_attr_wb_sup_red_type.attr, &dev_attr_wb_sup_wb_type.attr, NULL, }; static const struct attribute_group ufs_sysfs_geometry_descriptor_group = { .name = "geometry_descriptor", .attrs = ufs_sysfs_geometry_descriptor, }; #define UFS_HEALTH_DESC_PARAM(_name, _uname, _size) \ UFS_DESC_PARAM(_name, _uname, HEALTH, _size) UFS_HEALTH_DESC_PARAM(eol_info, _EOL_INFO, 1); UFS_HEALTH_DESC_PARAM(life_time_estimation_a, _LIFE_TIME_EST_A, 1); UFS_HEALTH_DESC_PARAM(life_time_estimation_b, _LIFE_TIME_EST_B, 1); static struct attribute *ufs_sysfs_health_descriptor[] = { &dev_attr_eol_info.attr, &dev_attr_life_time_estimation_a.attr, &dev_attr_life_time_estimation_b.attr, NULL, }; static const struct attribute_group ufs_sysfs_health_descriptor_group = { .name = "health_descriptor", .attrs = ufs_sysfs_health_descriptor, }; #define UFS_POWER_DESC_PARAM(_name, _uname, _index) \ static ssize_t _name##_index##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct ufs_hba *hba = dev_get_drvdata(dev); \ return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, \ PWR_DESC##_uname##_0 + _index * 2, buf, 2); \ } \ static DEVICE_ATTR_RO(_name##_index) UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 0); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 1); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 2); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 3); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 4); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 5); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 6); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 7); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 8); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 9); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 10); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 11); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 12); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 13); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 14); UFS_POWER_DESC_PARAM(active_icc_levels_vcc, _ACTIVE_LVLS_VCC, 15); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 0); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 1); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 2); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 3); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 4); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 5); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 6); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 7); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 8); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 9); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 10); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 11); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 12); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 13); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 14); UFS_POWER_DESC_PARAM(active_icc_levels_vccq, _ACTIVE_LVLS_VCCQ, 15); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 0); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 1); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 2); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 3); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 4); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 5); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 6); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 7); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 8); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 9); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 10); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 11); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 12); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 13); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 14); UFS_POWER_DESC_PARAM(active_icc_levels_vccq2, _ACTIVE_LVLS_VCCQ2, 15); static struct attribute *ufs_sysfs_power_descriptor[] = { &dev_attr_active_icc_levels_vcc0.attr, &dev_attr_active_icc_levels_vcc1.attr, &dev_attr_active_icc_levels_vcc2.attr, &dev_attr_active_icc_levels_vcc3.attr, &dev_attr_active_icc_levels_vcc4.attr, &dev_attr_active_icc_levels_vcc5.attr, &dev_attr_active_icc_levels_vcc6.attr, &dev_attr_active_icc_levels_vcc7.attr, &dev_attr_active_icc_levels_vcc8.attr, &dev_attr_active_icc_levels_vcc9.attr, &dev_attr_active_icc_levels_vcc10.attr, &dev_attr_active_icc_levels_vcc11.attr, &dev_attr_active_icc_levels_vcc12.attr, &dev_attr_active_icc_levels_vcc13.attr, &dev_attr_active_icc_levels_vcc14.attr, &dev_attr_active_icc_levels_vcc15.attr, &dev_attr_active_icc_levels_vccq0.attr, &dev_attr_active_icc_levels_vccq1.attr, &dev_attr_active_icc_levels_vccq2.attr, &dev_attr_active_icc_levels_vccq3.attr, &dev_attr_active_icc_levels_vccq4.attr, &dev_attr_active_icc_levels_vccq5.attr, &dev_attr_active_icc_levels_vccq6.attr, &dev_attr_active_icc_levels_vccq7.attr, &dev_attr_active_icc_levels_vccq8.attr, &dev_attr_active_icc_levels_vccq9.attr, &dev_attr_active_icc_levels_vccq10.attr, &dev_attr_active_icc_levels_vccq11.attr, &dev_attr_active_icc_levels_vccq12.attr, &dev_attr_active_icc_levels_vccq13.attr, &dev_attr_active_icc_levels_vccq14.attr, &dev_attr_active_icc_levels_vccq15.attr, &dev_attr_active_icc_levels_vccq20.attr, &dev_attr_active_icc_levels_vccq21.attr, &dev_attr_active_icc_levels_vccq22.attr, &dev_attr_active_icc_levels_vccq23.attr, &dev_attr_active_icc_levels_vccq24.attr, &dev_attr_active_icc_levels_vccq25.attr, &dev_attr_active_icc_levels_vccq26.attr, &dev_attr_active_icc_levels_vccq27.attr, &dev_attr_active_icc_levels_vccq28.attr, &dev_attr_active_icc_levels_vccq29.attr, &dev_attr_active_icc_levels_vccq210.attr, &dev_attr_active_icc_levels_vccq211.attr, &dev_attr_active_icc_levels_vccq212.attr, &dev_attr_active_icc_levels_vccq213.attr, &dev_attr_active_icc_levels_vccq214.attr, &dev_attr_active_icc_levels_vccq215.attr, NULL, }; static const struct attribute_group ufs_sysfs_power_descriptor_group = { .name = "power_descriptor", .attrs = ufs_sysfs_power_descriptor, }; #define UFS_STRING_DESCRIPTOR(_name, _pname) \ static ssize_t _name##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ u8 index; \ struct ufs_hba *hba = dev_get_drvdata(dev); \ int ret; \ int desc_len = QUERY_DESC_MAX_SIZE; \ u8 *desc_buf; \ \ down(&hba->host_sem); \ if (!ufshcd_is_user_access_allowed(hba)) { \ up(&hba->host_sem); \ return -EBUSY; \ } \ desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_ATOMIC); \ if (!desc_buf) { \ up(&hba->host_sem); \ return -ENOMEM; \ } \ ufshcd_rpm_get_sync(hba); \ ret = ufshcd_query_descriptor_retry(hba, \ UPIU_QUERY_OPCODE_READ_DESC, QUERY_DESC_IDN_DEVICE, \ 0, 0, desc_buf, &desc_len); \ if (ret) { \ ret = -EINVAL; \ goto out; \ } \ index = desc_buf[DEVICE_DESC_PARAM##_pname]; \ kfree(desc_buf); \ desc_buf = NULL; \ ret = ufshcd_read_string_desc(hba, index, &desc_buf, \ SD_ASCII_STD); \ if (ret < 0) \ goto out; \ ret = sysfs_emit(buf, "%s\n", desc_buf); \ out: \ ufshcd_rpm_put_sync(hba); \ kfree(desc_buf); \ up(&hba->host_sem); \ return ret; \ } \ static DEVICE_ATTR_RO(_name) UFS_STRING_DESCRIPTOR(manufacturer_name, _MANF_NAME); UFS_STRING_DESCRIPTOR(product_name, _PRDCT_NAME); UFS_STRING_DESCRIPTOR(oem_id, _OEM_ID); UFS_STRING_DESCRIPTOR(serial_number, _SN); UFS_STRING_DESCRIPTOR(product_revision, _PRDCT_REV); static struct attribute *ufs_sysfs_string_descriptors[] = { &dev_attr_manufacturer_name.attr, &dev_attr_product_name.attr, &dev_attr_oem_id.attr, &dev_attr_serial_number.attr, &dev_attr_product_revision.attr, NULL, }; static const struct attribute_group ufs_sysfs_string_descriptors_group = { .name = "string_descriptors", .attrs = ufs_sysfs_string_descriptors, }; static inline bool ufshcd_is_wb_flags(enum flag_idn idn) { return idn >= QUERY_FLAG_IDN_WB_EN && idn <= QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8; } #define UFS_FLAG(_name, _uname) \ static ssize_t _name##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ bool flag; \ u8 index = 0; \ int ret; \ struct ufs_hba *hba = dev_get_drvdata(dev); \ \ down(&hba->host_sem); \ if (!ufshcd_is_user_access_allowed(hba)) { \ up(&hba->host_sem); \ return -EBUSY; \ } \ if (ufshcd_is_wb_flags(QUERY_FLAG_IDN##_uname)) \ index = ufshcd_wb_get_query_index(hba); \ ufshcd_rpm_get_sync(hba); \ ret = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, \ QUERY_FLAG_IDN##_uname, index, &flag); \ ufshcd_rpm_put_sync(hba); \ if (ret) { \ ret = -EINVAL; \ goto out; \ } \ ret = sysfs_emit(buf, "%s\n", flag ? "true" : "false"); \ out: \ up(&hba->host_sem); \ return ret; \ } \ static DEVICE_ATTR_RO(_name) UFS_FLAG(device_init, _FDEVICEINIT); UFS_FLAG(permanent_wpe, _PERMANENT_WPE); UFS_FLAG(power_on_wpe, _PWR_ON_WPE); UFS_FLAG(bkops_enable, _BKOPS_EN); UFS_FLAG(life_span_mode_enable, _LIFE_SPAN_MODE_ENABLE); UFS_FLAG(phy_resource_removal, _FPHYRESOURCEREMOVAL); UFS_FLAG(busy_rtc, _BUSY_RTC); UFS_FLAG(disable_fw_update, _PERMANENTLY_DISABLE_FW_UPDATE); UFS_FLAG(wb_enable, _WB_EN); UFS_FLAG(wb_flush_en, _WB_BUFF_FLUSH_EN); UFS_FLAG(wb_flush_during_h8, _WB_BUFF_FLUSH_DURING_HIBERN8); static struct attribute *ufs_sysfs_device_flags[] = { &dev_attr_device_init.attr, &dev_attr_permanent_wpe.attr, &dev_attr_power_on_wpe.attr, &dev_attr_bkops_enable.attr, &dev_attr_life_span_mode_enable.attr, &dev_attr_phy_resource_removal.attr, &dev_attr_busy_rtc.attr, &dev_attr_disable_fw_update.attr, &dev_attr_wb_enable.attr, &dev_attr_wb_flush_en.attr, &dev_attr_wb_flush_during_h8.attr, NULL, }; static const struct attribute_group ufs_sysfs_flags_group = { .name = "flags", .attrs = ufs_sysfs_device_flags, }; static inline bool ufshcd_is_wb_attrs(enum attr_idn idn) { return idn >= QUERY_ATTR_IDN_WB_FLUSH_STATUS && idn <= QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE; } #define UFS_ATTRIBUTE(_name, _uname) \ static ssize_t _name##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct ufs_hba *hba = dev_get_drvdata(dev); \ u32 value; \ int ret; \ u8 index = 0; \ \ down(&hba->host_sem); \ if (!ufshcd_is_user_access_allowed(hba)) { \ up(&hba->host_sem); \ return -EBUSY; \ } \ if (ufshcd_is_wb_attrs(QUERY_ATTR_IDN##_uname)) \ index = ufshcd_wb_get_query_index(hba); \ ufshcd_rpm_get_sync(hba); \ ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, \ QUERY_ATTR_IDN##_uname, index, 0, &value); \ ufshcd_rpm_put_sync(hba); \ if (ret) { \ ret = -EINVAL; \ goto out; \ } \ ret = sysfs_emit(buf, "0x%08X\n", value); \ out: \ up(&hba->host_sem); \ return ret; \ } \ static DEVICE_ATTR_RO(_name) UFS_ATTRIBUTE(boot_lun_enabled, _BOOT_LU_EN); UFS_ATTRIBUTE(current_power_mode, _POWER_MODE); UFS_ATTRIBUTE(active_icc_level, _ACTIVE_ICC_LVL); UFS_ATTRIBUTE(ooo_data_enabled, _OOO_DATA_EN); UFS_ATTRIBUTE(bkops_status, _BKOPS_STATUS); UFS_ATTRIBUTE(purge_status, _PURGE_STATUS); UFS_ATTRIBUTE(max_data_in_size, _MAX_DATA_IN); UFS_ATTRIBUTE(max_data_out_size, _MAX_DATA_OUT); UFS_ATTRIBUTE(reference_clock_frequency, _REF_CLK_FREQ); UFS_ATTRIBUTE(configuration_descriptor_lock, _CONF_DESC_LOCK); UFS_ATTRIBUTE(max_number_of_rtt, _MAX_NUM_OF_RTT); UFS_ATTRIBUTE(exception_event_control, _EE_CONTROL); UFS_ATTRIBUTE(exception_event_status, _EE_STATUS); UFS_ATTRIBUTE(ffu_status, _FFU_STATUS); UFS_ATTRIBUTE(psa_state, _PSA_STATE); UFS_ATTRIBUTE(psa_data_size, _PSA_DATA_SIZE); UFS_ATTRIBUTE(wb_flush_status, _WB_FLUSH_STATUS); UFS_ATTRIBUTE(wb_avail_buf, _AVAIL_WB_BUFF_SIZE); UFS_ATTRIBUTE(wb_life_time_est, _WB_BUFF_LIFE_TIME_EST); UFS_ATTRIBUTE(wb_cur_buf, _CURR_WB_BUFF_SIZE); static struct attribute *ufs_sysfs_attributes[] = { &dev_attr_boot_lun_enabled.attr, &dev_attr_current_power_mode.attr, &dev_attr_active_icc_level.attr, &dev_attr_ooo_data_enabled.attr, &dev_attr_bkops_status.attr, &dev_attr_purge_status.attr, &dev_attr_max_data_in_size.attr, &dev_attr_max_data_out_size.attr, &dev_attr_reference_clock_frequency.attr, &dev_attr_configuration_descriptor_lock.attr, &dev_attr_max_number_of_rtt.attr, &dev_attr_exception_event_control.attr, &dev_attr_exception_event_status.attr, &dev_attr_ffu_status.attr, &dev_attr_psa_state.attr, &dev_attr_psa_data_size.attr, &dev_attr_wb_flush_status.attr, &dev_attr_wb_avail_buf.attr, &dev_attr_wb_life_time_est.attr, &dev_attr_wb_cur_buf.attr, NULL, }; static const struct attribute_group ufs_sysfs_attributes_group = { .name = "attributes", .attrs = ufs_sysfs_attributes, }; static const struct attribute_group *ufs_sysfs_groups[] = { &ufs_sysfs_default_group, &ufs_sysfs_capabilities_group, &ufs_sysfs_monitor_group, &ufs_sysfs_power_info_group, &ufs_sysfs_device_descriptor_group, &ufs_sysfs_interconnect_descriptor_group, &ufs_sysfs_geometry_descriptor_group, &ufs_sysfs_health_descriptor_group, &ufs_sysfs_power_descriptor_group, &ufs_sysfs_string_descriptors_group, &ufs_sysfs_flags_group, &ufs_sysfs_attributes_group, NULL, }; #define UFS_LUN_DESC_PARAM(_pname, _puname, _duname, _size) \ static ssize_t _pname##_show(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct scsi_device *sdev = to_scsi_device(dev); \ struct ufs_hba *hba = shost_priv(sdev->host); \ u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); \ if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) \ return -EINVAL; \ return ufs_sysfs_read_desc_param(hba, QUERY_DESC_IDN_##_duname, \ lun, _duname##_DESC_PARAM##_puname, buf, _size); \ } \ static DEVICE_ATTR_RO(_pname) #define UFS_UNIT_DESC_PARAM(_name, _uname, _size) \ UFS_LUN_DESC_PARAM(_name, _uname, UNIT, _size) UFS_UNIT_DESC_PARAM(lu_enable, _LU_ENABLE, 1); UFS_UNIT_DESC_PARAM(boot_lun_id, _BOOT_LUN_ID, 1); UFS_UNIT_DESC_PARAM(lun_write_protect, _LU_WR_PROTECT, 1); UFS_UNIT_DESC_PARAM(lun_queue_depth, _LU_Q_DEPTH, 1); UFS_UNIT_DESC_PARAM(psa_sensitive, _PSA_SENSITIVE, 1); UFS_UNIT_DESC_PARAM(lun_memory_type, _MEM_TYPE, 1); UFS_UNIT_DESC_PARAM(data_reliability, _DATA_RELIABILITY, 1); UFS_UNIT_DESC_PARAM(logical_block_size, _LOGICAL_BLK_SIZE, 1); UFS_UNIT_DESC_PARAM(logical_block_count, _LOGICAL_BLK_COUNT, 8); UFS_UNIT_DESC_PARAM(erase_block_size, _ERASE_BLK_SIZE, 4); UFS_UNIT_DESC_PARAM(provisioning_type, _PROVISIONING_TYPE, 1); UFS_UNIT_DESC_PARAM(physical_memory_resourse_count, _PHY_MEM_RSRC_CNT, 8); UFS_UNIT_DESC_PARAM(context_capabilities, _CTX_CAPABILITIES, 2); UFS_UNIT_DESC_PARAM(large_unit_granularity, _LARGE_UNIT_SIZE_M1, 1); UFS_UNIT_DESC_PARAM(wb_buf_alloc_units, _WB_BUF_ALLOC_UNITS, 4); static struct attribute *ufs_sysfs_unit_descriptor[] = { &dev_attr_lu_enable.attr, &dev_attr_boot_lun_id.attr, &dev_attr_lun_write_protect.attr, &dev_attr_lun_queue_depth.attr, &dev_attr_psa_sensitive.attr, &dev_attr_lun_memory_type.attr, &dev_attr_data_reliability.attr, &dev_attr_logical_block_size.attr, &dev_attr_logical_block_count.attr, &dev_attr_erase_block_size.attr, &dev_attr_provisioning_type.attr, &dev_attr_physical_memory_resourse_count.attr, &dev_attr_context_capabilities.attr, &dev_attr_large_unit_granularity.attr, &dev_attr_wb_buf_alloc_units.attr, NULL, }; static umode_t ufs_unit_descriptor_is_visible(struct kobject *kobj, struct attribute *attr, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct scsi_device *sdev = to_scsi_device(dev); u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); umode_t mode = attr->mode; if (lun == UFS_UPIU_BOOT_WLUN || lun == UFS_UPIU_UFS_DEVICE_WLUN) /* Boot and device WLUN have no unit descriptors */ mode = 0; if (lun == UFS_UPIU_RPMB_WLUN && attr == &dev_attr_wb_buf_alloc_units.attr) mode = 0; return mode; } const struct attribute_group ufs_sysfs_unit_descriptor_group = { .name = "unit_descriptor", .attrs = ufs_sysfs_unit_descriptor, .is_visible = ufs_unit_descriptor_is_visible, }; static ssize_t dyn_cap_needed_attribute_show(struct device *dev, struct device_attribute *attr, char *buf) { u32 value; struct scsi_device *sdev = to_scsi_device(dev); struct ufs_hba *hba = shost_priv(sdev->host); u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); int ret; down(&hba->host_sem); if (!ufshcd_is_user_access_allowed(hba)) { ret = -EBUSY; goto out; } ufshcd_rpm_get_sync(hba); ret = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_READ_ATTR, QUERY_ATTR_IDN_DYN_CAP_NEEDED, lun, 0, &value); ufshcd_rpm_put_sync(hba); if (ret) { ret = -EINVAL; goto out; } ret = sysfs_emit(buf, "0x%08X\n", value); out: up(&hba->host_sem); return ret; } static DEVICE_ATTR_RO(dyn_cap_needed_attribute); static struct attribute *ufs_sysfs_lun_attributes[] = { &dev_attr_dyn_cap_needed_attribute.attr, NULL, }; const struct attribute_group ufs_sysfs_lun_attributes_group = { .attrs = ufs_sysfs_lun_attributes, }; void ufs_sysfs_add_nodes(struct device *dev) { int ret; ret = sysfs_create_groups(&dev->kobj, ufs_sysfs_groups); if (ret) dev_err(dev, "%s: sysfs groups creation failed (err = %d)\n", __func__, ret); } void ufs_sysfs_remove_nodes(struct device *dev) { sysfs_remove_groups(&dev->kobj, ufs_sysfs_groups); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1