Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stanley Chu | 5039 | 62.69% | 54 | 45.00% |
Po-Wen Kao | 1442 | 17.94% | 11 | 9.17% |
Peter Wang | 1019 | 12.68% | 19 | 15.83% |
CC Chou | 221 | 2.75% | 1 | 0.83% |
Alice.Chao | 130 | 1.62% | 3 | 2.50% |
Bart Van Assche | 51 | 0.63% | 8 | 6.67% |
Adrian Hunter | 20 | 0.25% | 2 | 1.67% |
Anders Roxell | 20 | 0.25% | 1 | 0.83% |
Asutosh Das | 13 | 0.16% | 1 | 0.83% |
Bean Huo | 12 | 0.15% | 1 | 0.83% |
Krzysztof Kozlowski | 9 | 0.11% | 2 | 1.67% |
Can Guo | 8 | 0.10% | 1 | 0.83% |
Ye Guojin | 8 | 0.10% | 1 | 0.83% |
Ren Zhijie | 6 | 0.07% | 1 | 0.83% |
Yangtao Li | 5 | 0.06% | 1 | 0.83% |
Joao Pinto | 5 | 0.06% | 1 | 0.83% |
Li Wei | 5 | 0.06% | 1 | 0.83% |
Zou Wei | 5 | 0.06% | 1 | 0.83% |
ChanWoo Lee | 4 | 0.05% | 3 | 2.50% |
Miaoqian Lin | 3 | 0.04% | 1 | 0.83% |
Rob Herring | 3 | 0.04% | 1 | 0.83% |
Arnd Bergmann | 3 | 0.04% | 1 | 0.83% |
Yue haibing | 3 | 0.04% | 1 | 0.83% |
Uwe Kleine-König | 2 | 0.02% | 1 | 0.83% |
ChenTao | 1 | 0.01% | 1 | 0.83% |
dongjian | 1 | 0.01% | 1 | 0.83% |
Total | 8038 | 120 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 MediaTek Inc. * Authors: * Stanley Chu <stanley.chu@mediatek.com> * Peter Wang <peter.wang@mediatek.com> */ #include <linux/arm-smccc.h> #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_platform.h> #include <linux/phy/phy.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <ufs/ufshcd.h> #include "ufshcd-pltfrm.h" #include <ufs/ufs_quirks.h> #include <ufs/unipro.h> #include "ufs-mediatek.h" #include "ufs-mediatek-sip.h" static int ufs_mtk_config_mcq(struct ufs_hba *hba, bool irq); #define CREATE_TRACE_POINTS #include "ufs-mediatek-trace.h" #undef CREATE_TRACE_POINTS #define MAX_SUPP_MAC 64 #define MCQ_QUEUE_OFFSET(c) ((((c) >> 16) & 0xFF) * 0x200) static const struct ufs_dev_quirk ufs_mtk_dev_fixups[] = { { .wmanufacturerid = UFS_ANY_VENDOR, .model = UFS_ANY_MODEL, .quirk = UFS_DEVICE_QUIRK_DELAY_AFTER_LPM | UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, { .wmanufacturerid = UFS_VENDOR_SKHYNIX, .model = "H9HQ21AFAMZDAR", .quirk = UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES }, {} }; static const struct of_device_id ufs_mtk_of_match[] = { { .compatible = "mediatek,mt8183-ufshci" }, {}, }; MODULE_DEVICE_TABLE(of, ufs_mtk_of_match); /* * Details of UIC Errors */ static const char *const ufs_uic_err_str[] = { "PHY Adapter Layer", "Data Link Layer", "Network Link Layer", "Transport Link Layer", "DME" }; static const char *const ufs_uic_pa_err_str[] = { "PHY error on Lane 0", "PHY error on Lane 1", "PHY error on Lane 2", "PHY error on Lane 3", "Generic PHY Adapter Error. This should be the LINERESET indication" }; static const char *const ufs_uic_dl_err_str[] = { "NAC_RECEIVED", "TCx_REPLAY_TIMER_EXPIRED", "AFCx_REQUEST_TIMER_EXPIRED", "FCx_PROTECTION_TIMER_EXPIRED", "CRC_ERROR", "RX_BUFFER_OVERFLOW", "MAX_FRAME_LENGTH_EXCEEDED", "WRONG_SEQUENCE_NUMBER", "AFC_FRAME_SYNTAX_ERROR", "NAC_FRAME_SYNTAX_ERROR", "EOF_SYNTAX_ERROR", "FRAME_SYNTAX_ERROR", "BAD_CTRL_SYMBOL_TYPE", "PA_INIT_ERROR", "PA_ERROR_IND_RECEIVED", "PA_INIT" }; static bool ufs_mtk_is_boost_crypt_enabled(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); return !!(host->caps & UFS_MTK_CAP_BOOST_CRYPT_ENGINE); } static bool ufs_mtk_is_va09_supported(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); return !!(host->caps & UFS_MTK_CAP_VA09_PWR_CTRL); } static bool ufs_mtk_is_broken_vcc(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); return !!(host->caps & UFS_MTK_CAP_BROKEN_VCC); } static bool ufs_mtk_is_pmc_via_fastauto(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); return !!(host->caps & UFS_MTK_CAP_PMC_VIA_FASTAUTO); } static bool ufs_mtk_is_tx_skew_fix(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); return (host->caps & UFS_MTK_CAP_TX_SKEW_FIX); } static bool ufs_mtk_is_rtff_mtcmos(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); return (host->caps & UFS_MTK_CAP_RTFF_MTCMOS); } static bool ufs_mtk_is_allow_vccqx_lpm(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); return (host->caps & UFS_MTK_CAP_ALLOW_VCCQX_LPM); } static void ufs_mtk_cfg_unipro_cg(struct ufs_hba *hba, bool enable) { u32 tmp; if (enable) { ufshcd_dme_get(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), &tmp); tmp = tmp | (1 << RX_SYMBOL_CLK_GATE_EN) | (1 << SYS_CLK_GATE_EN) | (1 << TX_CLK_GATE_EN); ufshcd_dme_set(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), tmp); ufshcd_dme_get(hba, UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), &tmp); tmp = tmp & ~(1 << TX_SYMBOL_CLK_REQ_FORCE); ufshcd_dme_set(hba, UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), tmp); } else { ufshcd_dme_get(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), &tmp); tmp = tmp & ~((1 << RX_SYMBOL_CLK_GATE_EN) | (1 << SYS_CLK_GATE_EN) | (1 << TX_CLK_GATE_EN)); ufshcd_dme_set(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), tmp); ufshcd_dme_get(hba, UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), &tmp); tmp = tmp | (1 << TX_SYMBOL_CLK_REQ_FORCE); ufshcd_dme_set(hba, UIC_ARG_MIB(VS_DEBUGCLOCKENABLE), tmp); } } static void ufs_mtk_crypto_enable(struct ufs_hba *hba) { struct arm_smccc_res res; ufs_mtk_crypto_ctrl(res, 1); if (res.a0) { dev_info(hba->dev, "%s: crypto enable failed, err: %lu\n", __func__, res.a0); hba->caps &= ~UFSHCD_CAP_CRYPTO; } } static void ufs_mtk_host_reset(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct arm_smccc_res res; reset_control_assert(host->hci_reset); reset_control_assert(host->crypto_reset); reset_control_assert(host->unipro_reset); reset_control_assert(host->mphy_reset); usleep_range(100, 110); reset_control_deassert(host->unipro_reset); reset_control_deassert(host->crypto_reset); reset_control_deassert(host->hci_reset); reset_control_deassert(host->mphy_reset); /* restore mphy setting aftre mphy reset */ if (host->mphy_reset) ufs_mtk_mphy_ctrl(UFS_MPHY_RESTORE, res); } static void ufs_mtk_init_reset_control(struct ufs_hba *hba, struct reset_control **rc, char *str) { *rc = devm_reset_control_get(hba->dev, str); if (IS_ERR(*rc)) { dev_info(hba->dev, "Failed to get reset control %s: %ld\n", str, PTR_ERR(*rc)); *rc = NULL; } } static void ufs_mtk_init_reset(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); ufs_mtk_init_reset_control(hba, &host->hci_reset, "hci_rst"); ufs_mtk_init_reset_control(hba, &host->unipro_reset, "unipro_rst"); ufs_mtk_init_reset_control(hba, &host->crypto_reset, "crypto_rst"); ufs_mtk_init_reset_control(hba, &host->mphy_reset, "mphy_rst"); } static int ufs_mtk_hce_enable_notify(struct ufs_hba *hba, enum ufs_notify_change_status status) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); if (status == PRE_CHANGE) { if (host->unipro_lpm) { hba->vps->hba_enable_delay_us = 0; } else { hba->vps->hba_enable_delay_us = 600; ufs_mtk_host_reset(hba); } if (hba->caps & UFSHCD_CAP_CRYPTO) ufs_mtk_crypto_enable(hba); if (host->caps & UFS_MTK_CAP_DISABLE_AH8) { ufshcd_writel(hba, 0, REG_AUTO_HIBERNATE_IDLE_TIMER); hba->capabilities &= ~MASK_AUTO_HIBERN8_SUPPORT; hba->ahit = 0; } /* * Turn on CLK_CG early to bypass abnormal ERR_CHK signal * to prevent host hang issue */ ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_XOUFS_CTRL) | 0x80, REG_UFS_XOUFS_CTRL); } return 0; } static int ufs_mtk_bind_mphy(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct device *dev = hba->dev; struct device_node *np = dev->of_node; int err = 0; host->mphy = devm_of_phy_get_by_index(dev, np, 0); if (host->mphy == ERR_PTR(-EPROBE_DEFER)) { /* * UFS driver might be probed before the phy driver does. * In that case we would like to return EPROBE_DEFER code. */ err = -EPROBE_DEFER; dev_info(dev, "%s: required phy hasn't probed yet. err = %d\n", __func__, err); } else if (IS_ERR(host->mphy)) { err = PTR_ERR(host->mphy); if (err != -ENODEV) { dev_info(dev, "%s: PHY get failed %d\n", __func__, err); } } if (err) host->mphy = NULL; /* * Allow unbound mphy because not every platform needs specific * mphy control. */ if (err == -ENODEV) err = 0; return err; } static int ufs_mtk_setup_ref_clk(struct ufs_hba *hba, bool on) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct arm_smccc_res res; ktime_t timeout, time_checked; u32 value; if (host->ref_clk_enabled == on) return 0; ufs_mtk_ref_clk_notify(on, PRE_CHANGE, res); if (on) { ufshcd_writel(hba, REFCLK_REQUEST, REG_UFS_REFCLK_CTRL); } else { ufshcd_delay_us(host->ref_clk_gating_wait_us, 10); ufshcd_writel(hba, REFCLK_RELEASE, REG_UFS_REFCLK_CTRL); } /* Wait for ack */ timeout = ktime_add_us(ktime_get(), REFCLK_REQ_TIMEOUT_US); do { time_checked = ktime_get(); value = ufshcd_readl(hba, REG_UFS_REFCLK_CTRL); /* Wait until ack bit equals to req bit */ if (((value & REFCLK_ACK) >> 1) == (value & REFCLK_REQUEST)) goto out; usleep_range(100, 200); } while (ktime_before(time_checked, timeout)); dev_err(hba->dev, "missing ack of refclk req, reg: 0x%x\n", value); ufs_mtk_ref_clk_notify(host->ref_clk_enabled, POST_CHANGE, res); return -ETIMEDOUT; out: host->ref_clk_enabled = on; if (on) ufshcd_delay_us(host->ref_clk_ungating_wait_us, 10); ufs_mtk_ref_clk_notify(on, POST_CHANGE, res); return 0; } static void ufs_mtk_setup_ref_clk_wait_us(struct ufs_hba *hba, u16 gating_us) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); if (hba->dev_info.clk_gating_wait_us) { host->ref_clk_gating_wait_us = hba->dev_info.clk_gating_wait_us; } else { host->ref_clk_gating_wait_us = gating_us; } host->ref_clk_ungating_wait_us = REFCLK_DEFAULT_WAIT_US; } static void ufs_mtk_dbg_sel(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); if (((host->ip_ver >> 16) & 0xFF) >= 0x36) { ufshcd_writel(hba, 0x820820, REG_UFS_DEBUG_SEL); ufshcd_writel(hba, 0x0, REG_UFS_DEBUG_SEL_B0); ufshcd_writel(hba, 0x55555555, REG_UFS_DEBUG_SEL_B1); ufshcd_writel(hba, 0xaaaaaaaa, REG_UFS_DEBUG_SEL_B2); ufshcd_writel(hba, 0xffffffff, REG_UFS_DEBUG_SEL_B3); } else { ufshcd_writel(hba, 0x20, REG_UFS_DEBUG_SEL); } } static void ufs_mtk_wait_idle_state(struct ufs_hba *hba, unsigned long retry_ms) { u64 timeout, time_checked; u32 val, sm; bool wait_idle; /* cannot use plain ktime_get() in suspend */ timeout = ktime_get_mono_fast_ns() + retry_ms * 1000000UL; /* wait a specific time after check base */ udelay(10); wait_idle = false; do { time_checked = ktime_get_mono_fast_ns(); ufs_mtk_dbg_sel(hba); val = ufshcd_readl(hba, REG_UFS_PROBE); sm = val & 0x1f; /* * if state is in H8 enter and H8 enter confirm * wait until return to idle state. */ if ((sm >= VS_HIB_ENTER) && (sm <= VS_HIB_EXIT)) { wait_idle = true; udelay(50); continue; } else if (!wait_idle) break; if (wait_idle && (sm == VS_HCE_BASE)) break; } while (time_checked < timeout); if (wait_idle && sm != VS_HCE_BASE) dev_info(hba->dev, "wait idle tmo: 0x%x\n", val); } static int ufs_mtk_wait_link_state(struct ufs_hba *hba, u32 state, unsigned long max_wait_ms) { ktime_t timeout, time_checked; u32 val; timeout = ktime_add_ms(ktime_get(), max_wait_ms); do { time_checked = ktime_get(); ufs_mtk_dbg_sel(hba); val = ufshcd_readl(hba, REG_UFS_PROBE); val = val >> 28; if (val == state) return 0; /* Sleep for max. 200us */ usleep_range(100, 200); } while (ktime_before(time_checked, timeout)); return -ETIMEDOUT; } static int ufs_mtk_mphy_power_on(struct ufs_hba *hba, bool on) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct phy *mphy = host->mphy; struct arm_smccc_res res; int ret = 0; if (!mphy || !(on ^ host->mphy_powered_on)) return 0; if (on) { if (ufs_mtk_is_va09_supported(hba)) { ret = regulator_enable(host->reg_va09); if (ret < 0) goto out; /* wait 200 us to stablize VA09 */ usleep_range(200, 210); ufs_mtk_va09_pwr_ctrl(res, 1); } phy_power_on(mphy); } else { phy_power_off(mphy); if (ufs_mtk_is_va09_supported(hba)) { ufs_mtk_va09_pwr_ctrl(res, 0); ret = regulator_disable(host->reg_va09); } } out: if (ret) { dev_info(hba->dev, "failed to %s va09: %d\n", on ? "enable" : "disable", ret); } else { host->mphy_powered_on = on; } return ret; } static int ufs_mtk_get_host_clk(struct device *dev, const char *name, struct clk **clk_out) { struct clk *clk; int err = 0; clk = devm_clk_get(dev, name); if (IS_ERR(clk)) err = PTR_ERR(clk); else *clk_out = clk; return err; } static void ufs_mtk_boost_crypt(struct ufs_hba *hba, bool boost) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct ufs_mtk_crypt_cfg *cfg; struct regulator *reg; int volt, ret; if (!ufs_mtk_is_boost_crypt_enabled(hba)) return; cfg = host->crypt; volt = cfg->vcore_volt; reg = cfg->reg_vcore; ret = clk_prepare_enable(cfg->clk_crypt_mux); if (ret) { dev_info(hba->dev, "clk_prepare_enable(): %d\n", ret); return; } if (boost) { ret = regulator_set_voltage(reg, volt, INT_MAX); if (ret) { dev_info(hba->dev, "failed to set vcore to %d\n", volt); goto out; } ret = clk_set_parent(cfg->clk_crypt_mux, cfg->clk_crypt_perf); if (ret) { dev_info(hba->dev, "failed to set clk_crypt_perf\n"); regulator_set_voltage(reg, 0, INT_MAX); goto out; } } else { ret = clk_set_parent(cfg->clk_crypt_mux, cfg->clk_crypt_lp); if (ret) { dev_info(hba->dev, "failed to set clk_crypt_lp\n"); goto out; } ret = regulator_set_voltage(reg, 0, INT_MAX); if (ret) { dev_info(hba->dev, "failed to set vcore to MIN\n"); } } out: clk_disable_unprepare(cfg->clk_crypt_mux); } static int ufs_mtk_init_host_clk(struct ufs_hba *hba, const char *name, struct clk **clk) { int ret; ret = ufs_mtk_get_host_clk(hba->dev, name, clk); if (ret) { dev_info(hba->dev, "%s: failed to get %s: %d", __func__, name, ret); } return ret; } static void ufs_mtk_init_boost_crypt(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct ufs_mtk_crypt_cfg *cfg; struct device *dev = hba->dev; struct regulator *reg; u32 volt; host->crypt = devm_kzalloc(dev, sizeof(*(host->crypt)), GFP_KERNEL); if (!host->crypt) goto disable_caps; reg = devm_regulator_get_optional(dev, "dvfsrc-vcore"); if (IS_ERR(reg)) { dev_info(dev, "failed to get dvfsrc-vcore: %ld", PTR_ERR(reg)); goto disable_caps; } if (of_property_read_u32(dev->of_node, "boost-crypt-vcore-min", &volt)) { dev_info(dev, "failed to get boost-crypt-vcore-min"); goto disable_caps; } cfg = host->crypt; if (ufs_mtk_init_host_clk(hba, "crypt_mux", &cfg->clk_crypt_mux)) goto disable_caps; if (ufs_mtk_init_host_clk(hba, "crypt_lp", &cfg->clk_crypt_lp)) goto disable_caps; if (ufs_mtk_init_host_clk(hba, "crypt_perf", &cfg->clk_crypt_perf)) goto disable_caps; cfg->reg_vcore = reg; cfg->vcore_volt = volt; host->caps |= UFS_MTK_CAP_BOOST_CRYPT_ENGINE; disable_caps: return; } static void ufs_mtk_init_va09_pwr_ctrl(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); host->reg_va09 = regulator_get(hba->dev, "va09"); if (IS_ERR(host->reg_va09)) dev_info(hba->dev, "failed to get va09"); else host->caps |= UFS_MTK_CAP_VA09_PWR_CTRL; } static void ufs_mtk_init_host_caps(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct device_node *np = hba->dev->of_node; if (of_property_read_bool(np, "mediatek,ufs-boost-crypt")) ufs_mtk_init_boost_crypt(hba); if (of_property_read_bool(np, "mediatek,ufs-support-va09")) ufs_mtk_init_va09_pwr_ctrl(hba); if (of_property_read_bool(np, "mediatek,ufs-disable-ah8")) host->caps |= UFS_MTK_CAP_DISABLE_AH8; if (of_property_read_bool(np, "mediatek,ufs-broken-vcc")) host->caps |= UFS_MTK_CAP_BROKEN_VCC; if (of_property_read_bool(np, "mediatek,ufs-pmc-via-fastauto")) host->caps |= UFS_MTK_CAP_PMC_VIA_FASTAUTO; if (of_property_read_bool(np, "mediatek,ufs-tx-skew-fix")) host->caps |= UFS_MTK_CAP_TX_SKEW_FIX; if (of_property_read_bool(np, "mediatek,ufs-disable-mcq")) host->caps |= UFS_MTK_CAP_DISABLE_MCQ; if (of_property_read_bool(np, "mediatek,ufs-rtff-mtcmos")) host->caps |= UFS_MTK_CAP_RTFF_MTCMOS; dev_info(hba->dev, "caps: 0x%x", host->caps); } static void ufs_mtk_scale_perf(struct ufs_hba *hba, bool scale_up) { ufs_mtk_boost_crypt(hba, scale_up); } static void ufs_mtk_pwr_ctrl(struct ufs_hba *hba, bool on) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); if (on) { phy_power_on(host->mphy); ufs_mtk_setup_ref_clk(hba, on); if (!ufshcd_is_clkscaling_supported(hba)) ufs_mtk_scale_perf(hba, on); } else { if (!ufshcd_is_clkscaling_supported(hba)) ufs_mtk_scale_perf(hba, on); ufs_mtk_setup_ref_clk(hba, on); phy_power_off(host->mphy); } } static void ufs_mtk_mcq_disable_irq(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); u32 irq, i; if (!is_mcq_enabled(hba)) return; if (host->mcq_nr_intr == 0) return; for (i = 0; i < host->mcq_nr_intr; i++) { irq = host->mcq_intr_info[i].irq; disable_irq(irq); } host->is_mcq_intr_enabled = false; } static void ufs_mtk_mcq_enable_irq(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); u32 irq, i; if (!is_mcq_enabled(hba)) return; if (host->mcq_nr_intr == 0) return; if (host->is_mcq_intr_enabled == true) return; for (i = 0; i < host->mcq_nr_intr; i++) { irq = host->mcq_intr_info[i].irq; enable_irq(irq); } host->is_mcq_intr_enabled = true; } /** * ufs_mtk_setup_clocks - enables/disable clocks * @hba: host controller instance * @on: If true, enable clocks else disable them. * @status: PRE_CHANGE or POST_CHANGE notify * * Return: 0 on success, non-zero on failure. */ static int ufs_mtk_setup_clocks(struct ufs_hba *hba, bool on, enum ufs_notify_change_status status) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); bool clk_pwr_off = false; int ret = 0; /* * In case ufs_mtk_init() is not yet done, simply ignore. * This ufs_mtk_setup_clocks() shall be called from * ufs_mtk_init() after init is done. */ if (!host) return 0; if (!on && status == PRE_CHANGE) { if (ufshcd_is_link_off(hba)) { clk_pwr_off = true; } else if (ufshcd_is_link_hibern8(hba) || (!ufshcd_can_hibern8_during_gating(hba) && ufshcd_is_auto_hibern8_enabled(hba))) { /* * Gate ref-clk and poweroff mphy if link state is in * OFF or Hibern8 by either Auto-Hibern8 or * ufshcd_link_state_transition(). */ ret = ufs_mtk_wait_link_state(hba, VS_LINK_HIBERN8, 15); if (!ret) clk_pwr_off = true; } if (clk_pwr_off) ufs_mtk_pwr_ctrl(hba, false); ufs_mtk_mcq_disable_irq(hba); } else if (on && status == POST_CHANGE) { ufs_mtk_pwr_ctrl(hba, true); ufs_mtk_mcq_enable_irq(hba); } return ret; } static void ufs_mtk_get_controller_version(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); int ret, ver = 0; if (host->hw_ver.major) return; /* Set default (minimum) version anyway */ host->hw_ver.major = 2; ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_LOCALVERINFO), &ver); if (!ret) { if (ver >= UFS_UNIPRO_VER_1_8) { host->hw_ver.major = 3; /* * Fix HCI version for some platforms with * incorrect version */ if (hba->ufs_version < ufshci_version(3, 0)) hba->ufs_version = ufshci_version(3, 0); } } } static u32 ufs_mtk_get_ufs_hci_version(struct ufs_hba *hba) { return hba->ufs_version; } /** * ufs_mtk_init_clocks - Init mtk driver private clocks * * @hba: per adapter instance */ static void ufs_mtk_init_clocks(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct list_head *head = &hba->clk_list_head; struct ufs_mtk_clk *mclk = &host->mclk; struct ufs_clk_info *clki, *clki_tmp; /* * Find private clocks and store them in struct ufs_mtk_clk. * Remove "ufs_sel_min_src" and "ufs_sel_min_src" from list to avoid * being switched on/off in clock gating. */ list_for_each_entry_safe(clki, clki_tmp, head, list) { if (!strcmp(clki->name, "ufs_sel")) { host->mclk.ufs_sel_clki = clki; } else if (!strcmp(clki->name, "ufs_sel_max_src")) { host->mclk.ufs_sel_max_clki = clki; clk_disable_unprepare(clki->clk); list_del(&clki->list); } else if (!strcmp(clki->name, "ufs_sel_min_src")) { host->mclk.ufs_sel_min_clki = clki; clk_disable_unprepare(clki->clk); list_del(&clki->list); } } if (!mclk->ufs_sel_clki || !mclk->ufs_sel_max_clki || !mclk->ufs_sel_min_clki) { hba->caps &= ~UFSHCD_CAP_CLK_SCALING; dev_info(hba->dev, "%s: Clk-scaling not ready. Feature disabled.", __func__); } } #define MAX_VCC_NAME 30 static int ufs_mtk_vreg_fix_vcc(struct ufs_hba *hba) { struct ufs_vreg_info *info = &hba->vreg_info; struct device_node *np = hba->dev->of_node; struct device *dev = hba->dev; char vcc_name[MAX_VCC_NAME]; struct arm_smccc_res res; int err, ver; if (hba->vreg_info.vcc) return 0; if (of_property_read_bool(np, "mediatek,ufs-vcc-by-num")) { ufs_mtk_get_vcc_num(res); if (res.a1 > UFS_VCC_NONE && res.a1 < UFS_VCC_MAX) snprintf(vcc_name, MAX_VCC_NAME, "vcc-opt%lu", res.a1); else return -ENODEV; } else if (of_property_read_bool(np, "mediatek,ufs-vcc-by-ver")) { ver = (hba->dev_info.wspecversion & 0xF00) >> 8; snprintf(vcc_name, MAX_VCC_NAME, "vcc-ufs%u", ver); } else { return 0; } err = ufshcd_populate_vreg(dev, vcc_name, &info->vcc, false); if (err) return err; err = ufshcd_get_vreg(dev, info->vcc); if (err) return err; err = regulator_enable(info->vcc->reg); if (!err) { info->vcc->enabled = true; dev_info(dev, "%s: %s enabled\n", __func__, vcc_name); } return err; } static void ufs_mtk_vreg_fix_vccqx(struct ufs_hba *hba) { struct ufs_vreg_info *info = &hba->vreg_info; struct ufs_vreg **vreg_on, **vreg_off; if (hba->dev_info.wspecversion >= 0x0300) { vreg_on = &info->vccq; vreg_off = &info->vccq2; } else { vreg_on = &info->vccq2; vreg_off = &info->vccq; } if (*vreg_on) (*vreg_on)->always_on = true; if (*vreg_off) { regulator_disable((*vreg_off)->reg); devm_kfree(hba->dev, (*vreg_off)->name); devm_kfree(hba->dev, *vreg_off); *vreg_off = NULL; } } static void ufs_mtk_init_mcq_irq(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct platform_device *pdev; int i; int irq; host->mcq_nr_intr = UFSHCD_MAX_Q_NR; pdev = container_of(hba->dev, struct platform_device, dev); if (host->caps & UFS_MTK_CAP_DISABLE_MCQ) goto failed; for (i = 0; i < host->mcq_nr_intr; i++) { /* irq index 0 is legacy irq, sq/cq irq start from index 1 */ irq = platform_get_irq(pdev, i + 1); if (irq < 0) { host->mcq_intr_info[i].irq = MTK_MCQ_INVALID_IRQ; goto failed; } host->mcq_intr_info[i].hba = hba; host->mcq_intr_info[i].irq = irq; dev_info(hba->dev, "get platform mcq irq: %d, %d\n", i, irq); } return; failed: /* invalidate irq info */ for (i = 0; i < host->mcq_nr_intr; i++) host->mcq_intr_info[i].irq = MTK_MCQ_INVALID_IRQ; host->mcq_nr_intr = 0; } /** * ufs_mtk_init - find other essential mmio bases * @hba: host controller instance * * Binds PHY with controller and powers up PHY enabling clocks * and regulators. * * Return: -EPROBE_DEFER if binding fails, returns negative error * on phy power up failure and returns zero on success. */ static int ufs_mtk_init(struct ufs_hba *hba) { const struct of_device_id *id; struct device *dev = hba->dev; struct ufs_mtk_host *host; struct Scsi_Host *shost = hba->host; int err = 0; struct arm_smccc_res res; host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) { err = -ENOMEM; dev_info(dev, "%s: no memory for mtk ufs host\n", __func__); goto out; } host->hba = hba; ufshcd_set_variant(hba, host); id = of_match_device(ufs_mtk_of_match, dev); if (!id) { err = -EINVAL; goto out; } /* Initialize host capability */ ufs_mtk_init_host_caps(hba); ufs_mtk_init_mcq_irq(hba); err = ufs_mtk_bind_mphy(hba); if (err) goto out_variant_clear; ufs_mtk_init_reset(hba); /* backup mphy setting if mphy can reset */ if (host->mphy_reset) ufs_mtk_mphy_ctrl(UFS_MPHY_BACKUP, res); /* Enable runtime autosuspend */ hba->caps |= UFSHCD_CAP_RPM_AUTOSUSPEND; /* Enable clock-gating */ hba->caps |= UFSHCD_CAP_CLK_GATING; /* Enable inline encryption */ hba->caps |= UFSHCD_CAP_CRYPTO; /* Enable WriteBooster */ hba->caps |= UFSHCD_CAP_WB_EN; /* Enable clk scaling*/ hba->caps |= UFSHCD_CAP_CLK_SCALING; /* Set runtime pm delay to replace default */ shost->rpm_autosuspend_delay = MTK_RPM_AUTOSUSPEND_DELAY_MS; hba->quirks |= UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL; hba->quirks |= UFSHCD_QUIRK_MCQ_BROKEN_INTR; hba->quirks |= UFSHCD_QUIRK_MCQ_BROKEN_RTC; hba->vps->wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(80); if (host->caps & UFS_MTK_CAP_DISABLE_AH8) hba->caps |= UFSHCD_CAP_HIBERN8_WITH_CLK_GATING; ufs_mtk_init_clocks(hba); /* * ufshcd_vops_init() is invoked after * ufshcd_setup_clock(true) in ufshcd_hba_init() thus * phy clock setup is skipped. * * Enable phy clocks specifically here. */ ufs_mtk_mphy_power_on(hba, true); if (ufs_mtk_is_rtff_mtcmos(hba)) { /* First Restore here, to avoid backup unexpected value */ ufs_mtk_mtcmos_ctrl(false, res); /* Power on to init */ ufs_mtk_mtcmos_ctrl(true, res); } ufs_mtk_setup_clocks(hba, true, POST_CHANGE); host->ip_ver = ufshcd_readl(hba, REG_UFS_MTK_IP_VER); goto out; out_variant_clear: ufshcd_set_variant(hba, NULL); out: return err; } static bool ufs_mtk_pmc_via_fastauto(struct ufs_hba *hba, struct ufs_pa_layer_attr *dev_req_params) { if (!ufs_mtk_is_pmc_via_fastauto(hba)) return false; if (dev_req_params->hs_rate == hba->pwr_info.hs_rate) return false; if (dev_req_params->pwr_tx != FAST_MODE && dev_req_params->gear_tx < UFS_HS_G4) return false; if (dev_req_params->pwr_rx != FAST_MODE && dev_req_params->gear_rx < UFS_HS_G4) return false; return true; } static int ufs_mtk_pre_pwr_change(struct ufs_hba *hba, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct ufs_host_params host_params; int ret; ufshcd_init_host_params(&host_params); host_params.hs_rx_gear = UFS_HS_G5; host_params.hs_tx_gear = UFS_HS_G5; ret = ufshcd_negotiate_pwr_params(&host_params, dev_max_params, dev_req_params); if (ret) { pr_info("%s: failed to determine capabilities\n", __func__); } if (ufs_mtk_pmc_via_fastauto(hba, dev_req_params)) { ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), UFS_HS_G1); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), UFS_HS_G1); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), dev_req_params->lane_tx); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), dev_req_params->lane_rx); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), dev_req_params->hs_rate); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXHSADAPTTYPE), PA_NO_ADAPT); ret = ufshcd_uic_change_pwr_mode(hba, FASTAUTO_MODE << 4 | FASTAUTO_MODE); if (ret) { dev_err(hba->dev, "%s: HSG1B FASTAUTO failed ret=%d\n", __func__, ret); } } if (host->hw_ver.major >= 3) { ret = ufshcd_dme_configure_adapt(hba, dev_req_params->gear_tx, PA_INITIAL_ADAPT); } return ret; } static int ufs_mtk_pwr_change_notify(struct ufs_hba *hba, enum ufs_notify_change_status stage, struct ufs_pa_layer_attr *dev_max_params, struct ufs_pa_layer_attr *dev_req_params) { int ret = 0; switch (stage) { case PRE_CHANGE: ret = ufs_mtk_pre_pwr_change(hba, dev_max_params, dev_req_params); break; case POST_CHANGE: break; default: ret = -EINVAL; break; } return ret; } static int ufs_mtk_unipro_set_lpm(struct ufs_hba *hba, bool lpm) { int ret; struct ufs_mtk_host *host = ufshcd_get_variant(hba); ret = ufshcd_dme_set(hba, UIC_ARG_MIB_SEL(VS_UNIPROPOWERDOWNCONTROL, 0), lpm ? 1 : 0); if (!ret || !lpm) { /* * Forcibly set as non-LPM mode if UIC commands is failed * to use default hba_enable_delay_us value for re-enabling * the host. */ host->unipro_lpm = lpm; } return ret; } static int ufs_mtk_pre_link(struct ufs_hba *hba) { int ret; u32 tmp; ufs_mtk_get_controller_version(hba); ret = ufs_mtk_unipro_set_lpm(hba, false); if (ret) return ret; /* * Setting PA_Local_TX_LCC_Enable to 0 before link startup * to make sure that both host and device TX LCC are disabled * once link startup is completed. */ ret = ufshcd_disable_host_tx_lcc(hba); if (ret) return ret; /* disable deep stall */ ret = ufshcd_dme_get(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), &tmp); if (ret) return ret; tmp &= ~(1 << 6); ret = ufshcd_dme_set(hba, UIC_ARG_MIB(VS_SAVEPOWERCONTROL), tmp); return ret; } static void ufs_mtk_setup_clk_gating(struct ufs_hba *hba) { u32 ah_ms; if (ufshcd_is_clkgating_allowed(hba)) { if (ufshcd_is_auto_hibern8_supported(hba) && hba->ahit) ah_ms = FIELD_GET(UFSHCI_AHIBERN8_TIMER_MASK, hba->ahit); else ah_ms = 10; ufshcd_clkgate_delay_set(hba->dev, ah_ms + 5); } } static void ufs_mtk_post_link(struct ufs_hba *hba) { /* enable unipro clock gating feature */ ufs_mtk_cfg_unipro_cg(hba, true); /* will be configured during probe hba */ if (ufshcd_is_auto_hibern8_supported(hba)) hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 10) | FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); ufs_mtk_setup_clk_gating(hba); } static int ufs_mtk_link_startup_notify(struct ufs_hba *hba, enum ufs_notify_change_status stage) { int ret = 0; switch (stage) { case PRE_CHANGE: ret = ufs_mtk_pre_link(hba); break; case POST_CHANGE: ufs_mtk_post_link(hba); break; default: ret = -EINVAL; break; } return ret; } static int ufs_mtk_device_reset(struct ufs_hba *hba) { struct arm_smccc_res res; /* disable hba before device reset */ ufshcd_hba_stop(hba); ufs_mtk_device_reset_ctrl(0, res); /* * The reset signal is active low. UFS devices shall detect * more than or equal to 1us of positive or negative RST_n * pulse width. * * To be on safe side, keep the reset low for at least 10us. */ usleep_range(10, 15); ufs_mtk_device_reset_ctrl(1, res); /* Some devices may need time to respond to rst_n */ usleep_range(10000, 15000); dev_info(hba->dev, "device reset done\n"); return 0; } static int ufs_mtk_link_set_hpm(struct ufs_hba *hba) { int err; err = ufshcd_hba_enable(hba); if (err) return err; err = ufs_mtk_unipro_set_lpm(hba, false); if (err) return err; err = ufshcd_uic_hibern8_exit(hba); if (err) return err; /* Check link state to make sure exit h8 success */ ufs_mtk_wait_idle_state(hba, 5); err = ufs_mtk_wait_link_state(hba, VS_LINK_UP, 100); if (err) { dev_warn(hba->dev, "exit h8 state fail, err=%d\n", err); return err; } ufshcd_set_link_active(hba); err = ufshcd_make_hba_operational(hba); if (err) return err; if (is_mcq_enabled(hba)) { ufs_mtk_config_mcq(hba, false); ufshcd_mcq_make_queues_operational(hba); ufshcd_mcq_config_mac(hba, hba->nutrs); ufshcd_mcq_enable(hba); } return 0; } static int ufs_mtk_link_set_lpm(struct ufs_hba *hba) { int err; /* Disable reset confirm feature by UniPro */ ufshcd_writel(hba, (ufshcd_readl(hba, REG_UFS_XOUFS_CTRL) & ~0x100), REG_UFS_XOUFS_CTRL); err = ufs_mtk_unipro_set_lpm(hba, true); if (err) { /* Resume UniPro state for following error recovery */ ufs_mtk_unipro_set_lpm(hba, false); return err; } return 0; } static void ufs_mtk_vccqx_set_lpm(struct ufs_hba *hba, bool lpm) { struct ufs_vreg *vccqx = NULL; if (hba->vreg_info.vccq) vccqx = hba->vreg_info.vccq; else vccqx = hba->vreg_info.vccq2; regulator_set_mode(vccqx->reg, lpm ? REGULATOR_MODE_IDLE : REGULATOR_MODE_NORMAL); } static void ufs_mtk_vsx_set_lpm(struct ufs_hba *hba, bool lpm) { struct arm_smccc_res res; ufs_mtk_device_pwr_ctrl(!lpm, (unsigned long)hba->dev_info.wspecversion, res); } static void ufs_mtk_dev_vreg_set_lpm(struct ufs_hba *hba, bool lpm) { bool skip_vccqx = false; /* Prevent entering LPM when device is still active */ if (lpm && ufshcd_is_ufs_dev_active(hba)) return; /* Skip vccqx lpm control and control vsx only */ if (!hba->vreg_info.vccq && !hba->vreg_info.vccq2) skip_vccqx = true; /* VCC is always-on, control vsx only */ if (!hba->vreg_info.vcc) skip_vccqx = true; /* Broken vcc keep vcc always on, most case control vsx only */ if (lpm && hba->vreg_info.vcc && hba->vreg_info.vcc->enabled) { /* Some device vccqx/vsx can enter lpm */ if (ufs_mtk_is_allow_vccqx_lpm(hba)) skip_vccqx = false; else /* control vsx only */ skip_vccqx = true; } if (lpm) { if (!skip_vccqx) ufs_mtk_vccqx_set_lpm(hba, lpm); ufs_mtk_vsx_set_lpm(hba, lpm); } else { ufs_mtk_vsx_set_lpm(hba, lpm); if (!skip_vccqx) ufs_mtk_vccqx_set_lpm(hba, lpm); } } static void ufs_mtk_auto_hibern8_disable(struct ufs_hba *hba) { int ret; /* disable auto-hibern8 */ ufshcd_writel(hba, 0, REG_AUTO_HIBERNATE_IDLE_TIMER); /* wait host return to idle state when auto-hibern8 off */ ufs_mtk_wait_idle_state(hba, 5); ret = ufs_mtk_wait_link_state(hba, VS_LINK_UP, 100); if (ret) dev_warn(hba->dev, "exit h8 state fail, ret=%d\n", ret); } static int ufs_mtk_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op, enum ufs_notify_change_status status) { int err; struct arm_smccc_res res; if (status == PRE_CHANGE) { if (ufshcd_is_auto_hibern8_supported(hba)) ufs_mtk_auto_hibern8_disable(hba); return 0; } if (ufshcd_is_link_hibern8(hba)) { err = ufs_mtk_link_set_lpm(hba); if (err) goto fail; } if (!ufshcd_is_link_active(hba)) { /* * Make sure no error will be returned to prevent * ufshcd_suspend() re-enabling regulators while vreg is still * in low-power mode. */ err = ufs_mtk_mphy_power_on(hba, false); if (err) goto fail; } if (ufshcd_is_link_off(hba)) ufs_mtk_device_reset_ctrl(0, res); ufs_mtk_sram_pwr_ctrl(false, res); return 0; fail: /* * Set link as off state enforcedly to trigger * ufshcd_host_reset_and_restore() in ufshcd_suspend() * for completed host reset. */ ufshcd_set_link_off(hba); return -EAGAIN; } static int ufs_mtk_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) { int err; struct arm_smccc_res res; if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) ufs_mtk_dev_vreg_set_lpm(hba, false); ufs_mtk_sram_pwr_ctrl(true, res); err = ufs_mtk_mphy_power_on(hba, true); if (err) goto fail; if (ufshcd_is_link_hibern8(hba)) { err = ufs_mtk_link_set_hpm(hba); if (err) goto fail; } return 0; fail: return ufshcd_link_recovery(hba); } static void ufs_mtk_dbg_register_dump(struct ufs_hba *hba) { /* Dump ufshci register 0x140 ~ 0x14C */ ufshcd_dump_regs(hba, REG_UFS_XOUFS_CTRL, 0x10, "XOUFS Ctrl (0x140): "); ufshcd_dump_regs(hba, REG_UFS_EXTREG, 0x4, "Ext Reg "); /* Dump ufshci register 0x2200 ~ 0x22AC */ ufshcd_dump_regs(hba, REG_UFS_MPHYCTRL, REG_UFS_REJECT_MON - REG_UFS_MPHYCTRL + 4, "MPHY Ctrl (0x2200): "); /* Direct debugging information to REG_MTK_PROBE */ ufs_mtk_dbg_sel(hba); ufshcd_dump_regs(hba, REG_UFS_PROBE, 0x4, "Debug Probe "); } static int ufs_mtk_apply_dev_quirks(struct ufs_hba *hba) { struct ufs_dev_info *dev_info = &hba->dev_info; u16 mid = dev_info->wmanufacturerid; if (mid == UFS_VENDOR_SAMSUNG) { ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 6); ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 10); } else if (mid == UFS_VENDOR_MICRON) { /* Only for the host which have TX skew issue */ if (ufs_mtk_is_tx_skew_fix(hba) && (STR_PRFX_EQUAL("MT128GBCAV2U31", dev_info->model) || STR_PRFX_EQUAL("MT256GBCAV4U31", dev_info->model) || STR_PRFX_EQUAL("MT512GBCAV8U31", dev_info->model) || STR_PRFX_EQUAL("MT256GBEAX4U40", dev_info->model) || STR_PRFX_EQUAL("MT512GAYAX4U40", dev_info->model) || STR_PRFX_EQUAL("MT001TAYAX8U40", dev_info->model))) { ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8); } } /* * Decide waiting time before gating reference clock and * after ungating reference clock according to vendors' * requirements. */ if (mid == UFS_VENDOR_SAMSUNG) ufs_mtk_setup_ref_clk_wait_us(hba, 1); else if (mid == UFS_VENDOR_SKHYNIX) ufs_mtk_setup_ref_clk_wait_us(hba, 30); else if (mid == UFS_VENDOR_TOSHIBA) ufs_mtk_setup_ref_clk_wait_us(hba, 100); else ufs_mtk_setup_ref_clk_wait_us(hba, REFCLK_DEFAULT_WAIT_US); return 0; } static void ufs_mtk_fixup_dev_quirks(struct ufs_hba *hba) { ufshcd_fixup_dev_quirks(hba, ufs_mtk_dev_fixups); if (ufs_mtk_is_broken_vcc(hba) && hba->vreg_info.vcc && (hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)) { hba->vreg_info.vcc->always_on = true; /* * VCC will be kept always-on thus we don't * need any delay during regulator operations */ hba->dev_quirks &= ~(UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | UFS_DEVICE_QUIRK_DELAY_AFTER_LPM); } ufs_mtk_vreg_fix_vcc(hba); ufs_mtk_vreg_fix_vccqx(hba); } static void ufs_mtk_event_notify(struct ufs_hba *hba, enum ufs_event_type evt, void *data) { unsigned int val = *(u32 *)data; unsigned long reg; u8 bit; trace_ufs_mtk_event(evt, val); /* Print details of UIC Errors */ if (evt <= UFS_EVT_DME_ERR) { dev_info(hba->dev, "Host UIC Error Code (%s): %08x\n", ufs_uic_err_str[evt], val); reg = val; } if (evt == UFS_EVT_PA_ERR) { for_each_set_bit(bit, ®, ARRAY_SIZE(ufs_uic_pa_err_str)) dev_info(hba->dev, "%s\n", ufs_uic_pa_err_str[bit]); } if (evt == UFS_EVT_DL_ERR) { for_each_set_bit(bit, ®, ARRAY_SIZE(ufs_uic_dl_err_str)) dev_info(hba->dev, "%s\n", ufs_uic_dl_err_str[bit]); } } static void ufs_mtk_config_scaling_param(struct ufs_hba *hba, struct devfreq_dev_profile *profile, struct devfreq_simple_ondemand_data *data) { /* Customize min gear in clk scaling */ hba->clk_scaling.min_gear = UFS_HS_G4; hba->vps->devfreq_profile.polling_ms = 200; hba->vps->ondemand_data.upthreshold = 50; hba->vps->ondemand_data.downdifferential = 20; } /** * ufs_mtk_clk_scale - Internal clk scaling operation * * MTK platform supports clk scaling by switching parent of ufs_sel(mux). * The ufs_sel downstream to ufs_ck which feeds directly to UFS hardware. * Max and min clocks rate of ufs_sel defined in dts should match rate of * "ufs_sel_max_src" and "ufs_sel_min_src" respectively. * This prevent changing rate of pll clock that is shared between modules. * * @hba: per adapter instance * @scale_up: True for scaling up and false for scaling down */ static void ufs_mtk_clk_scale(struct ufs_hba *hba, bool scale_up) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); struct ufs_mtk_clk *mclk = &host->mclk; struct ufs_clk_info *clki = mclk->ufs_sel_clki; int ret = 0; ret = clk_prepare_enable(clki->clk); if (ret) { dev_info(hba->dev, "clk_prepare_enable() fail, ret: %d\n", ret); return; } if (scale_up) { ret = clk_set_parent(clki->clk, mclk->ufs_sel_max_clki->clk); clki->curr_freq = clki->max_freq; } else { ret = clk_set_parent(clki->clk, mclk->ufs_sel_min_clki->clk); clki->curr_freq = clki->min_freq; } if (ret) { dev_info(hba->dev, "Failed to set ufs_sel_clki, ret: %d\n", ret); } clk_disable_unprepare(clki->clk); trace_ufs_mtk_clk_scale(clki->name, scale_up, clk_get_rate(clki->clk)); } static int ufs_mtk_clk_scale_notify(struct ufs_hba *hba, bool scale_up, enum ufs_notify_change_status status) { if (!ufshcd_is_clkscaling_supported(hba)) return 0; if (status == PRE_CHANGE) { /* Switch parent before clk_set_rate() */ ufs_mtk_clk_scale(hba, scale_up); } else { /* Request interrupt latency QoS accordingly */ ufs_mtk_scale_perf(hba, scale_up); } return 0; } static int ufs_mtk_get_hba_mac(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); /* MCQ operation not permitted */ if (host->caps & UFS_MTK_CAP_DISABLE_MCQ) return -EPERM; return MAX_SUPP_MAC; } static int ufs_mtk_op_runtime_config(struct ufs_hba *hba) { struct ufshcd_mcq_opr_info_t *opr; int i; hba->mcq_opr[OPR_SQD].offset = REG_UFS_MTK_SQD; hba->mcq_opr[OPR_SQIS].offset = REG_UFS_MTK_SQIS; hba->mcq_opr[OPR_CQD].offset = REG_UFS_MTK_CQD; hba->mcq_opr[OPR_CQIS].offset = REG_UFS_MTK_CQIS; for (i = 0; i < OPR_MAX; i++) { opr = &hba->mcq_opr[i]; opr->stride = REG_UFS_MCQ_STRIDE; opr->base = hba->mmio_base + opr->offset; } return 0; } static int ufs_mtk_mcq_config_resource(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); /* fail mcq initialization if interrupt is not filled properly */ if (!host->mcq_nr_intr) { dev_info(hba->dev, "IRQs not ready. MCQ disabled."); return -EINVAL; } hba->mcq_base = hba->mmio_base + MCQ_QUEUE_OFFSET(hba->mcq_capabilities); return 0; } static irqreturn_t ufs_mtk_mcq_intr(int irq, void *__intr_info) { struct ufs_mtk_mcq_intr_info *mcq_intr_info = __intr_info; struct ufs_hba *hba = mcq_intr_info->hba; struct ufs_hw_queue *hwq; u32 events; int qid = mcq_intr_info->qid; hwq = &hba->uhq[qid]; events = ufshcd_mcq_read_cqis(hba, qid); if (events) ufshcd_mcq_write_cqis(hba, events, qid); if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) ufshcd_mcq_poll_cqe_lock(hba, hwq); return IRQ_HANDLED; } static int ufs_mtk_config_mcq_irq(struct ufs_hba *hba) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); u32 irq, i; int ret; for (i = 0; i < host->mcq_nr_intr; i++) { irq = host->mcq_intr_info[i].irq; if (irq == MTK_MCQ_INVALID_IRQ) { dev_err(hba->dev, "invalid irq. %d\n", i); return -ENOPARAM; } host->mcq_intr_info[i].qid = i; ret = devm_request_irq(hba->dev, irq, ufs_mtk_mcq_intr, 0, UFSHCD, &host->mcq_intr_info[i]); dev_dbg(hba->dev, "request irq %d intr %s\n", irq, ret ? "failed" : ""); if (ret) { dev_err(hba->dev, "Cannot request irq %d\n", ret); return ret; } } return 0; } static int ufs_mtk_config_mcq(struct ufs_hba *hba, bool irq) { struct ufs_mtk_host *host = ufshcd_get_variant(hba); int ret = 0; if (!host->mcq_set_intr) { /* Disable irq option register */ ufshcd_rmwl(hba, MCQ_INTR_EN_MSK, 0, REG_UFS_MMIO_OPT_CTRL_0); if (irq) { ret = ufs_mtk_config_mcq_irq(hba); if (ret) return ret; } host->mcq_set_intr = true; } ufshcd_rmwl(hba, MCQ_AH8, MCQ_AH8, REG_UFS_MMIO_OPT_CTRL_0); ufshcd_rmwl(hba, MCQ_INTR_EN_MSK, MCQ_MULTI_INTR_EN, REG_UFS_MMIO_OPT_CTRL_0); return 0; } static int ufs_mtk_config_esi(struct ufs_hba *hba) { return ufs_mtk_config_mcq(hba, true); } /* * struct ufs_hba_mtk_vops - UFS MTK specific variant operations * * The variant operations configure the necessary controller and PHY * handshake during initialization. */ static const struct ufs_hba_variant_ops ufs_hba_mtk_vops = { .name = "mediatek.ufshci", .init = ufs_mtk_init, .get_ufs_hci_version = ufs_mtk_get_ufs_hci_version, .setup_clocks = ufs_mtk_setup_clocks, .hce_enable_notify = ufs_mtk_hce_enable_notify, .link_startup_notify = ufs_mtk_link_startup_notify, .pwr_change_notify = ufs_mtk_pwr_change_notify, .apply_dev_quirks = ufs_mtk_apply_dev_quirks, .fixup_dev_quirks = ufs_mtk_fixup_dev_quirks, .suspend = ufs_mtk_suspend, .resume = ufs_mtk_resume, .dbg_register_dump = ufs_mtk_dbg_register_dump, .device_reset = ufs_mtk_device_reset, .event_notify = ufs_mtk_event_notify, .config_scaling_param = ufs_mtk_config_scaling_param, .clk_scale_notify = ufs_mtk_clk_scale_notify, /* mcq vops */ .get_hba_mac = ufs_mtk_get_hba_mac, .op_runtime_config = ufs_mtk_op_runtime_config, .mcq_config_resource = ufs_mtk_mcq_config_resource, .config_esi = ufs_mtk_config_esi, }; /** * ufs_mtk_probe - probe routine of the driver * @pdev: pointer to Platform device handle * * Return: zero for success and non-zero for failure. */ static int ufs_mtk_probe(struct platform_device *pdev) { int err; struct device *dev = &pdev->dev; struct device_node *reset_node; struct platform_device *reset_pdev; struct device_link *link; reset_node = of_find_compatible_node(NULL, NULL, "ti,syscon-reset"); if (!reset_node) { dev_notice(dev, "find ti,syscon-reset fail\n"); goto skip_reset; } reset_pdev = of_find_device_by_node(reset_node); if (!reset_pdev) { dev_notice(dev, "find reset_pdev fail\n"); goto skip_reset; } link = device_link_add(dev, &reset_pdev->dev, DL_FLAG_AUTOPROBE_CONSUMER); put_device(&reset_pdev->dev); if (!link) { dev_notice(dev, "add reset device_link fail\n"); goto skip_reset; } /* supplier is not probed */ if (link->status == DL_STATE_DORMANT) { err = -EPROBE_DEFER; goto out; } skip_reset: /* perform generic probe */ err = ufshcd_pltfrm_init(pdev, &ufs_hba_mtk_vops); out: if (err) dev_err(dev, "probe failed %d\n", err); of_node_put(reset_node); return err; } /** * ufs_mtk_remove - set driver_data of the device to NULL * @pdev: pointer to platform device handle * * Always return 0 */ static void ufs_mtk_remove(struct platform_device *pdev) { struct ufs_hba *hba = platform_get_drvdata(pdev); pm_runtime_get_sync(&(pdev)->dev); ufshcd_remove(hba); } #ifdef CONFIG_PM_SLEEP static int ufs_mtk_system_suspend(struct device *dev) { struct ufs_hba *hba = dev_get_drvdata(dev); struct arm_smccc_res res; int ret; ret = ufshcd_system_suspend(dev); if (ret) return ret; ufs_mtk_dev_vreg_set_lpm(hba, true); if (ufs_mtk_is_rtff_mtcmos(hba)) ufs_mtk_mtcmos_ctrl(false, res); return 0; } static int ufs_mtk_system_resume(struct device *dev) { struct ufs_hba *hba = dev_get_drvdata(dev); struct arm_smccc_res res; ufs_mtk_dev_vreg_set_lpm(hba, false); if (ufs_mtk_is_rtff_mtcmos(hba)) ufs_mtk_mtcmos_ctrl(true, res); return ufshcd_system_resume(dev); } #endif #ifdef CONFIG_PM static int ufs_mtk_runtime_suspend(struct device *dev) { struct ufs_hba *hba = dev_get_drvdata(dev); struct arm_smccc_res res; int ret = 0; ret = ufshcd_runtime_suspend(dev); if (ret) return ret; ufs_mtk_dev_vreg_set_lpm(hba, true); if (ufs_mtk_is_rtff_mtcmos(hba)) ufs_mtk_mtcmos_ctrl(false, res); return 0; } static int ufs_mtk_runtime_resume(struct device *dev) { struct ufs_hba *hba = dev_get_drvdata(dev); struct arm_smccc_res res; if (ufs_mtk_is_rtff_mtcmos(hba)) ufs_mtk_mtcmos_ctrl(true, res); ufs_mtk_dev_vreg_set_lpm(hba, false); return ufshcd_runtime_resume(dev); } #endif static const struct dev_pm_ops ufs_mtk_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(ufs_mtk_system_suspend, ufs_mtk_system_resume) SET_RUNTIME_PM_OPS(ufs_mtk_runtime_suspend, ufs_mtk_runtime_resume, NULL) .prepare = ufshcd_suspend_prepare, .complete = ufshcd_resume_complete, }; static struct platform_driver ufs_mtk_pltform = { .probe = ufs_mtk_probe, .remove_new = ufs_mtk_remove, .driver = { .name = "ufshcd-mtk", .pm = &ufs_mtk_pm_ops, .of_match_table = ufs_mtk_of_match, }, }; MODULE_AUTHOR("Stanley Chu <stanley.chu@mediatek.com>"); MODULE_AUTHOR("Peter Wang <peter.wang@mediatek.com>"); MODULE_DESCRIPTION("MediaTek UFS Host Driver"); MODULE_LICENSE("GPL v2"); module_platform_driver(ufs_mtk_pltform);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1