Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Zimmerman | 11332 | 47.25% | 17 | 8.85% |
John Youn | 5973 | 24.90% | 7 | 3.65% |
Artur Petrosyan | 1135 | 4.73% | 26 | 13.54% |
Vardan Mikayelyan | 1023 | 4.27% | 7 | 3.65% |
Doug Anderson | 914 | 3.81% | 19 | 9.90% |
Gregory Herrero | 842 | 3.51% | 21 | 10.94% |
Gevorg Sahakyan | 374 | 1.56% | 1 | 0.52% |
Minas Harutyunyan | 349 | 1.46% | 8 | 4.17% |
William Wu | 314 | 1.31% | 1 | 0.52% |
Chen Yu | 277 | 1.15% | 2 | 1.04% |
Mian Yousaf Kaukab | 267 | 1.11% | 8 | 4.17% |
Antti Seppälä | 156 | 0.65% | 3 | 1.56% |
Matthijs Kooijman | 145 | 0.60% | 10 | 5.21% |
Razmik Karapetyan | 129 | 0.54% | 3 | 1.56% |
Fabrice Gasnier | 124 | 0.52% | 5 | 2.60% |
Dom Cobley | 94 | 0.39% | 1 | 0.52% |
Amelie Delaunay | 79 | 0.33% | 2 | 1.04% |
John Stultz | 55 | 0.23% | 3 | 1.56% |
Heiner Kallweit | 50 | 0.21% | 2 | 1.04% |
Marek Szyprowski | 36 | 0.15% | 2 | 1.04% |
Sevak Arakelyan | 30 | 0.13% | 3 | 1.56% |
Jingwu Lin | 28 | 0.12% | 1 | 0.52% |
Vincent Palatin | 23 | 0.10% | 1 | 0.52% |
Dinh Nguyen | 23 | 0.10% | 3 | 1.56% |
Kees Cook | 20 | 0.08% | 2 | 1.04% |
Meng Dongyang | 20 | 0.08% | 1 | 0.52% |
Martin Schiller | 19 | 0.08% | 1 | 0.52% |
Nicholas Mc Guire | 18 | 0.08% | 3 | 1.56% |
Nick Hudson | 16 | 0.07% | 1 | 0.52% |
Julien Delacou | 15 | 0.06% | 1 | 0.52% |
Yang Yingliang | 14 | 0.06% | 1 | 0.52% |
Guenter Roeck | 13 | 0.05% | 1 | 0.52% |
Ben Dooks | 9 | 0.04% | 1 | 0.52% |
Andre Heider | 9 | 0.04% | 1 | 0.52% |
Christoph Hellwig | 9 | 0.04% | 2 | 1.04% |
Gustavo A. R. Silva | 8 | 0.03% | 1 | 0.52% |
Jia-Ju Bai | 6 | 0.03% | 1 | 0.52% |
Wei Yongjun | 5 | 0.02% | 1 | 0.52% |
Alexandru M Stan | 4 | 0.02% | 1 | 0.52% |
Sergei Shtylyov | 4 | 0.02% | 2 | 1.04% |
Bhaktipriya Shridhar | 3 | 0.01% | 1 | 0.52% |
Deepak Saxena | 3 | 0.01% | 1 | 0.52% |
Grigor Tovmasyan | 2 | 0.01% | 1 | 0.52% |
Felipe Balbi | 2 | 0.01% | 1 | 0.52% |
Linus Torvalds | 2 | 0.01% | 1 | 0.52% |
Vahram Aharonyan | 2 | 0.01% | 1 | 0.52% |
Peter Chen | 2 | 0.01% | 1 | 0.52% |
Miaoqian Lin | 1 | 0.00% | 1 | 0.52% |
Jiang Jian | 1 | 0.00% | 1 | 0.52% |
Alan Stern | 1 | 0.00% | 1 | 0.52% |
Colin Ian King | 1 | 0.00% | 1 | 0.52% |
Hauke Mehrtens | 1 | 0.00% | 1 | 0.52% |
Christophe Jaillet | 1 | 0.00% | 1 | 0.52% |
Greg Kroah-Hartman | 1 | 0.00% | 1 | 0.52% |
Tomeu Vizoso | 1 | 0.00% | 1 | 0.52% |
Total | 23985 | 192 |
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) /* * hcd.c - DesignWare HS OTG Controller host-mode routines * * Copyright (C) 2004-2013 Synopsys, Inc. */ /* * This file contains the core HCD code, and implements the Linux hc_driver * API */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <linux/usb/ch11.h> #include <linux/usb/of.h> #include "core.h" #include "hcd.h" /* * ========================================================================= * Host Core Layer Functions * ========================================================================= */ /** * dwc2_enable_common_interrupts() - Initializes the commmon interrupts, * used in both device and host modes * * @hsotg: Programming view of the DWC_otg controller */ static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg) { u32 intmsk; /* Clear any pending OTG Interrupts */ dwc2_writel(hsotg, 0xffffffff, GOTGINT); /* Clear any pending interrupts */ dwc2_writel(hsotg, 0xffffffff, GINTSTS); /* Enable the interrupts in the GINTMSK */ intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT; if (!hsotg->params.host_dma) intmsk |= GINTSTS_RXFLVL; if (!hsotg->params.external_id_pin_ctl) intmsk |= GINTSTS_CONIDSTSCHNG; intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP | GINTSTS_SESSREQINT; if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm) intmsk |= GINTSTS_LPMTRANRCVD; dwc2_writel(hsotg, intmsk, GINTMSK); } static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg) { u32 ahbcfg = dwc2_readl(hsotg, GAHBCFG); switch (hsotg->hw_params.arch) { case GHWCFG2_EXT_DMA_ARCH: dev_err(hsotg->dev, "External DMA Mode not supported\n"); return -EINVAL; case GHWCFG2_INT_DMA_ARCH: dev_dbg(hsotg->dev, "Internal DMA Mode\n"); if (hsotg->params.ahbcfg != -1) { ahbcfg &= GAHBCFG_CTRL_MASK; ahbcfg |= hsotg->params.ahbcfg & ~GAHBCFG_CTRL_MASK; } break; case GHWCFG2_SLAVE_ONLY_ARCH: default: dev_dbg(hsotg->dev, "Slave Only Mode\n"); break; } if (hsotg->params.host_dma) ahbcfg |= GAHBCFG_DMA_EN; else hsotg->params.dma_desc_enable = false; dwc2_writel(hsotg, ahbcfg, GAHBCFG); return 0; } static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg) { u32 usbcfg; usbcfg = dwc2_readl(hsotg, GUSBCFG); usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP); switch (hsotg->hw_params.op_mode) { case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE: if (hsotg->params.otg_caps.hnp_support && hsotg->params.otg_caps.srp_support) usbcfg |= GUSBCFG_HNPCAP; fallthrough; case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE: case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE: case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST: if (hsotg->params.otg_caps.srp_support) usbcfg |= GUSBCFG_SRPCAP; break; case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE: case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE: case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST: default: break; } dwc2_writel(hsotg, usbcfg, GUSBCFG); } static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg) { if (hsotg->vbus_supply) return regulator_enable(hsotg->vbus_supply); return 0; } static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg) { if (hsotg->vbus_supply) return regulator_disable(hsotg->vbus_supply); return 0; } /** * dwc2_enable_host_interrupts() - Enables the Host mode interrupts * * @hsotg: Programming view of DWC_otg controller */ static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg) { u32 intmsk; dev_dbg(hsotg->dev, "%s()\n", __func__); /* Disable all interrupts */ dwc2_writel(hsotg, 0, GINTMSK); dwc2_writel(hsotg, 0, HAINTMSK); /* Enable the common interrupts */ dwc2_enable_common_interrupts(hsotg); /* Enable host mode interrupts without disturbing common interrupts */ intmsk = dwc2_readl(hsotg, GINTMSK); intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT; dwc2_writel(hsotg, intmsk, GINTMSK); } /** * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts * * @hsotg: Programming view of DWC_otg controller */ static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg) { u32 intmsk = dwc2_readl(hsotg, GINTMSK); /* Disable host mode interrupts without disturbing common interrupts */ intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT | GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT); dwc2_writel(hsotg, intmsk, GINTMSK); } /* * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size * For system that have a total fifo depth that is smaller than the default * RX + TX fifo size. * * @hsotg: Programming view of DWC_otg controller */ static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg) { struct dwc2_core_params *params = &hsotg->params; struct dwc2_hw_params *hw = &hsotg->hw_params; u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size; total_fifo_size = hw->total_fifo_size; rxfsiz = params->host_rx_fifo_size; nptxfsiz = params->host_nperio_tx_fifo_size; ptxfsiz = params->host_perio_tx_fifo_size; /* * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth * allocation with support for high bandwidth endpoints. Synopsys * defines MPS(Max Packet size) for a periodic EP=1024, and for * non-periodic as 512. */ if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) { /* * For Buffer DMA mode/Scatter Gather DMA mode * 2 * ((Largest Packet size / 4) + 1 + 1) + n * with n = number of host channel. * 2 * ((1024/4) + 2) = 516 */ rxfsiz = 516 + hw->host_channels; /* * min non-periodic tx fifo depth * 2 * (largest non-periodic USB packet used / 4) * 2 * (512/4) = 256 */ nptxfsiz = 256; /* * min periodic tx fifo depth * (largest packet size*MC)/4 * (1024 * 3)/4 = 768 */ ptxfsiz = 768; params->host_rx_fifo_size = rxfsiz; params->host_nperio_tx_fifo_size = nptxfsiz; params->host_perio_tx_fifo_size = ptxfsiz; } /* * If the summation of RX, NPTX and PTX fifo sizes is still * bigger than the total_fifo_size, then we have a problem. * * We won't be able to allocate as many endpoints. Right now, * we're just printing an error message, but ideally this FIFO * allocation algorithm would be improved in the future. * * FIXME improve this FIFO allocation algorithm. */ if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz))) dev_err(hsotg->dev, "invalid fifo sizes\n"); } static void dwc2_config_fifos(struct dwc2_hsotg *hsotg) { struct dwc2_core_params *params = &hsotg->params; u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz; if (!params->enable_dynamic_fifo) return; dwc2_calculate_dynamic_fifo(hsotg); /* Rx FIFO */ grxfsiz = dwc2_readl(hsotg, GRXFSIZ); dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz); grxfsiz &= ~GRXFSIZ_DEPTH_MASK; grxfsiz |= params->host_rx_fifo_size << GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK; dwc2_writel(hsotg, grxfsiz, GRXFSIZ); dev_dbg(hsotg->dev, "new grxfsiz=%08x\n", dwc2_readl(hsotg, GRXFSIZ)); /* Non-periodic Tx FIFO */ dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n", dwc2_readl(hsotg, GNPTXFSIZ)); nptxfsiz = params->host_nperio_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; nptxfsiz |= params->host_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; dwc2_writel(hsotg, nptxfsiz, GNPTXFSIZ); dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n", dwc2_readl(hsotg, GNPTXFSIZ)); /* Periodic Tx FIFO */ dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n", dwc2_readl(hsotg, HPTXFSIZ)); hptxfsiz = params->host_perio_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK; hptxfsiz |= (params->host_rx_fifo_size + params->host_nperio_tx_fifo_size) << FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK; dwc2_writel(hsotg, hptxfsiz, HPTXFSIZ); dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n", dwc2_readl(hsotg, HPTXFSIZ)); if (hsotg->params.en_multiple_tx_fifo && hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) { /* * This feature was implemented in 2.91a version * Global DFIFOCFG calculation for Host mode - * include RxFIFO, NPTXFIFO and HPTXFIFO */ dfifocfg = dwc2_readl(hsotg, GDFIFOCFG); dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK; dfifocfg |= (params->host_rx_fifo_size + params->host_nperio_tx_fifo_size + params->host_perio_tx_fifo_size) << GDFIFOCFG_EPINFOBASE_SHIFT & GDFIFOCFG_EPINFOBASE_MASK; dwc2_writel(hsotg, dfifocfg, GDFIFOCFG); } } /** * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for * the HFIR register according to PHY type and speed * * @hsotg: Programming view of DWC_otg controller * * NOTE: The caller can modify the value of the HFIR register only after the * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort) * has been set */ u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg) { u32 usbcfg; u32 hprt0; int clock = 60; /* default value */ usbcfg = dwc2_readl(hsotg, GUSBCFG); hprt0 = dwc2_readl(hsotg, HPRT0); if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16)) clock = 60; if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_ULPI) clock = 48; if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) clock = 30; if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16)) clock = 60; if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16)) clock = 48; if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) && hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI) clock = 48; if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) clock = 48; if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED) /* High speed case */ return 125 * clock - 1; /* FS/LS case */ return 1000 * clock - 1; } /** * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination * buffer * * @hsotg: Programming view of DWC_otg controller * @dest: Destination buffer for the packet * @bytes: Number of bytes to copy to the destination */ void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes) { u32 *data_buf = (u32 *)dest; int word_count = (bytes + 3) / 4; int i; /* * Todo: Account for the case where dest is not dword aligned. This * requires reading data from the FIFO into a u32 temp buffer, then * moving it into the data buffer. */ dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes); for (i = 0; i < word_count; i++, data_buf++) *data_buf = dwc2_readl(hsotg, HCFIFO(0)); } /** * dwc2_dump_channel_info() - Prints the state of a host channel * * @hsotg: Programming view of DWC_otg controller * @chan: Pointer to the channel to dump * * Must be called with interrupt disabled and spinlock held * * NOTE: This function will be removed once the peripheral controller code * is integrated and the driver is stable */ static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { #ifdef VERBOSE_DEBUG int num_channels = hsotg->params.host_channels; struct dwc2_qh *qh; u32 hcchar; u32 hcsplt; u32 hctsiz; u32 hc_dma; int i; if (!chan) return; hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num)); hctsiz = dwc2_readl(hsotg, HCTSIZ(chan->hc_num)); hc_dma = dwc2_readl(hsotg, HCDMA(chan->hc_num)); dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan); dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n", hcchar, hcsplt); dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n", hctsiz, hc_dma); dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", chan->dev_addr, chan->ep_num, chan->ep_is_in); dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start); dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started); dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", (unsigned long)chan->xfer_dma); dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); dev_dbg(hsotg->dev, " NP inactive sched:\n"); list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive, qh_list_entry) dev_dbg(hsotg->dev, " %p\n", qh); dev_dbg(hsotg->dev, " NP waiting sched:\n"); list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting, qh_list_entry) dev_dbg(hsotg->dev, " %p\n", qh); dev_dbg(hsotg->dev, " NP active sched:\n"); list_for_each_entry(qh, &hsotg->non_periodic_sched_active, qh_list_entry) dev_dbg(hsotg->dev, " %p\n", qh); dev_dbg(hsotg->dev, " Channels:\n"); for (i = 0; i < num_channels; i++) { struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; dev_dbg(hsotg->dev, " %2d: %p\n", i, chan); } #endif /* VERBOSE_DEBUG */ } static int _dwc2_hcd_start(struct usb_hcd *hcd); static void dwc2_host_start(struct dwc2_hsotg *hsotg) { struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg); _dwc2_hcd_start(hcd); } static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg) { struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); hcd->self.is_b_host = 0; } static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr, int *hub_port) { struct urb *urb = context; if (urb->dev->tt) *hub_addr = urb->dev->tt->hub->devnum; else *hub_addr = 0; *hub_port = urb->dev->ttport; } /* * ========================================================================= * Low Level Host Channel Access Functions * ========================================================================= */ static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { u32 hcintmsk = HCINTMSK_CHHLTD; switch (chan->ep_type) { case USB_ENDPOINT_XFER_CONTROL: case USB_ENDPOINT_XFER_BULK: dev_vdbg(hsotg->dev, "control/bulk\n"); hcintmsk |= HCINTMSK_XFERCOMPL; hcintmsk |= HCINTMSK_STALL; hcintmsk |= HCINTMSK_XACTERR; hcintmsk |= HCINTMSK_DATATGLERR; if (chan->ep_is_in) { hcintmsk |= HCINTMSK_BBLERR; } else { hcintmsk |= HCINTMSK_NAK; hcintmsk |= HCINTMSK_NYET; if (chan->do_ping) hcintmsk |= HCINTMSK_ACK; } if (chan->do_split) { hcintmsk |= HCINTMSK_NAK; if (chan->complete_split) hcintmsk |= HCINTMSK_NYET; else hcintmsk |= HCINTMSK_ACK; } if (chan->error_state) hcintmsk |= HCINTMSK_ACK; break; case USB_ENDPOINT_XFER_INT: if (dbg_perio()) dev_vdbg(hsotg->dev, "intr\n"); hcintmsk |= HCINTMSK_XFERCOMPL; hcintmsk |= HCINTMSK_NAK; hcintmsk |= HCINTMSK_STALL; hcintmsk |= HCINTMSK_XACTERR; hcintmsk |= HCINTMSK_DATATGLERR; hcintmsk |= HCINTMSK_FRMOVRUN; if (chan->ep_is_in) hcintmsk |= HCINTMSK_BBLERR; if (chan->error_state) hcintmsk |= HCINTMSK_ACK; if (chan->do_split) { if (chan->complete_split) hcintmsk |= HCINTMSK_NYET; else hcintmsk |= HCINTMSK_ACK; } break; case USB_ENDPOINT_XFER_ISOC: if (dbg_perio()) dev_vdbg(hsotg->dev, "isoc\n"); hcintmsk |= HCINTMSK_XFERCOMPL; hcintmsk |= HCINTMSK_FRMOVRUN; hcintmsk |= HCINTMSK_ACK; if (chan->ep_is_in) { hcintmsk |= HCINTMSK_XACTERR; hcintmsk |= HCINTMSK_BBLERR; } break; default: dev_err(hsotg->dev, "## Unknown EP type ##\n"); break; } dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num)); if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); } static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { u32 hcintmsk = HCINTMSK_CHHLTD; /* * For Descriptor DMA mode core halts the channel on AHB error. * Interrupt is not required. */ if (!hsotg->params.dma_desc_enable) { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "desc DMA disabled\n"); hcintmsk |= HCINTMSK_AHBERR; } else { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "desc DMA enabled\n"); if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) hcintmsk |= HCINTMSK_XFERCOMPL; } if (chan->error_state && !chan->do_split && chan->ep_type != USB_ENDPOINT_XFER_ISOC) { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "setting ACK\n"); hcintmsk |= HCINTMSK_ACK; if (chan->ep_is_in) { hcintmsk |= HCINTMSK_DATATGLERR; if (chan->ep_type != USB_ENDPOINT_XFER_INT) hcintmsk |= HCINTMSK_NAK; } } dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num)); if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk); } static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { u32 intmsk; if (hsotg->params.host_dma) { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "DMA enabled\n"); dwc2_hc_enable_dma_ints(hsotg, chan); } else { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "DMA disabled\n"); dwc2_hc_enable_slave_ints(hsotg, chan); } /* Enable the top level host channel interrupt */ intmsk = dwc2_readl(hsotg, HAINTMSK); intmsk |= 1 << chan->hc_num; dwc2_writel(hsotg, intmsk, HAINTMSK); if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk); /* Make sure host channel interrupts are enabled */ intmsk = dwc2_readl(hsotg, GINTMSK); intmsk |= GINTSTS_HCHINT; dwc2_writel(hsotg, intmsk, GINTMSK); if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk); } /** * dwc2_hc_init() - Prepares a host channel for transferring packets to/from * a specific endpoint * * @hsotg: Programming view of DWC_otg controller * @chan: Information needed to initialize the host channel * * The HCCHARn register is set up with the characteristics specified in chan. * Host channel interrupts that may need to be serviced while this transfer is * in progress are enabled. */ static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { u8 hc_num = chan->hc_num; u32 hcintmsk; u32 hcchar; u32 hcsplt = 0; if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "%s()\n", __func__); /* Clear old interrupt conditions for this host channel */ hcintmsk = 0xffffffff; hcintmsk &= ~HCINTMSK_RESERVED14_31; dwc2_writel(hsotg, hcintmsk, HCINT(hc_num)); /* Enable channel interrupts required for this transfer */ dwc2_hc_enable_ints(hsotg, chan); /* * Program the HCCHARn register with the endpoint characteristics for * the current transfer */ hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK; hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK; if (chan->ep_is_in) hcchar |= HCCHAR_EPDIR; if (chan->speed == USB_SPEED_LOW) hcchar |= HCCHAR_LSPDDEV; hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK; hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK; dwc2_writel(hsotg, hcchar, HCCHAR(hc_num)); if (dbg_hc(chan)) { dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n", hc_num, hcchar); dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, hc_num); dev_vdbg(hsotg->dev, " Dev Addr: %d\n", chan->dev_addr); dev_vdbg(hsotg->dev, " Ep Num: %d\n", chan->ep_num); dev_vdbg(hsotg->dev, " Is In: %d\n", chan->ep_is_in); dev_vdbg(hsotg->dev, " Is Low Speed: %d\n", chan->speed == USB_SPEED_LOW); dev_vdbg(hsotg->dev, " Ep Type: %d\n", chan->ep_type); dev_vdbg(hsotg->dev, " Max Pkt: %d\n", chan->max_packet); } /* Program the HCSPLT register for SPLITs */ if (chan->do_split) { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "Programming HC %d with split --> %s\n", hc_num, chan->complete_split ? "CSPLIT" : "SSPLIT"); if (chan->complete_split) hcsplt |= HCSPLT_COMPSPLT; hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT & HCSPLT_XACTPOS_MASK; hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT & HCSPLT_HUBADDR_MASK; hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT & HCSPLT_PRTADDR_MASK; if (dbg_hc(chan)) { dev_vdbg(hsotg->dev, " comp split %d\n", chan->complete_split); dev_vdbg(hsotg->dev, " xact pos %d\n", chan->xact_pos); dev_vdbg(hsotg->dev, " hub addr %d\n", chan->hub_addr); dev_vdbg(hsotg->dev, " hub port %d\n", chan->hub_port); dev_vdbg(hsotg->dev, " is_in %d\n", chan->ep_is_in); dev_vdbg(hsotg->dev, " Max Pkt %d\n", chan->max_packet); dev_vdbg(hsotg->dev, " xferlen %d\n", chan->xfer_len); } } dwc2_writel(hsotg, hcsplt, HCSPLT(hc_num)); } /** * dwc2_hc_halt() - Attempts to halt a host channel * * @hsotg: Controller register interface * @chan: Host channel to halt * @halt_status: Reason for halting the channel * * This function should only be called in Slave mode or to abort a transfer in * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the * controller halts the channel when the transfer is complete or a condition * occurs that requires application intervention. * * In slave mode, checks for a free request queue entry, then sets the Channel * Enable and Channel Disable bits of the Host Channel Characteristics * register of the specified channel to intiate the halt. If there is no free * request queue entry, sets only the Channel Disable bit of the HCCHARn * register to flush requests for this channel. In the latter case, sets a * flag to indicate that the host channel needs to be halted when a request * queue slot is open. * * In DMA mode, always sets the Channel Enable and Channel Disable bits of the * HCCHARn register. The controller ensures there is space in the request * queue before submitting the halt request. * * Some time may elapse before the core flushes any posted requests for this * host channel and halts. The Channel Halted interrupt handler completes the * deactivation of the host channel. */ void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, enum dwc2_halt_status halt_status) { u32 nptxsts, hptxsts, hcchar; if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "%s()\n", __func__); /* * In buffer DMA or external DMA mode channel can't be halted * for non-split periodic channels. At the end of the next * uframe/frame (in the worst case), the core generates a channel * halted and disables the channel automatically. */ if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) || hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) { if (!chan->do_split && (chan->ep_type == USB_ENDPOINT_XFER_ISOC || chan->ep_type == USB_ENDPOINT_XFER_INT)) { dev_err(hsotg->dev, "%s() Channel can't be halted\n", __func__); return; } } if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS) dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status); if (halt_status == DWC2_HC_XFER_URB_DEQUEUE || halt_status == DWC2_HC_XFER_AHB_ERR) { /* * Disable all channel interrupts except Ch Halted. The QTD * and QH state associated with this transfer has been cleared * (in the case of URB_DEQUEUE), so the channel needs to be * shut down carefully to prevent crashes. */ u32 hcintmsk = HCINTMSK_CHHLTD; dev_vdbg(hsotg->dev, "dequeue/error\n"); dwc2_writel(hsotg, hcintmsk, HCINTMSK(chan->hc_num)); /* * Make sure no other interrupts besides halt are currently * pending. Handling another interrupt could cause a crash due * to the QTD and QH state. */ dwc2_writel(hsotg, ~hcintmsk, HCINT(chan->hc_num)); /* * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR * even if the channel was already halted for some other * reason */ chan->halt_status = halt_status; hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); if (!(hcchar & HCCHAR_CHENA)) { /* * The channel is either already halted or it hasn't * started yet. In DMA mode, the transfer may halt if * it finishes normally or a condition occurs that * requires driver intervention. Don't want to halt * the channel again. In either Slave or DMA mode, * it's possible that the transfer has been assigned * to a channel, but not started yet when an URB is * dequeued. Don't want to halt a channel that hasn't * started yet. */ return; } } if (chan->halt_pending) { /* * A halt has already been issued for this channel. This might * happen when a transfer is aborted by a higher level in * the stack. */ dev_vdbg(hsotg->dev, "*** %s: Channel %d, chan->halt_pending already set ***\n", __func__, chan->hc_num); return; } hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); /* No need to set the bit in DDMA for disabling the channel */ /* TODO check it everywhere channel is disabled */ if (!hsotg->params.dma_desc_enable) { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "desc DMA disabled\n"); hcchar |= HCCHAR_CHENA; } else { if (dbg_hc(chan)) dev_dbg(hsotg->dev, "desc DMA enabled\n"); } hcchar |= HCCHAR_CHDIS; if (!hsotg->params.host_dma) { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "DMA not enabled\n"); hcchar |= HCCHAR_CHENA; /* Check for space in the request queue to issue the halt */ if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL || chan->ep_type == USB_ENDPOINT_XFER_BULK) { dev_vdbg(hsotg->dev, "control/bulk\n"); nptxsts = dwc2_readl(hsotg, GNPTXSTS); if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) { dev_vdbg(hsotg->dev, "Disabling channel\n"); hcchar &= ~HCCHAR_CHENA; } } else { if (dbg_perio()) dev_vdbg(hsotg->dev, "isoc/intr\n"); hptxsts = dwc2_readl(hsotg, HPTXSTS); if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 || hsotg->queuing_high_bandwidth) { if (dbg_perio()) dev_vdbg(hsotg->dev, "Disabling channel\n"); hcchar &= ~HCCHAR_CHENA; } } } else { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "DMA enabled\n"); } dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num)); chan->halt_status = halt_status; if (hcchar & HCCHAR_CHENA) { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "Channel enabled\n"); chan->halt_pending = 1; chan->halt_on_queue = 0; } else { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "Channel disabled\n"); chan->halt_on_queue = 1; } if (dbg_hc(chan)) { dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, chan->hc_num); dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar); dev_vdbg(hsotg->dev, " halt_pending: %d\n", chan->halt_pending); dev_vdbg(hsotg->dev, " halt_on_queue: %d\n", chan->halt_on_queue); dev_vdbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); } } /** * dwc2_hc_cleanup() - Clears the transfer state for a host channel * * @hsotg: Programming view of DWC_otg controller * @chan: Identifies the host channel to clean up * * This function is normally called after a transfer is done and the host * channel is being released */ void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { u32 hcintmsk; chan->xfer_started = 0; list_del_init(&chan->split_order_list_entry); /* * Clear channel interrupt enables and any unhandled channel interrupt * conditions */ dwc2_writel(hsotg, 0, HCINTMSK(chan->hc_num)); hcintmsk = 0xffffffff; hcintmsk &= ~HCINTMSK_RESERVED14_31; dwc2_writel(hsotg, hcintmsk, HCINT(chan->hc_num)); } /** * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in * which frame a periodic transfer should occur * * @hsotg: Programming view of DWC_otg controller * @chan: Identifies the host channel to set up and its properties * @hcchar: Current value of the HCCHAR register for the specified host channel * * This function has no effect on non-periodic transfers */ static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, u32 *hcchar) { if (chan->ep_type == USB_ENDPOINT_XFER_INT || chan->ep_type == USB_ENDPOINT_XFER_ISOC) { int host_speed; int xfer_ns; int xfer_us; int bytes_in_fifo; u16 fifo_space; u16 frame_number; u16 wire_frame; /* * Try to figure out if we're an even or odd frame. If we set * even and the current frame number is even the transfer * will happen immediately. Similar if both are odd. If one is * even and the other is odd then the transfer will happen when * the frame number ticks. * * There's a bit of a balancing act to get this right. * Sometimes we may want to send data in the current frame (AK * right away). We might want to do this if the frame number * _just_ ticked, but we might also want to do this in order * to continue a split transaction that happened late in a * microframe (so we didn't know to queue the next transfer * until the frame number had ticked). The problem is that we * need a lot of knowledge to know if there's actually still * time to send things or if it would be better to wait until * the next frame. * * We can look at how much time is left in the current frame * and make a guess about whether we'll have time to transfer. * We'll do that. */ /* Get speed host is running at */ host_speed = (chan->speed != USB_SPEED_HIGH && !chan->do_split) ? chan->speed : USB_SPEED_HIGH; /* See how many bytes are in the periodic FIFO right now */ fifo_space = (dwc2_readl(hsotg, HPTXSTS) & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; bytes_in_fifo = sizeof(u32) * (hsotg->params.host_perio_tx_fifo_size - fifo_space); /* * Roughly estimate bus time for everything in the periodic * queue + our new transfer. This is "rough" because we're * using a function that makes takes into account IN/OUT * and INT/ISO and we're just slamming in one value for all * transfers. This should be an over-estimate and that should * be OK, but we can probably tighten it. */ xfer_ns = usb_calc_bus_time(host_speed, false, false, chan->xfer_len + bytes_in_fifo); xfer_us = NS_TO_US(xfer_ns); /* See what frame number we'll be at by the time we finish */ frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us); /* This is when we were scheduled to be on the wire */ wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1); /* * If we'd finish _after_ the frame we're scheduled in then * it's hopeless. Just schedule right away and hope for the * best. Note that it _might_ be wise to call back into the * scheduler to pick a better frame, but this is better than * nothing. */ if (dwc2_frame_num_gt(frame_number, wire_frame)) { dwc2_sch_vdbg(hsotg, "QH=%p EO MISS fr=%04x=>%04x (%+d)\n", chan->qh, wire_frame, frame_number, dwc2_frame_num_dec(frame_number, wire_frame)); wire_frame = frame_number; /* * We picked a different frame number; communicate this * back to the scheduler so it doesn't try to schedule * another in the same frame. * * Remember that next_active_frame is 1 before the wire * frame. */ chan->qh->next_active_frame = dwc2_frame_num_dec(frame_number, 1); } if (wire_frame & 1) *hcchar |= HCCHAR_ODDFRM; else *hcchar &= ~HCCHAR_ODDFRM; } } static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan) { /* Set up the initial PID for the transfer */ if (chan->speed == USB_SPEED_HIGH) { if (chan->ep_is_in) { if (chan->multi_count == 1) chan->data_pid_start = DWC2_HC_PID_DATA0; else if (chan->multi_count == 2) chan->data_pid_start = DWC2_HC_PID_DATA1; else chan->data_pid_start = DWC2_HC_PID_DATA2; } else { if (chan->multi_count == 1) chan->data_pid_start = DWC2_HC_PID_DATA0; else chan->data_pid_start = DWC2_HC_PID_MDATA; } } else { chan->data_pid_start = DWC2_HC_PID_DATA0; } } /** * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with * the Host Channel * * @hsotg: Programming view of DWC_otg controller * @chan: Information needed to initialize the host channel * * This function should only be called in Slave mode. For a channel associated * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel * associated with a periodic EP, the periodic Tx FIFO is written. * * Upon return the xfer_buf and xfer_count fields in chan are incremented by * the number of bytes written to the Tx FIFO. */ static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { u32 i; u32 remaining_count; u32 byte_count; u32 dword_count; u32 *data_buf = (u32 *)chan->xfer_buf; if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "%s()\n", __func__); remaining_count = chan->xfer_len - chan->xfer_count; if (remaining_count > chan->max_packet) byte_count = chan->max_packet; else byte_count = remaining_count; dword_count = (byte_count + 3) / 4; if (((unsigned long)data_buf & 0x3) == 0) { /* xfer_buf is DWORD aligned */ for (i = 0; i < dword_count; i++, data_buf++) dwc2_writel(hsotg, *data_buf, HCFIFO(chan->hc_num)); } else { /* xfer_buf is not DWORD aligned */ for (i = 0; i < dword_count; i++, data_buf++) { u32 data = data_buf[0] | data_buf[1] << 8 | data_buf[2] << 16 | data_buf[3] << 24; dwc2_writel(hsotg, data, HCFIFO(chan->hc_num)); } } chan->xfer_count += byte_count; chan->xfer_buf += byte_count; } /** * dwc2_hc_do_ping() - Starts a PING transfer * * @hsotg: Programming view of DWC_otg controller * @chan: Information needed to initialize the host channel * * This function should only be called in Slave mode. The Do Ping bit is set in * the HCTSIZ register, then the channel is enabled. */ static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { u32 hcchar; u32 hctsiz; if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, chan->hc_num); hctsiz = TSIZ_DOPNG; hctsiz |= 1 << TSIZ_PKTCNT_SHIFT; dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num)); hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); hcchar |= HCCHAR_CHENA; hcchar &= ~HCCHAR_CHDIS; dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num)); } /** * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host * channel and starts the transfer * * @hsotg: Programming view of DWC_otg controller * @chan: Information needed to initialize the host channel. The xfer_len value * may be reduced to accommodate the max widths of the XferSize and * PktCnt fields in the HCTSIZn register. The multi_count value may be * changed to reflect the final xfer_len value. * * This function may be called in either Slave mode or DMA mode. In Slave mode, * the caller must ensure that there is sufficient space in the request queue * and Tx Data FIFO. * * For an OUT transfer in Slave mode, it loads a data packet into the * appropriate FIFO. If necessary, additional data packets are loaded in the * Host ISR. * * For an IN transfer in Slave mode, a data packet is requested. The data * packets are unloaded from the Rx FIFO in the Host ISR. If necessary, * additional data packets are requested in the Host ISR. * * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ * register along with a packet count of 1 and the channel is enabled. This * causes a single PING transaction to occur. Other fields in HCTSIZ are * simply set to 0 since no data transfer occurs in this case. * * For a PING transfer in DMA mode, the HCTSIZ register is initialized with * all the information required to perform the subsequent data transfer. In * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the * controller performs the entire PING protocol, then starts the data * transfer. */ static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { u32 max_hc_xfer_size = hsotg->params.max_transfer_size; u16 max_hc_pkt_count = hsotg->params.max_packet_count; u32 hcchar; u32 hctsiz = 0; u16 num_packets; u32 ec_mc; if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "%s()\n", __func__); if (chan->do_ping) { if (!hsotg->params.host_dma) { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "ping, no DMA\n"); dwc2_hc_do_ping(hsotg, chan); chan->xfer_started = 1; return; } if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "ping, DMA\n"); hctsiz |= TSIZ_DOPNG; } if (chan->do_split) { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "split\n"); num_packets = 1; if (chan->complete_split && !chan->ep_is_in) /* * For CSPLIT OUT Transfer, set the size to 0 so the * core doesn't expect any data written to the FIFO */ chan->xfer_len = 0; else if (chan->ep_is_in || chan->xfer_len > chan->max_packet) chan->xfer_len = chan->max_packet; else if (!chan->ep_is_in && chan->xfer_len > 188) chan->xfer_len = 188; hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & TSIZ_XFERSIZE_MASK; /* For split set ec_mc for immediate retries */ if (chan->ep_type == USB_ENDPOINT_XFER_INT || chan->ep_type == USB_ENDPOINT_XFER_ISOC) ec_mc = 3; else ec_mc = 1; } else { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "no split\n"); /* * Ensure that the transfer length and packet count will fit * in the widths allocated for them in the HCTSIZn register */ if (chan->ep_type == USB_ENDPOINT_XFER_INT || chan->ep_type == USB_ENDPOINT_XFER_ISOC) { /* * Make sure the transfer size is no larger than one * (micro)frame's worth of data. (A check was done * when the periodic transfer was accepted to ensure * that a (micro)frame's worth of data can be * programmed into a channel.) */ u32 max_periodic_len = chan->multi_count * chan->max_packet; if (chan->xfer_len > max_periodic_len) chan->xfer_len = max_periodic_len; } else if (chan->xfer_len > max_hc_xfer_size) { /* * Make sure that xfer_len is a multiple of max packet * size */ chan->xfer_len = max_hc_xfer_size - chan->max_packet + 1; } if (chan->xfer_len > 0) { num_packets = (chan->xfer_len + chan->max_packet - 1) / chan->max_packet; if (num_packets > max_hc_pkt_count) { num_packets = max_hc_pkt_count; chan->xfer_len = num_packets * chan->max_packet; } else if (chan->ep_is_in) { /* * Always program an integral # of max packets * for IN transfers. * Note: This assumes that the input buffer is * aligned and sized accordingly. */ chan->xfer_len = num_packets * chan->max_packet; } } else { /* Need 1 packet for transfer length of 0 */ num_packets = 1; } if (chan->ep_type == USB_ENDPOINT_XFER_INT || chan->ep_type == USB_ENDPOINT_XFER_ISOC) /* * Make sure that the multi_count field matches the * actual transfer length */ chan->multi_count = num_packets; if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) dwc2_set_pid_isoc(chan); hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT & TSIZ_XFERSIZE_MASK; /* The ec_mc gets the multi_count for non-split */ ec_mc = chan->multi_count; } chan->start_pkt_count = num_packets; hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK; hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & TSIZ_SC_MC_PID_MASK; dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num)); if (dbg_hc(chan)) { dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n", hctsiz, chan->hc_num); dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, chan->hc_num); dev_vdbg(hsotg->dev, " Xfer Size: %d\n", (hctsiz & TSIZ_XFERSIZE_MASK) >> TSIZ_XFERSIZE_SHIFT); dev_vdbg(hsotg->dev, " Num Pkts: %d\n", (hctsiz & TSIZ_PKTCNT_MASK) >> TSIZ_PKTCNT_SHIFT); dev_vdbg(hsotg->dev, " Start PID: %d\n", (hctsiz & TSIZ_SC_MC_PID_MASK) >> TSIZ_SC_MC_PID_SHIFT); } if (hsotg->params.host_dma) { dma_addr_t dma_addr; if (chan->align_buf) { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "align_buf\n"); dma_addr = chan->align_buf; } else { dma_addr = chan->xfer_dma; } dwc2_writel(hsotg, (u32)dma_addr, HCDMA(chan->hc_num)); if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n", (unsigned long)dma_addr, chan->hc_num); } /* Start the split */ if (chan->do_split) { u32 hcsplt = dwc2_readl(hsotg, HCSPLT(chan->hc_num)); hcsplt |= HCSPLT_SPLTENA; dwc2_writel(hsotg, hcsplt, HCSPLT(chan->hc_num)); } hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); hcchar &= ~HCCHAR_MULTICNT_MASK; hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK; dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); if (hcchar & HCCHAR_CHDIS) dev_warn(hsotg->dev, "%s: chdis set, channel %d, hcchar 0x%08x\n", __func__, chan->hc_num, hcchar); /* Set host channel enable after all other setup is complete */ hcchar |= HCCHAR_CHENA; hcchar &= ~HCCHAR_CHDIS; if (dbg_hc(chan)) dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", (hcchar & HCCHAR_MULTICNT_MASK) >> HCCHAR_MULTICNT_SHIFT); dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num)); if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, chan->hc_num); chan->xfer_started = 1; chan->requests++; if (!hsotg->params.host_dma && !chan->ep_is_in && chan->xfer_len > 0) /* Load OUT packet into the appropriate Tx FIFO */ dwc2_hc_write_packet(hsotg, chan); } /** * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a * host channel and starts the transfer in Descriptor DMA mode * * @hsotg: Programming view of DWC_otg controller * @chan: Information needed to initialize the host channel * * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set. * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field * with micro-frame bitmap. * * Initializes HCDMA register with descriptor list address and CTD value then * starts the transfer via enabling the channel. */ void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { u32 hcchar; u32 hctsiz = 0; if (chan->do_ping) hctsiz |= TSIZ_DOPNG; if (chan->ep_type == USB_ENDPOINT_XFER_ISOC) dwc2_set_pid_isoc(chan); /* Packet Count and Xfer Size are not used in Descriptor DMA mode */ hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT & TSIZ_SC_MC_PID_MASK; /* 0 - 1 descriptor, 1 - 2 descriptors, etc */ hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK; /* Non-zero only for high-speed interrupt endpoints */ hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK; if (dbg_hc(chan)) { dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, chan->hc_num); dev_vdbg(hsotg->dev, " Start PID: %d\n", chan->data_pid_start); dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1); } dwc2_writel(hsotg, hctsiz, HCTSIZ(chan->hc_num)); dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr, chan->desc_list_sz, DMA_TO_DEVICE); dwc2_writel(hsotg, chan->desc_list_addr, HCDMA(chan->hc_num)); if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n", &chan->desc_list_addr, chan->hc_num); hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); hcchar &= ~HCCHAR_MULTICNT_MASK; hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT & HCCHAR_MULTICNT_MASK; if (hcchar & HCCHAR_CHDIS) dev_warn(hsotg->dev, "%s: chdis set, channel %d, hcchar 0x%08x\n", __func__, chan->hc_num, hcchar); /* Set host channel enable after all other setup is complete */ hcchar |= HCCHAR_CHENA; hcchar &= ~HCCHAR_CHDIS; if (dbg_hc(chan)) dev_vdbg(hsotg->dev, " Multi Cnt: %d\n", (hcchar & HCCHAR_MULTICNT_MASK) >> HCCHAR_MULTICNT_SHIFT); dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num)); if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar, chan->hc_num); chan->xfer_started = 1; chan->requests++; } /** * dwc2_hc_continue_transfer() - Continues a data transfer that was started by * a previous call to dwc2_hc_start_transfer() * * @hsotg: Programming view of DWC_otg controller * @chan: Information needed to initialize the host channel * * The caller must ensure there is sufficient space in the request queue and Tx * Data FIFO. This function should only be called in Slave mode. In DMA mode, * the controller acts autonomously to complete transfers programmed to a host * channel. * * For an OUT transfer, a new data packet is loaded into the appropriate FIFO * if there is any data remaining to be queued. For an IN transfer, another * data packet is always requested. For the SETUP phase of a control transfer, * this function does nothing. * * Return: 1 if a new request is queued, 0 if no more requests are required * for this transfer */ static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan) { if (dbg_hc(chan)) dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__, chan->hc_num); if (chan->do_split) /* SPLITs always queue just once per channel */ return 0; if (chan->data_pid_start == DWC2_HC_PID_SETUP) /* SETUPs are queued only once since they can't be NAK'd */ return 0; if (chan->ep_is_in) { /* * Always queue another request for other IN transfers. If * back-to-back INs are issued and NAKs are received for both, * the driver may still be processing the first NAK when the * second NAK is received. When the interrupt handler clears * the NAK interrupt for the first NAK, the second NAK will * not be seen. So we can't depend on the NAK interrupt * handler to requeue a NAK'd request. Instead, IN requests * are issued each time this function is called. When the * transfer completes, the extra requests for the channel will * be flushed. */ u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); hcchar |= HCCHAR_CHENA; hcchar &= ~HCCHAR_CHDIS; if (dbg_hc(chan)) dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n", hcchar); dwc2_writel(hsotg, hcchar, HCCHAR(chan->hc_num)); chan->requests++; return 1; } /* OUT transfers */ if (chan->xfer_count < chan->xfer_len) { if (chan->ep_type == USB_ENDPOINT_XFER_INT || chan->ep_type == USB_ENDPOINT_XFER_ISOC) { u32 hcchar = dwc2_readl(hsotg, HCCHAR(chan->hc_num)); dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar); } /* Load OUT packet into the appropriate Tx FIFO */ dwc2_hc_write_packet(hsotg, chan); chan->requests++; return 1; } return 0; } /* * ========================================================================= * HCD * ========================================================================= */ /* * Processes all the URBs in a single list of QHs. Completes them with * -ETIMEDOUT and frees the QTD. * * Must be called with interrupt disabled and spinlock held */ static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg, struct list_head *qh_list) { struct dwc2_qh *qh, *qh_tmp; struct dwc2_qtd *qtd, *qtd_tmp; list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) { dwc2_host_complete(hsotg, qtd, -ECONNRESET); dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); } } } static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg, struct list_head *qh_list) { struct dwc2_qtd *qtd, *qtd_tmp; struct dwc2_qh *qh, *qh_tmp; unsigned long flags; if (!qh_list->next) /* The list hasn't been initialized yet */ return; spin_lock_irqsave(&hsotg->lock, flags); /* Ensure there are no QTDs or URBs left */ dwc2_kill_urbs_in_qh_list(hsotg, qh_list); list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) { dwc2_hcd_qh_unlink(hsotg, qh); /* Free each QTD in the QH's QTD list */ list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); if (qh->channel && qh->channel->qh == qh) qh->channel->qh = NULL; spin_unlock_irqrestore(&hsotg->lock, flags); dwc2_hcd_qh_free(hsotg, qh); spin_lock_irqsave(&hsotg->lock, flags); } spin_unlock_irqrestore(&hsotg->lock, flags); } /* * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic * and periodic schedules. The QTD associated with each URB is removed from * the schedule and freed. This function may be called when a disconnect is * detected or when the HCD is being stopped. * * Must be called with interrupt disabled and spinlock held */ static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg) { dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive); dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting); dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active); dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive); dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready); dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned); dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued); } /** * dwc2_hcd_start() - Starts the HCD when switching to Host mode * * @hsotg: Pointer to struct dwc2_hsotg */ void dwc2_hcd_start(struct dwc2_hsotg *hsotg) { u32 hprt0; if (hsotg->op_state == OTG_STATE_B_HOST) { /* * Reset the port. During a HNP mode switch the reset * needs to occur within 1ms and have a duration of at * least 50ms. */ hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_RST; dwc2_writel(hsotg, hprt0, HPRT0); } queue_delayed_work(hsotg->wq_otg, &hsotg->start_work, msecs_to_jiffies(50)); } /* Must be called with interrupt disabled and spinlock held */ static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg) { int num_channels = hsotg->params.host_channels; struct dwc2_host_chan *channel; u32 hcchar; int i; if (!hsotg->params.host_dma) { /* Flush out any channel requests in slave mode */ for (i = 0; i < num_channels; i++) { channel = hsotg->hc_ptr_array[i]; if (!list_empty(&channel->hc_list_entry)) continue; hcchar = dwc2_readl(hsotg, HCCHAR(i)); if (hcchar & HCCHAR_CHENA) { hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR); hcchar |= HCCHAR_CHDIS; dwc2_writel(hsotg, hcchar, HCCHAR(i)); } } } for (i = 0; i < num_channels; i++) { channel = hsotg->hc_ptr_array[i]; if (!list_empty(&channel->hc_list_entry)) continue; hcchar = dwc2_readl(hsotg, HCCHAR(i)); if (hcchar & HCCHAR_CHENA) { /* Halt the channel */ hcchar |= HCCHAR_CHDIS; dwc2_writel(hsotg, hcchar, HCCHAR(i)); } dwc2_hc_cleanup(hsotg, channel); list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list); /* * Added for Descriptor DMA to prevent channel double cleanup in * release_channel_ddma(), which is called from ep_disable when * device disconnects */ channel->qh = NULL; } /* All channels have been freed, mark them available */ if (hsotg->params.uframe_sched) { hsotg->available_host_channels = hsotg->params.host_channels; } else { hsotg->non_periodic_channels = 0; hsotg->periodic_channels = 0; } } /** * dwc2_hcd_connect() - Handles connect of the HCD * * @hsotg: Pointer to struct dwc2_hsotg * * Must be called with interrupt disabled and spinlock held */ void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) { if (hsotg->lx_state != DWC2_L0) usb_hcd_resume_root_hub(hsotg->priv); hsotg->flags.b.port_connect_status_change = 1; hsotg->flags.b.port_connect_status = 1; } /** * dwc2_hcd_disconnect() - Handles disconnect of the HCD * * @hsotg: Pointer to struct dwc2_hsotg * @force: If true, we won't try to reconnect even if we see device connected. * * Must be called with interrupt disabled and spinlock held */ void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) { u32 intr; u32 hprt0; /* Set status flags for the hub driver */ hsotg->flags.b.port_connect_status_change = 1; hsotg->flags.b.port_connect_status = 0; /* * Shutdown any transfers in process by clearing the Tx FIFO Empty * interrupt mask and status bits and disabling subsequent host * channel interrupts. */ intr = dwc2_readl(hsotg, GINTMSK); intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT); dwc2_writel(hsotg, intr, GINTMSK); intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT; dwc2_writel(hsotg, intr, GINTSTS); /* * Turn off the vbus power only if the core has transitioned to device * mode. If still in host mode, need to keep power on to detect a * reconnection. */ if (dwc2_is_device_mode(hsotg)) { if (hsotg->op_state != OTG_STATE_A_SUSPEND) { dev_dbg(hsotg->dev, "Disconnect: PortPower off\n"); dwc2_writel(hsotg, 0, HPRT0); } dwc2_disable_host_interrupts(hsotg); } /* Respond with an error status to all URBs in the schedule */ dwc2_kill_all_urbs(hsotg); if (dwc2_is_host_mode(hsotg)) /* Clean up any host channels that were in use */ dwc2_hcd_cleanup_channels(hsotg); dwc2_host_disconnect(hsotg); /* * Add an extra check here to see if we're actually connected but * we don't have a detection interrupt pending. This can happen if: * 1. hardware sees connect * 2. hardware sees disconnect * 3. hardware sees connect * 4. dwc2_port_intr() - clears connect interrupt * 5. dwc2_handle_common_intr() - calls here * * Without the extra check here we will end calling disconnect * and won't get any future interrupts to handle the connect. */ if (!force) { hprt0 = dwc2_readl(hsotg, HPRT0); if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS)) dwc2_hcd_connect(hsotg); } } /** * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup * * @hsotg: Pointer to struct dwc2_hsotg */ static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg) { if (hsotg->bus_suspended) { hsotg->flags.b.port_suspend_change = 1; usb_hcd_resume_root_hub(hsotg->priv); } if (hsotg->lx_state == DWC2_L1) hsotg->flags.b.port_l1_change = 1; } /** * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner * * @hsotg: Pointer to struct dwc2_hsotg * * Must be called with interrupt disabled and spinlock held */ void dwc2_hcd_stop(struct dwc2_hsotg *hsotg) { dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n"); /* * The root hub should be disconnected before this function is called. * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue) * and the QH lists (via ..._hcd_endpoint_disable). */ /* Turn off all host-specific interrupts */ dwc2_disable_host_interrupts(hsotg); /* Turn off the vbus power */ dev_dbg(hsotg->dev, "PortPower off\n"); dwc2_writel(hsotg, 0, HPRT0); } /* Caller must hold driver lock */ static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg, struct dwc2_hcd_urb *urb, struct dwc2_qh *qh, struct dwc2_qtd *qtd) { u32 intr_mask; int retval; int dev_speed; if (!hsotg->flags.b.port_connect_status) { /* No longer connected */ dev_err(hsotg->dev, "Not connected\n"); return -ENODEV; } dev_speed = dwc2_host_get_speed(hsotg, urb->priv); /* Some configurations cannot support LS traffic on a FS root port */ if ((dev_speed == USB_SPEED_LOW) && (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) && (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) { u32 hprt0 = dwc2_readl(hsotg, HPRT0); u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; if (prtspd == HPRT0_SPD_FULL_SPEED) return -ENODEV; } if (!qtd) return -EINVAL; dwc2_hcd_qtd_init(qtd, urb); retval = dwc2_hcd_qtd_add(hsotg, qtd, qh); if (retval) { dev_err(hsotg->dev, "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n", retval); return retval; } intr_mask = dwc2_readl(hsotg, GINTMSK); if (!(intr_mask & GINTSTS_SOF)) { enum dwc2_transaction_type tr_type; if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK && !(qtd->urb->flags & URB_GIVEBACK_ASAP)) /* * Do not schedule SG transactions until qtd has * URB_GIVEBACK_ASAP set */ return 0; tr_type = dwc2_hcd_select_transactions(hsotg); if (tr_type != DWC2_TRANSACTION_NONE) dwc2_hcd_queue_transactions(hsotg, tr_type); } return 0; } /* Must be called with interrupt disabled and spinlock held */ static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg, struct dwc2_hcd_urb *urb) { struct dwc2_qh *qh; struct dwc2_qtd *urb_qtd; urb_qtd = urb->qtd; if (!urb_qtd) { dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n"); return -EINVAL; } qh = urb_qtd->qh; if (!qh) { dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n"); return -EINVAL; } urb->priv = NULL; if (urb_qtd->in_process && qh->channel) { dwc2_dump_channel_info(hsotg, qh->channel); /* The QTD is in process (it has been assigned to a channel) */ if (hsotg->flags.b.port_connect_status) /* * If still connected (i.e. in host mode), halt the * channel so it can be used for other transfers. If * no longer connected, the host registers can't be * written to halt the channel since the core is in * device mode. */ dwc2_hc_halt(hsotg, qh->channel, DWC2_HC_XFER_URB_DEQUEUE); } /* * Free the QTD and clean up the associated QH. Leave the QH in the * schedule if it has any remaining QTDs. */ if (!hsotg->params.dma_desc_enable) { u8 in_process = urb_qtd->in_process; dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); if (in_process) { dwc2_hcd_qh_deactivate(hsotg, qh, 0); qh->channel = NULL; } else if (list_empty(&qh->qtd_list)) { dwc2_hcd_qh_unlink(hsotg, qh); } } else { dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh); } return 0; } /* Must NOT be called with interrupt disabled or spinlock held */ static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg, struct usb_host_endpoint *ep, int retry) { struct dwc2_qtd *qtd, *qtd_tmp; struct dwc2_qh *qh; unsigned long flags; int rc; spin_lock_irqsave(&hsotg->lock, flags); qh = ep->hcpriv; if (!qh) { rc = -EINVAL; goto err; } while (!list_empty(&qh->qtd_list) && retry--) { if (retry == 0) { dev_err(hsotg->dev, "## timeout in dwc2_hcd_endpoint_disable() ##\n"); rc = -EBUSY; goto err; } spin_unlock_irqrestore(&hsotg->lock, flags); msleep(20); spin_lock_irqsave(&hsotg->lock, flags); qh = ep->hcpriv; if (!qh) { rc = -EINVAL; goto err; } } dwc2_hcd_qh_unlink(hsotg, qh); /* Free each QTD in the QH's QTD list */ list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry) dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh); ep->hcpriv = NULL; if (qh->channel && qh->channel->qh == qh) qh->channel->qh = NULL; spin_unlock_irqrestore(&hsotg->lock, flags); dwc2_hcd_qh_free(hsotg, qh); return 0; err: ep->hcpriv = NULL; spin_unlock_irqrestore(&hsotg->lock, flags); return rc; } /* Must be called with interrupt disabled and spinlock held */ static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg, struct usb_host_endpoint *ep) { struct dwc2_qh *qh = ep->hcpriv; if (!qh) return -EINVAL; qh->data_toggle = DWC2_HC_PID_DATA0; return 0; } /** * dwc2_core_init() - Initializes the DWC_otg controller registers and * prepares the core for device mode or host mode operation * * @hsotg: Programming view of the DWC_otg controller * @initial_setup: If true then this is the first init for this instance. */ int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup) { u32 usbcfg, otgctl; int retval; dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); usbcfg = dwc2_readl(hsotg, GUSBCFG); /* Set ULPI External VBUS bit if needed */ usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV; if (hsotg->params.phy_ulpi_ext_vbus) usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV; /* Set external TS Dline pulsing bit if needed */ usbcfg &= ~GUSBCFG_TERMSELDLPULSE; if (hsotg->params.ts_dline) usbcfg |= GUSBCFG_TERMSELDLPULSE; dwc2_writel(hsotg, usbcfg, GUSBCFG); /* * Reset the Controller * * We only need to reset the controller if this is a re-init. * For the first init we know for sure that earlier code reset us (it * needed to in order to properly detect various parameters). */ if (!initial_setup) { retval = dwc2_core_reset(hsotg, false); if (retval) { dev_err(hsotg->dev, "%s(): Reset failed, aborting\n", __func__); return retval; } } /* * This needs to happen in FS mode before any other programming occurs */ retval = dwc2_phy_init(hsotg, initial_setup); if (retval) return retval; /* Program the GAHBCFG Register */ retval = dwc2_gahbcfg_init(hsotg); if (retval) return retval; /* Program the GUSBCFG register */ dwc2_gusbcfg_init(hsotg); /* Program the GOTGCTL register */ otgctl = dwc2_readl(hsotg, GOTGCTL); otgctl &= ~GOTGCTL_OTGVER; dwc2_writel(hsotg, otgctl, GOTGCTL); /* Clear the SRP success bit for FS-I2c */ hsotg->srp_success = 0; /* Enable common interrupts */ dwc2_enable_common_interrupts(hsotg); /* * Do device or host initialization based on mode during PCD and * HCD initialization */ if (dwc2_is_host_mode(hsotg)) { dev_dbg(hsotg->dev, "Host Mode\n"); hsotg->op_state = OTG_STATE_A_HOST; } else { dev_dbg(hsotg->dev, "Device Mode\n"); hsotg->op_state = OTG_STATE_B_PERIPHERAL; } return 0; } /** * dwc2_core_host_init() - Initializes the DWC_otg controller registers for * Host mode * * @hsotg: Programming view of DWC_otg controller * * This function flushes the Tx and Rx FIFOs and flushes any entries in the * request queues. Host channels are reset to ensure that they are ready for * performing transfers. */ static void dwc2_core_host_init(struct dwc2_hsotg *hsotg) { u32 hcfg, hfir, otgctl, usbcfg; dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg); /* Set HS/FS Timeout Calibration to 7 (max available value). * The number of PHY clocks that the application programs in * this field is added to the high/full speed interpacket timeout * duration in the core to account for any additional delays * introduced by the PHY. This can be required, because the delay * introduced by the PHY in generating the linestate condition * can vary from one PHY to another. */ usbcfg = dwc2_readl(hsotg, GUSBCFG); usbcfg |= GUSBCFG_TOUTCAL(7); dwc2_writel(hsotg, usbcfg, GUSBCFG); /* Restart the Phy Clock */ dwc2_writel(hsotg, 0, PCGCTL); /* Initialize Host Configuration Register */ dwc2_init_fs_ls_pclk_sel(hsotg); if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || hsotg->params.speed == DWC2_SPEED_PARAM_LOW) { hcfg = dwc2_readl(hsotg, HCFG); hcfg |= HCFG_FSLSSUPP; dwc2_writel(hsotg, hcfg, HCFG); } /* * This bit allows dynamic reloading of the HFIR register during * runtime. This bit needs to be programmed during initial configuration * and its value must not be changed during runtime. */ if (hsotg->params.reload_ctl) { hfir = dwc2_readl(hsotg, HFIR); hfir |= HFIR_RLDCTRL; dwc2_writel(hsotg, hfir, HFIR); } if (hsotg->params.dma_desc_enable) { u32 op_mode = hsotg->hw_params.op_mode; if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a || !hsotg->hw_params.dma_desc_enable || op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE || op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE || op_mode == GHWCFG2_OP_MODE_UNDEFINED) { dev_err(hsotg->dev, "Hardware does not support descriptor DMA mode -\n"); dev_err(hsotg->dev, "falling back to buffer DMA mode.\n"); hsotg->params.dma_desc_enable = false; } else { hcfg = dwc2_readl(hsotg, HCFG); hcfg |= HCFG_DESCDMA; dwc2_writel(hsotg, hcfg, HCFG); } } /* Configure data FIFO sizes */ dwc2_config_fifos(hsotg); /* TODO - check this */ /* Clear Host Set HNP Enable in the OTG Control Register */ otgctl = dwc2_readl(hsotg, GOTGCTL); otgctl &= ~GOTGCTL_HSTSETHNPEN; dwc2_writel(hsotg, otgctl, GOTGCTL); /* Make sure the FIFOs are flushed */ dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */); dwc2_flush_rx_fifo(hsotg); /* Clear Host Set HNP Enable in the OTG Control Register */ otgctl = dwc2_readl(hsotg, GOTGCTL); otgctl &= ~GOTGCTL_HSTSETHNPEN; dwc2_writel(hsotg, otgctl, GOTGCTL); if (!hsotg->params.dma_desc_enable) { int num_channels, i; u32 hcchar; /* Flush out any leftover queued requests */ num_channels = hsotg->params.host_channels; for (i = 0; i < num_channels; i++) { hcchar = dwc2_readl(hsotg, HCCHAR(i)); if (hcchar & HCCHAR_CHENA) { hcchar &= ~HCCHAR_CHENA; hcchar |= HCCHAR_CHDIS; hcchar &= ~HCCHAR_EPDIR; dwc2_writel(hsotg, hcchar, HCCHAR(i)); } } /* Halt all channels to put them into a known state */ for (i = 0; i < num_channels; i++) { hcchar = dwc2_readl(hsotg, HCCHAR(i)); if (hcchar & HCCHAR_CHENA) { hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS; hcchar &= ~HCCHAR_EPDIR; dwc2_writel(hsotg, hcchar, HCCHAR(i)); dev_dbg(hsotg->dev, "%s: Halt channel %d\n", __func__, i); if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i), HCCHAR_CHENA, 1000)) { dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n", i); } } } } /* Enable ACG feature in host mode, if supported */ dwc2_enable_acg(hsotg); /* Turn on the vbus power */ dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state); if (hsotg->op_state == OTG_STATE_A_HOST) { u32 hprt0 = dwc2_read_hprt0(hsotg); dev_dbg(hsotg->dev, "Init: Power Port (%d)\n", !!(hprt0 & HPRT0_PWR)); if (!(hprt0 & HPRT0_PWR)) { hprt0 |= HPRT0_PWR; dwc2_writel(hsotg, hprt0, HPRT0); } } dwc2_enable_host_interrupts(hsotg); } /* * Initializes dynamic portions of the DWC_otg HCD state * * Must be called with interrupt disabled and spinlock held */ static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg) { struct dwc2_host_chan *chan, *chan_tmp; int num_channels; int i; hsotg->flags.d32 = 0; hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active; if (hsotg->params.uframe_sched) { hsotg->available_host_channels = hsotg->params.host_channels; } else { hsotg->non_periodic_channels = 0; hsotg->periodic_channels = 0; } /* * Put all channels in the free channel list and clean up channel * states */ list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list, hc_list_entry) list_del_init(&chan->hc_list_entry); num_channels = hsotg->params.host_channels; for (i = 0; i < num_channels; i++) { chan = hsotg->hc_ptr_array[i]; list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list); dwc2_hc_cleanup(hsotg, chan); } /* Initialize the DWC core for host mode operation */ dwc2_core_host_init(hsotg); } static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb) { int hub_addr, hub_port; chan->do_split = 1; chan->xact_pos = qtd->isoc_split_pos; chan->complete_split = qtd->complete_split; dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port); chan->hub_addr = (u8)hub_addr; chan->hub_port = (u8)hub_port; } static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, struct dwc2_qtd *qtd) { struct dwc2_hcd_urb *urb = qtd->urb; struct dwc2_hcd_iso_packet_desc *frame_desc; switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) { case USB_ENDPOINT_XFER_CONTROL: chan->ep_type = USB_ENDPOINT_XFER_CONTROL; switch (qtd->control_phase) { case DWC2_CONTROL_SETUP: dev_vdbg(hsotg->dev, " Control setup transaction\n"); chan->do_ping = 0; chan->ep_is_in = 0; chan->data_pid_start = DWC2_HC_PID_SETUP; if (hsotg->params.host_dma) chan->xfer_dma = urb->setup_dma; else chan->xfer_buf = urb->setup_packet; chan->xfer_len = 8; break; case DWC2_CONTROL_DATA: dev_vdbg(hsotg->dev, " Control data transaction\n"); chan->data_pid_start = qtd->data_toggle; break; case DWC2_CONTROL_STATUS: /* * Direction is opposite of data direction or IN if no * data */ dev_vdbg(hsotg->dev, " Control status transaction\n"); if (urb->length == 0) chan->ep_is_in = 1; else chan->ep_is_in = dwc2_hcd_is_pipe_out(&urb->pipe_info); if (chan->ep_is_in) chan->do_ping = 0; chan->data_pid_start = DWC2_HC_PID_DATA1; chan->xfer_len = 0; if (hsotg->params.host_dma) chan->xfer_dma = hsotg->status_buf_dma; else chan->xfer_buf = hsotg->status_buf; break; } break; case USB_ENDPOINT_XFER_BULK: chan->ep_type = USB_ENDPOINT_XFER_BULK; break; case USB_ENDPOINT_XFER_INT: chan->ep_type = USB_ENDPOINT_XFER_INT; break; case USB_ENDPOINT_XFER_ISOC: chan->ep_type = USB_ENDPOINT_XFER_ISOC; if (hsotg->params.dma_desc_enable) break; frame_desc = &urb->iso_descs[qtd->isoc_frame_index]; frame_desc->status = 0; if (hsotg->params.host_dma) { chan->xfer_dma = urb->dma; chan->xfer_dma += frame_desc->offset + qtd->isoc_split_offset; } else { chan->xfer_buf = urb->buf; chan->xfer_buf += frame_desc->offset + qtd->isoc_split_offset; } chan->xfer_len = frame_desc->length - qtd->isoc_split_offset; if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) { if (chan->xfer_len <= 188) chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL; else chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN; } break; } } static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh, struct dwc2_host_chan *chan) { if (!hsotg->unaligned_cache || chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE) return -ENOMEM; if (!qh->dw_align_buf) { qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache, GFP_ATOMIC | GFP_DMA); if (!qh->dw_align_buf) return -ENOMEM; } qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf, DWC2_KMEM_UNALIGNED_BUF_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) { dev_err(hsotg->dev, "can't map align_buf\n"); chan->align_buf = 0; return -EINVAL; } chan->align_buf = qh->dw_align_buf_dma; return 0; } #define DWC2_USB_DMA_ALIGN 4 static void dwc2_free_dma_aligned_buffer(struct urb *urb) { void *stored_xfer_buffer; size_t length; if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER)) return; /* Restore urb->transfer_buffer from the end of the allocated area */ memcpy(&stored_xfer_buffer, PTR_ALIGN(urb->transfer_buffer + urb->transfer_buffer_length, dma_get_cache_alignment()), sizeof(urb->transfer_buffer)); if (usb_urb_dir_in(urb)) { if (usb_pipeisoc(urb->pipe)) length = urb->transfer_buffer_length; else length = urb->actual_length; memcpy(stored_xfer_buffer, urb->transfer_buffer, length); } kfree(urb->transfer_buffer); urb->transfer_buffer = stored_xfer_buffer; urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER; } static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags) { void *kmalloc_ptr; size_t kmalloc_size; if (urb->num_sgs || urb->sg || urb->transfer_buffer_length == 0 || !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1))) return 0; /* * Allocate a buffer with enough padding for original transfer_buffer * pointer. This allocation is guaranteed to be aligned properly for * DMA */ kmalloc_size = urb->transfer_buffer_length + (dma_get_cache_alignment() - 1) + sizeof(urb->transfer_buffer); kmalloc_ptr = kmalloc(kmalloc_size, mem_flags); if (!kmalloc_ptr) return -ENOMEM; /* * Position value of original urb->transfer_buffer pointer to the end * of allocation for later referencing */ memcpy(PTR_ALIGN(kmalloc_ptr + urb->transfer_buffer_length, dma_get_cache_alignment()), &urb->transfer_buffer, sizeof(urb->transfer_buffer)); if (usb_urb_dir_out(urb)) memcpy(kmalloc_ptr, urb->transfer_buffer, urb->transfer_buffer_length); urb->transfer_buffer = kmalloc_ptr; urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER; return 0; } static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { int ret; /* We assume setup_dma is always aligned; warn if not */ WARN_ON_ONCE(urb->setup_dma && (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1))); ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags); if (ret) return ret; ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); if (ret) dwc2_free_dma_aligned_buffer(urb); return ret; } static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) { usb_hcd_unmap_urb_for_dma(hcd, urb); dwc2_free_dma_aligned_buffer(urb); } /** * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host * channel and initializes the host channel to perform the transactions. The * host channel is removed from the free list. * * @hsotg: The HCD state structure * @qh: Transactions from the first QTD for this QH are selected and assigned * to a free host channel */ static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh) { struct dwc2_host_chan *chan; struct dwc2_hcd_urb *urb; struct dwc2_qtd *qtd; if (dbg_qh(qh)) dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh); if (list_empty(&qh->qtd_list)) { dev_dbg(hsotg->dev, "No QTDs in QH list\n"); return -ENOMEM; } if (list_empty(&hsotg->free_hc_list)) { dev_dbg(hsotg->dev, "No free channel to assign\n"); return -ENOMEM; } chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan, hc_list_entry); /* Remove host channel from free list */ list_del_init(&chan->hc_list_entry); qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry); urb = qtd->urb; qh->channel = chan; qtd->in_process = 1; /* * Use usb_pipedevice to determine device address. This address is * 0 before the SET_ADDRESS command and the correct address afterward. */ chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info); chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info); chan->speed = qh->dev_speed; chan->max_packet = qh->maxp; chan->xfer_started = 0; chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS; chan->error_state = (qtd->error_count > 0); chan->halt_on_queue = 0; chan->halt_pending = 0; chan->requests = 0; /* * The following values may be modified in the transfer type section * below. The xfer_len value may be reduced when the transfer is * started to accommodate the max widths of the XferSize and PktCnt * fields in the HCTSIZn register. */ chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0); if (chan->ep_is_in) chan->do_ping = 0; else chan->do_ping = qh->ping_state; chan->data_pid_start = qh->data_toggle; chan->multi_count = 1; if (urb->actual_length > urb->length && !dwc2_hcd_is_pipe_in(&urb->pipe_info)) urb->actual_length = urb->length; if (hsotg->params.host_dma) chan->xfer_dma = urb->dma + urb->actual_length; else chan->xfer_buf = (u8 *)urb->buf + urb->actual_length; chan->xfer_len = urb->length - urb->actual_length; chan->xfer_count = 0; /* Set the split attributes if required */ if (qh->do_split) dwc2_hc_init_split(hsotg, chan, qtd, urb); else chan->do_split = 0; /* Set the transfer attributes */ dwc2_hc_init_xfer(hsotg, chan, qtd); /* For non-dword aligned buffers */ if (hsotg->params.host_dma && qh->do_split && chan->ep_is_in && (chan->xfer_dma & 0x3)) { dev_vdbg(hsotg->dev, "Non-aligned buffer\n"); if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) { dev_err(hsotg->dev, "Failed to allocate memory to handle non-aligned buffer\n"); /* Add channel back to free list */ chan->align_buf = 0; chan->multi_count = 0; list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list); qtd->in_process = 0; qh->channel = NULL; return -ENOMEM; } } else { /* * We assume that DMA is always aligned in non-split * case or split out case. Warn if not. */ WARN_ON_ONCE(hsotg->params.host_dma && (chan->xfer_dma & 0x3)); chan->align_buf = 0; } if (chan->ep_type == USB_ENDPOINT_XFER_INT || chan->ep_type == USB_ENDPOINT_XFER_ISOC) /* * This value may be modified when the transfer is started * to reflect the actual transfer length */ chan->multi_count = qh->maxp_mult; if (hsotg->params.dma_desc_enable) { chan->desc_list_addr = qh->desc_list_dma; chan->desc_list_sz = qh->desc_list_sz; } dwc2_hc_init(hsotg, chan); chan->qh = qh; return 0; } /** * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer * schedule and assigns them to available host channels. Called from the HCD * interrupt handler functions. * * @hsotg: The HCD state structure * * Return: The types of new transactions that were assigned to host channels */ enum dwc2_transaction_type dwc2_hcd_select_transactions( struct dwc2_hsotg *hsotg) { enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE; struct list_head *qh_ptr; struct dwc2_qh *qh; int num_channels; #ifdef DWC2_DEBUG_SOF dev_vdbg(hsotg->dev, " Select Transactions\n"); #endif /* Process entries in the periodic ready list */ qh_ptr = hsotg->periodic_sched_ready.next; while (qh_ptr != &hsotg->periodic_sched_ready) { if (list_empty(&hsotg->free_hc_list)) break; if (hsotg->params.uframe_sched) { if (hsotg->available_host_channels <= 1) break; hsotg->available_host_channels--; } qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); if (dwc2_assign_and_init_hc(hsotg, qh)) { if (hsotg->params.uframe_sched) hsotg->available_host_channels++; break; } /* * Move the QH from the periodic ready schedule to the * periodic assigned schedule */ qh_ptr = qh_ptr->next; list_move_tail(&qh->qh_list_entry, &hsotg->periodic_sched_assigned); ret_val = DWC2_TRANSACTION_PERIODIC; } /* * Process entries in the inactive portion of the non-periodic * schedule. Some free host channels may not be used if they are * reserved for periodic transfers. */ num_channels = hsotg->params.host_channels; qh_ptr = hsotg->non_periodic_sched_inactive.next; while (qh_ptr != &hsotg->non_periodic_sched_inactive) { if (!hsotg->params.uframe_sched && hsotg->non_periodic_channels >= num_channels - hsotg->periodic_channels) break; if (list_empty(&hsotg->free_hc_list)) break; qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); if (hsotg->params.uframe_sched) { if (hsotg->available_host_channels < 1) break; hsotg->available_host_channels--; } if (dwc2_assign_and_init_hc(hsotg, qh)) { if (hsotg->params.uframe_sched) hsotg->available_host_channels++; break; } /* * Move the QH from the non-periodic inactive schedule to the * non-periodic active schedule */ qh_ptr = qh_ptr->next; list_move_tail(&qh->qh_list_entry, &hsotg->non_periodic_sched_active); if (ret_val == DWC2_TRANSACTION_NONE) ret_val = DWC2_TRANSACTION_NON_PERIODIC; else ret_val = DWC2_TRANSACTION_ALL; if (!hsotg->params.uframe_sched) hsotg->non_periodic_channels++; } return ret_val; } /** * dwc2_queue_transaction() - Attempts to queue a single transaction request for * a host channel associated with either a periodic or non-periodic transfer * * @hsotg: The HCD state structure * @chan: Host channel descriptor associated with either a periodic or * non-periodic transfer * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO * for periodic transfers or the non-periodic Tx FIFO * for non-periodic transfers * * Return: 1 if a request is queued and more requests may be needed to * complete the transfer, 0 if no more requests are required for this * transfer, -1 if there is insufficient space in the Tx FIFO * * This function assumes that there is space available in the appropriate * request queue. For an OUT transfer or SETUP transaction in Slave mode, * it checks whether space is available in the appropriate Tx FIFO. * * Must be called with interrupt disabled and spinlock held */ static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan, u16 fifo_dwords_avail) { int retval = 0; if (chan->do_split) /* Put ourselves on the list to keep order straight */ list_move_tail(&chan->split_order_list_entry, &hsotg->split_order); if (hsotg->params.host_dma && chan->qh) { if (hsotg->params.dma_desc_enable) { if (!chan->xfer_started || chan->ep_type == USB_ENDPOINT_XFER_ISOC) { dwc2_hcd_start_xfer_ddma(hsotg, chan->qh); chan->qh->ping_state = 0; } } else if (!chan->xfer_started) { dwc2_hc_start_transfer(hsotg, chan); chan->qh->ping_state = 0; } } else if (chan->halt_pending) { /* Don't queue a request if the channel has been halted */ } else if (chan->halt_on_queue) { dwc2_hc_halt(hsotg, chan, chan->halt_status); } else if (chan->do_ping) { if (!chan->xfer_started) dwc2_hc_start_transfer(hsotg, chan); } else if (!chan->ep_is_in || chan->data_pid_start == DWC2_HC_PID_SETUP) { if ((fifo_dwords_avail * 4) >= chan->max_packet) { if (!chan->xfer_started) { dwc2_hc_start_transfer(hsotg, chan); retval = 1; } else { retval = dwc2_hc_continue_transfer(hsotg, chan); } } else { retval = -1; } } else { if (!chan->xfer_started) { dwc2_hc_start_transfer(hsotg, chan); retval = 1; } else { retval = dwc2_hc_continue_transfer(hsotg, chan); } } return retval; } /* * Processes periodic channels for the next frame and queues transactions for * these channels to the DWC_otg controller. After queueing transactions, the * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions * to queue as Periodic Tx FIFO or request queue space becomes available. * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled. * * Must be called with interrupt disabled and spinlock held */ static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg) { struct list_head *qh_ptr; struct dwc2_qh *qh; u32 tx_status; u32 fspcavail; u32 gintmsk; int status; bool no_queue_space = false; bool no_fifo_space = false; u32 qspcavail; /* If empty list then just adjust interrupt enables */ if (list_empty(&hsotg->periodic_sched_assigned)) goto exit; if (dbg_perio()) dev_vdbg(hsotg->dev, "Queue periodic transactions\n"); tx_status = dwc2_readl(hsotg, HPTXSTS); qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT; fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; if (dbg_perio()) { dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n", qspcavail); dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n", fspcavail); } qh_ptr = hsotg->periodic_sched_assigned.next; while (qh_ptr != &hsotg->periodic_sched_assigned) { tx_status = dwc2_readl(hsotg, HPTXSTS); qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT; if (qspcavail == 0) { no_queue_space = true; break; } qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry); if (!qh->channel) { qh_ptr = qh_ptr->next; continue; } /* Make sure EP's TT buffer is clean before queueing qtds */ if (qh->tt_buffer_dirty) { qh_ptr = qh_ptr->next; continue; } /* * Set a flag if we're queuing high-bandwidth in slave mode. * The flag prevents any halts to get into the request queue in * the middle of multiple high-bandwidth packets getting queued. */ if (!hsotg->params.host_dma && qh->channel->multi_count > 1) hsotg->queuing_high_bandwidth = 1; fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); if (status < 0) { no_fifo_space = true; break; } /* * In Slave mode, stay on the current transfer until there is * nothing more to do or the high-bandwidth request count is * reached. In DMA mode, only need to queue one request. The * controller automatically handles multiple packets for * high-bandwidth transfers. */ if (hsotg->params.host_dma || status == 0 || qh->channel->requests == qh->channel->multi_count) { qh_ptr = qh_ptr->next; /* * Move the QH from the periodic assigned schedule to * the periodic queued schedule */ list_move_tail(&qh->qh_list_entry, &hsotg->periodic_sched_queued); /* done queuing high bandwidth */ hsotg->queuing_high_bandwidth = 0; } } exit: if (no_queue_space || no_fifo_space || (!hsotg->params.host_dma && !list_empty(&hsotg->periodic_sched_assigned))) { /* * May need to queue more transactions as the request * queue or Tx FIFO empties. Enable the periodic Tx * FIFO empty interrupt. (Always use the half-empty * level to ensure that new requests are loaded as * soon as possible.) */ gintmsk = dwc2_readl(hsotg, GINTMSK); if (!(gintmsk & GINTSTS_PTXFEMP)) { gintmsk |= GINTSTS_PTXFEMP; dwc2_writel(hsotg, gintmsk, GINTMSK); } } else { /* * Disable the Tx FIFO empty interrupt since there are * no more transactions that need to be queued right * now. This function is called from interrupt * handlers to queue more transactions as transfer * states change. */ gintmsk = dwc2_readl(hsotg, GINTMSK); if (gintmsk & GINTSTS_PTXFEMP) { gintmsk &= ~GINTSTS_PTXFEMP; dwc2_writel(hsotg, gintmsk, GINTMSK); } } } /* * Processes active non-periodic channels and queues transactions for these * channels to the DWC_otg controller. After queueing transactions, the NP Tx * FIFO Empty interrupt is enabled if there are more transactions to queue as * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx * FIFO Empty interrupt is disabled. * * Must be called with interrupt disabled and spinlock held */ static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg) { struct list_head *orig_qh_ptr; struct dwc2_qh *qh; u32 tx_status; u32 qspcavail; u32 fspcavail; u32 gintmsk; int status; int no_queue_space = 0; int no_fifo_space = 0; int more_to_do = 0; dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n"); tx_status = dwc2_readl(hsotg, GNPTXSTS); qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT; fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n", qspcavail); dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n", fspcavail); /* * Keep track of the starting point. Skip over the start-of-list * entry. */ if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active) hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; orig_qh_ptr = hsotg->non_periodic_qh_ptr; /* * Process once through the active list or until no more space is * available in the request queue or the Tx FIFO */ do { tx_status = dwc2_readl(hsotg, GNPTXSTS); qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT; if (!hsotg->params.host_dma && qspcavail == 0) { no_queue_space = 1; break; } qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh, qh_list_entry); if (!qh->channel) goto next; /* Make sure EP's TT buffer is clean before queueing qtds */ if (qh->tt_buffer_dirty) goto next; fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail); if (status > 0) { more_to_do = 1; } else if (status < 0) { no_fifo_space = 1; break; } next: /* Advance to next QH, skipping start-of-list entry */ hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active) hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next; } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr); if (!hsotg->params.host_dma) { tx_status = dwc2_readl(hsotg, GNPTXSTS); qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT; fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT; dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (after queue): %d\n", qspcavail); dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (after queue): %d\n", fspcavail); if (more_to_do || no_queue_space || no_fifo_space) { /* * May need to queue more transactions as the request * queue or Tx FIFO empties. Enable the non-periodic * Tx FIFO empty interrupt. (Always use the half-empty * level to ensure that new requests are loaded as * soon as possible.) */ gintmsk = dwc2_readl(hsotg, GINTMSK); gintmsk |= GINTSTS_NPTXFEMP; dwc2_writel(hsotg, gintmsk, GINTMSK); } else { /* * Disable the Tx FIFO empty interrupt since there are * no more transactions that need to be queued right * now. This function is called from interrupt * handlers to queue more transactions as transfer * states change. */ gintmsk = dwc2_readl(hsotg, GINTMSK); gintmsk &= ~GINTSTS_NPTXFEMP; dwc2_writel(hsotg, gintmsk, GINTMSK); } } } /** * dwc2_hcd_queue_transactions() - Processes the currently active host channels * and queues transactions for these channels to the DWC_otg controller. Called * from the HCD interrupt handler functions. * * @hsotg: The HCD state structure * @tr_type: The type(s) of transactions to queue (non-periodic, periodic, * or both) * * Must be called with interrupt disabled and spinlock held */ void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg, enum dwc2_transaction_type tr_type) { #ifdef DWC2_DEBUG_SOF dev_vdbg(hsotg->dev, "Queue Transactions\n"); #endif /* Process host channels associated with periodic transfers */ if (tr_type == DWC2_TRANSACTION_PERIODIC || tr_type == DWC2_TRANSACTION_ALL) dwc2_process_periodic_channels(hsotg); /* Process host channels associated with non-periodic transfers */ if (tr_type == DWC2_TRANSACTION_NON_PERIODIC || tr_type == DWC2_TRANSACTION_ALL) { if (!list_empty(&hsotg->non_periodic_sched_active)) { dwc2_process_non_periodic_channels(hsotg); } else { /* * Ensure NP Tx FIFO empty interrupt is disabled when * there are no non-periodic transfers to process */ u32 gintmsk = dwc2_readl(hsotg, GINTMSK); gintmsk &= ~GINTSTS_NPTXFEMP; dwc2_writel(hsotg, gintmsk, GINTMSK); } } } static void dwc2_conn_id_status_change(struct work_struct *work) { struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, wf_otg); u32 count = 0; u32 gotgctl; unsigned long flags; dev_dbg(hsotg->dev, "%s()\n", __func__); gotgctl = dwc2_readl(hsotg, GOTGCTL); dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl); dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n", !!(gotgctl & GOTGCTL_CONID_B)); /* B-Device connector (Device Mode) */ if (gotgctl & GOTGCTL_CONID_B) { dwc2_vbus_supply_exit(hsotg); /* Wait for switch to device mode */ dev_dbg(hsotg->dev, "connId B\n"); if (hsotg->bus_suspended) { dev_info(hsotg->dev, "Do port resume before switching to device mode\n"); dwc2_port_resume(hsotg); } while (!dwc2_is_device_mode(hsotg)) { dev_info(hsotg->dev, "Waiting for Peripheral Mode, Mode=%s\n", dwc2_is_host_mode(hsotg) ? "Host" : "Peripheral"); msleep(20); /* * Sometimes the initial GOTGCTRL read is wrong, so * check it again and jump to host mode if that was * the case. */ gotgctl = dwc2_readl(hsotg, GOTGCTL); if (!(gotgctl & GOTGCTL_CONID_B)) goto host; if (++count > 250) break; } if (count > 250) dev_err(hsotg->dev, "Connection id status change timed out\n"); /* * Exit Partial Power Down without restoring registers. * No need to check the return value as registers * are not being restored. */ if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2) dwc2_exit_partial_power_down(hsotg, 0, false); hsotg->op_state = OTG_STATE_B_PERIPHERAL; dwc2_core_init(hsotg, false); dwc2_enable_global_interrupts(hsotg); spin_lock_irqsave(&hsotg->lock, flags); dwc2_hsotg_core_init_disconnected(hsotg, false); spin_unlock_irqrestore(&hsotg->lock, flags); /* Enable ACG feature in device mode,if supported */ dwc2_enable_acg(hsotg); dwc2_hsotg_core_connect(hsotg); } else { host: /* A-Device connector (Host Mode) */ dev_dbg(hsotg->dev, "connId A\n"); while (!dwc2_is_host_mode(hsotg)) { dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n", dwc2_is_host_mode(hsotg) ? "Host" : "Peripheral"); msleep(20); if (++count > 250) break; } if (count > 250) dev_err(hsotg->dev, "Connection id status change timed out\n"); spin_lock_irqsave(&hsotg->lock, flags); dwc2_hsotg_disconnect(hsotg); spin_unlock_irqrestore(&hsotg->lock, flags); hsotg->op_state = OTG_STATE_A_HOST; /* Initialize the Core for Host mode */ dwc2_core_init(hsotg, false); dwc2_enable_global_interrupts(hsotg); dwc2_hcd_start(hsotg); } } static void dwc2_wakeup_detected(struct timer_list *t) { struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer); u32 hprt0; dev_dbg(hsotg->dev, "%s()\n", __func__); /* * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms * so that OPT tests pass with all PHYs.) */ hprt0 = dwc2_read_hprt0(hsotg); dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0); hprt0 &= ~HPRT0_RES; dwc2_writel(hsotg, hprt0, HPRT0); dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n", dwc2_readl(hsotg, HPRT0)); dwc2_hcd_rem_wakeup(hsotg); hsotg->bus_suspended = false; /* Change to L0 state */ hsotg->lx_state = DWC2_L0; } static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg) { struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg); return hcd->self.b_hnp_enable; } /** * dwc2_port_suspend() - Put controller in suspend mode for host. * * @hsotg: Programming view of the DWC_otg controller * @windex: The control request wIndex field * * Return: non-zero if failed to enter suspend mode for host. * * This function is for entering Host mode suspend. * Must NOT be called with interrupt disabled or spinlock held. */ int dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex) { unsigned long flags; u32 pcgctl; u32 gotgctl; int ret = 0; dev_dbg(hsotg->dev, "%s()\n", __func__); spin_lock_irqsave(&hsotg->lock, flags); if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) { gotgctl = dwc2_readl(hsotg, GOTGCTL); gotgctl |= GOTGCTL_HSTSETHNPEN; dwc2_writel(hsotg, gotgctl, GOTGCTL); hsotg->op_state = OTG_STATE_A_SUSPEND; } switch (hsotg->params.power_down) { case DWC2_POWER_DOWN_PARAM_PARTIAL: ret = dwc2_enter_partial_power_down(hsotg); if (ret) dev_err(hsotg->dev, "enter partial_power_down failed.\n"); break; case DWC2_POWER_DOWN_PARAM_HIBERNATION: /* * Perform spin unlock and lock because in * "dwc2_host_enter_hibernation()" function there is a spinlock * logic which prevents servicing of any IRQ during entering * hibernation. */ spin_unlock_irqrestore(&hsotg->lock, flags); ret = dwc2_enter_hibernation(hsotg, 1); if (ret) dev_err(hsotg->dev, "enter hibernation failed.\n"); spin_lock_irqsave(&hsotg->lock, flags); break; case DWC2_POWER_DOWN_PARAM_NONE: /* * If not hibernation nor partial power down are supported, * clock gating is used to save power. */ if (!hsotg->params.no_clock_gating) dwc2_host_enter_clock_gating(hsotg); break; } /* For HNP the bus must be suspended for at least 200ms */ if (dwc2_host_is_b_hnp_enabled(hsotg)) { pcgctl = dwc2_readl(hsotg, PCGCTL); pcgctl &= ~PCGCTL_STOPPCLK; dwc2_writel(hsotg, pcgctl, PCGCTL); spin_unlock_irqrestore(&hsotg->lock, flags); msleep(200); } else { spin_unlock_irqrestore(&hsotg->lock, flags); } return ret; } /** * dwc2_port_resume() - Exit controller from suspend mode for host. * * @hsotg: Programming view of the DWC_otg controller * * Return: non-zero if failed to exit suspend mode for host. * * This function is for exiting Host mode suspend. * Must NOT be called with interrupt disabled or spinlock held. */ int dwc2_port_resume(struct dwc2_hsotg *hsotg) { unsigned long flags; int ret = 0; spin_lock_irqsave(&hsotg->lock, flags); switch (hsotg->params.power_down) { case DWC2_POWER_DOWN_PARAM_PARTIAL: ret = dwc2_exit_partial_power_down(hsotg, 0, true); if (ret) dev_err(hsotg->dev, "exit partial_power_down failed.\n"); break; case DWC2_POWER_DOWN_PARAM_HIBERNATION: /* Exit host hibernation. */ ret = dwc2_exit_hibernation(hsotg, 0, 0, 1); if (ret) dev_err(hsotg->dev, "exit hibernation failed.\n"); break; case DWC2_POWER_DOWN_PARAM_NONE: /* * If not hibernation nor partial power down are supported, * port resume is done using the clock gating programming flow. */ spin_unlock_irqrestore(&hsotg->lock, flags); dwc2_host_exit_clock_gating(hsotg, 0); spin_lock_irqsave(&hsotg->lock, flags); break; } spin_unlock_irqrestore(&hsotg->lock, flags); return ret; } /* Handles hub class-specific requests */ static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq, u16 wvalue, u16 windex, char *buf, u16 wlength) { struct usb_hub_descriptor *hub_desc; int retval = 0; u32 hprt0; u32 port_status; u32 speed; u32 pcgctl; u32 pwr; switch (typereq) { case ClearHubFeature: dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue); switch (wvalue) { case C_HUB_LOCAL_POWER: case C_HUB_OVER_CURRENT: /* Nothing required here */ break; default: retval = -EINVAL; dev_err(hsotg->dev, "ClearHubFeature request %1xh unknown\n", wvalue); } break; case ClearPortFeature: if (wvalue != USB_PORT_FEAT_L1) if (!windex || windex > 1) goto error; switch (wvalue) { case USB_PORT_FEAT_ENABLE: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_ENABLE\n"); hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_ENA; dwc2_writel(hsotg, hprt0, HPRT0); break; case USB_PORT_FEAT_SUSPEND: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_SUSPEND\n"); if (hsotg->bus_suspended) retval = dwc2_port_resume(hsotg); break; case USB_PORT_FEAT_POWER: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_POWER\n"); hprt0 = dwc2_read_hprt0(hsotg); pwr = hprt0 & HPRT0_PWR; hprt0 &= ~HPRT0_PWR; dwc2_writel(hsotg, hprt0, HPRT0); if (pwr) dwc2_vbus_supply_exit(hsotg); break; case USB_PORT_FEAT_INDICATOR: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_INDICATOR\n"); /* Port indicator not supported */ break; case USB_PORT_FEAT_C_CONNECTION: /* * Clears driver's internal Connect Status Change flag */ dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n"); hsotg->flags.b.port_connect_status_change = 0; break; case USB_PORT_FEAT_C_RESET: /* Clears driver's internal Port Reset Change flag */ dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_RESET\n"); hsotg->flags.b.port_reset_change = 0; break; case USB_PORT_FEAT_C_ENABLE: /* * Clears the driver's internal Port Enable/Disable * Change flag */ dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n"); hsotg->flags.b.port_enable_change = 0; break; case USB_PORT_FEAT_C_SUSPEND: /* * Clears the driver's internal Port Suspend Change * flag, which is set when resume signaling on the host * port is complete */ dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n"); hsotg->flags.b.port_suspend_change = 0; break; case USB_PORT_FEAT_C_PORT_L1: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n"); hsotg->flags.b.port_l1_change = 0; break; case USB_PORT_FEAT_C_OVER_CURRENT: dev_dbg(hsotg->dev, "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n"); hsotg->flags.b.port_over_current_change = 0; break; default: retval = -EINVAL; dev_err(hsotg->dev, "ClearPortFeature request %1xh unknown or unsupported\n", wvalue); } break; case GetHubDescriptor: dev_dbg(hsotg->dev, "GetHubDescriptor\n"); hub_desc = (struct usb_hub_descriptor *)buf; hub_desc->bDescLength = 9; hub_desc->bDescriptorType = USB_DT_HUB; hub_desc->bNbrPorts = 1; hub_desc->wHubCharacteristics = cpu_to_le16(HUB_CHAR_COMMON_LPSM | HUB_CHAR_INDV_PORT_OCPM); hub_desc->bPwrOn2PwrGood = 1; hub_desc->bHubContrCurrent = 0; hub_desc->u.hs.DeviceRemovable[0] = 0; hub_desc->u.hs.DeviceRemovable[1] = 0xff; break; case GetHubStatus: dev_dbg(hsotg->dev, "GetHubStatus\n"); memset(buf, 0, 4); break; case GetPortStatus: dev_vdbg(hsotg->dev, "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex, hsotg->flags.d32); if (!windex || windex > 1) goto error; port_status = 0; if (hsotg->flags.b.port_connect_status_change) port_status |= USB_PORT_STAT_C_CONNECTION << 16; if (hsotg->flags.b.port_enable_change) port_status |= USB_PORT_STAT_C_ENABLE << 16; if (hsotg->flags.b.port_suspend_change) port_status |= USB_PORT_STAT_C_SUSPEND << 16; if (hsotg->flags.b.port_l1_change) port_status |= USB_PORT_STAT_C_L1 << 16; if (hsotg->flags.b.port_reset_change) port_status |= USB_PORT_STAT_C_RESET << 16; if (hsotg->flags.b.port_over_current_change) { dev_warn(hsotg->dev, "Overcurrent change detected\n"); port_status |= USB_PORT_STAT_C_OVERCURRENT << 16; } if (!hsotg->flags.b.port_connect_status) { /* * The port is disconnected, which means the core is * either in device mode or it soon will be. Just * return 0's for the remainder of the port status * since the port register can't be read if the core * is in device mode. */ *(__le32 *)buf = cpu_to_le32(port_status); break; } hprt0 = dwc2_readl(hsotg, HPRT0); dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0); if (hprt0 & HPRT0_CONNSTS) port_status |= USB_PORT_STAT_CONNECTION; if (hprt0 & HPRT0_ENA) port_status |= USB_PORT_STAT_ENABLE; if (hprt0 & HPRT0_SUSP) port_status |= USB_PORT_STAT_SUSPEND; if (hprt0 & HPRT0_OVRCURRACT) port_status |= USB_PORT_STAT_OVERCURRENT; if (hprt0 & HPRT0_RST) port_status |= USB_PORT_STAT_RESET; if (hprt0 & HPRT0_PWR) port_status |= USB_PORT_STAT_POWER; speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT; if (speed == HPRT0_SPD_HIGH_SPEED) port_status |= USB_PORT_STAT_HIGH_SPEED; else if (speed == HPRT0_SPD_LOW_SPEED) port_status |= USB_PORT_STAT_LOW_SPEED; if (hprt0 & HPRT0_TSTCTL_MASK) port_status |= USB_PORT_STAT_TEST; /* USB_PORT_FEAT_INDICATOR unsupported always 0 */ if (hsotg->params.dma_desc_fs_enable) { /* * Enable descriptor DMA only if a full speed * device is connected. */ if (hsotg->new_connection && ((port_status & (USB_PORT_STAT_CONNECTION | USB_PORT_STAT_HIGH_SPEED | USB_PORT_STAT_LOW_SPEED)) == USB_PORT_STAT_CONNECTION)) { u32 hcfg; dev_info(hsotg->dev, "Enabling descriptor DMA mode\n"); hsotg->params.dma_desc_enable = true; hcfg = dwc2_readl(hsotg, HCFG); hcfg |= HCFG_DESCDMA; dwc2_writel(hsotg, hcfg, HCFG); hsotg->new_connection = false; } } dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status); *(__le32 *)buf = cpu_to_le32(port_status); break; case SetHubFeature: dev_dbg(hsotg->dev, "SetHubFeature\n"); /* No HUB features supported */ break; case SetPortFeature: dev_dbg(hsotg->dev, "SetPortFeature\n"); if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1)) goto error; if (!hsotg->flags.b.port_connect_status) { /* * The port is disconnected, which means the core is * either in device mode or it soon will be. Just * return without doing anything since the port * register can't be written if the core is in device * mode. */ break; } switch (wvalue) { case USB_PORT_FEAT_SUSPEND: dev_dbg(hsotg->dev, "SetPortFeature - USB_PORT_FEAT_SUSPEND\n"); if (windex != hsotg->otg_port) goto error; if (!hsotg->bus_suspended) retval = dwc2_port_suspend(hsotg, windex); break; case USB_PORT_FEAT_POWER: dev_dbg(hsotg->dev, "SetPortFeature - USB_PORT_FEAT_POWER\n"); hprt0 = dwc2_read_hprt0(hsotg); pwr = hprt0 & HPRT0_PWR; hprt0 |= HPRT0_PWR; dwc2_writel(hsotg, hprt0, HPRT0); if (!pwr) dwc2_vbus_supply_init(hsotg); break; case USB_PORT_FEAT_RESET: dev_dbg(hsotg->dev, "SetPortFeature - USB_PORT_FEAT_RESET\n"); hprt0 = dwc2_read_hprt0(hsotg); if (hsotg->hibernated) { retval = dwc2_exit_hibernation(hsotg, 0, 1, 1); if (retval) dev_err(hsotg->dev, "exit hibernation failed\n"); } if (hsotg->in_ppd) { retval = dwc2_exit_partial_power_down(hsotg, 1, true); if (retval) dev_err(hsotg->dev, "exit partial_power_down failed\n"); } if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended) dwc2_host_exit_clock_gating(hsotg, 0); pcgctl = dwc2_readl(hsotg, PCGCTL); pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK); dwc2_writel(hsotg, pcgctl, PCGCTL); /* ??? Original driver does this */ dwc2_writel(hsotg, 0, PCGCTL); hprt0 = dwc2_read_hprt0(hsotg); pwr = hprt0 & HPRT0_PWR; /* Clear suspend bit if resetting from suspend state */ hprt0 &= ~HPRT0_SUSP; /* * When B-Host the Port reset bit is set in the Start * HCD Callback function, so that the reset is started * within 1ms of the HNP success interrupt */ if (!dwc2_hcd_is_b_host(hsotg)) { hprt0 |= HPRT0_PWR | HPRT0_RST; dev_dbg(hsotg->dev, "In host mode, hprt0=%08x\n", hprt0); dwc2_writel(hsotg, hprt0, HPRT0); if (!pwr) dwc2_vbus_supply_init(hsotg); } /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */ msleep(50); hprt0 &= ~HPRT0_RST; dwc2_writel(hsotg, hprt0, HPRT0); hsotg->lx_state = DWC2_L0; /* Now back to On state */ break; case USB_PORT_FEAT_INDICATOR: dev_dbg(hsotg->dev, "SetPortFeature - USB_PORT_FEAT_INDICATOR\n"); /* Not supported */ break; case USB_PORT_FEAT_TEST: hprt0 = dwc2_read_hprt0(hsotg); dev_dbg(hsotg->dev, "SetPortFeature - USB_PORT_FEAT_TEST\n"); hprt0 &= ~HPRT0_TSTCTL_MASK; hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT; dwc2_writel(hsotg, hprt0, HPRT0); break; default: retval = -EINVAL; dev_err(hsotg->dev, "SetPortFeature %1xh unknown or unsupported\n", wvalue); break; } break; default: error: retval = -EINVAL; dev_dbg(hsotg->dev, "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n", typereq, windex, wvalue); break; } return retval; } static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port) { int retval; if (port != 1) return -EINVAL; retval = (hsotg->flags.b.port_connect_status_change || hsotg->flags.b.port_reset_change || hsotg->flags.b.port_enable_change || hsotg->flags.b.port_suspend_change || hsotg->flags.b.port_over_current_change); if (retval) { dev_dbg(hsotg->dev, "DWC OTG HCD HUB STATUS DATA: Root port status changed\n"); dev_dbg(hsotg->dev, " port_connect_status_change: %d\n", hsotg->flags.b.port_connect_status_change); dev_dbg(hsotg->dev, " port_reset_change: %d\n", hsotg->flags.b.port_reset_change); dev_dbg(hsotg->dev, " port_enable_change: %d\n", hsotg->flags.b.port_enable_change); dev_dbg(hsotg->dev, " port_suspend_change: %d\n", hsotg->flags.b.port_suspend_change); dev_dbg(hsotg->dev, " port_over_current_change: %d\n", hsotg->flags.b.port_over_current_change); } return retval; } int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg) { u32 hfnum = dwc2_readl(hsotg, HFNUM); #ifdef DWC2_DEBUG_SOF dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n", (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT); #endif return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; } int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us) { u32 hprt = dwc2_readl(hsotg, HPRT0); u32 hfir = dwc2_readl(hsotg, HFIR); u32 hfnum = dwc2_readl(hsotg, HFNUM); unsigned int us_per_frame; unsigned int frame_number; unsigned int remaining; unsigned int interval; unsigned int phy_clks; /* High speed has 125 us per (micro) frame; others are 1 ms per */ us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125; /* Extract fields */ frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT; remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT; interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT; /* * Number of phy clocks since the last tick of the frame number after * "us" has passed. */ phy_clks = (interval - remaining) + DIV_ROUND_UP(interval * us, us_per_frame); return dwc2_frame_num_inc(frame_number, phy_clks / interval); } int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg) { return hsotg->op_state == OTG_STATE_B_HOST; } static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg, int iso_desc_count, gfp_t mem_flags) { struct dwc2_hcd_urb *urb; urb = kzalloc(struct_size(urb, iso_descs, iso_desc_count), mem_flags); if (urb) urb->packet_count = iso_desc_count; return urb; } static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg, struct dwc2_hcd_urb *urb, u8 dev_addr, u8 ep_num, u8 ep_type, u8 ep_dir, u16 maxp, u16 maxp_mult) { if (dbg_perio() || ep_type == USB_ENDPOINT_XFER_BULK || ep_type == USB_ENDPOINT_XFER_CONTROL) dev_vdbg(hsotg->dev, "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, maxp=%d (%d mult)\n", dev_addr, ep_num, ep_dir, ep_type, maxp, maxp_mult); urb->pipe_info.dev_addr = dev_addr; urb->pipe_info.ep_num = ep_num; urb->pipe_info.pipe_type = ep_type; urb->pipe_info.pipe_dir = ep_dir; urb->pipe_info.maxp = maxp; urb->pipe_info.maxp_mult = maxp_mult; } /* * NOTE: This function will be removed once the peripheral controller code * is integrated and the driver is stable */ void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg) { #ifdef DEBUG struct dwc2_host_chan *chan; struct dwc2_hcd_urb *urb; struct dwc2_qtd *qtd; int num_channels; u32 np_tx_status; u32 p_tx_status; int i; num_channels = hsotg->params.host_channels; dev_dbg(hsotg->dev, "\n"); dev_dbg(hsotg->dev, "************************************************************\n"); dev_dbg(hsotg->dev, "HCD State:\n"); dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels); for (i = 0; i < num_channels; i++) { chan = hsotg->hc_ptr_array[i]; dev_dbg(hsotg->dev, " Channel %d:\n", i); dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n", chan->dev_addr, chan->ep_num, chan->ep_is_in); dev_dbg(hsotg->dev, " speed: %d\n", chan->speed); dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type); dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet); dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start); dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count); dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started); dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf); dev_dbg(hsotg->dev, " xfer_dma: %08lx\n", (unsigned long)chan->xfer_dma); dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len); dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count); dev_dbg(hsotg->dev, " halt_on_queue: %d\n", chan->halt_on_queue); dev_dbg(hsotg->dev, " halt_pending: %d\n", chan->halt_pending); dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status); dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split); dev_dbg(hsotg->dev, " complete_split: %d\n", chan->complete_split); dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr); dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port); dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos); dev_dbg(hsotg->dev, " requests: %d\n", chan->requests); dev_dbg(hsotg->dev, " qh: %p\n", chan->qh); if (chan->xfer_started) { u32 hfnum, hcchar, hctsiz, hcint, hcintmsk; hfnum = dwc2_readl(hsotg, HFNUM); hcchar = dwc2_readl(hsotg, HCCHAR(i)); hctsiz = dwc2_readl(hsotg, HCTSIZ(i)); hcint = dwc2_readl(hsotg, HCINT(i)); hcintmsk = dwc2_readl(hsotg, HCINTMSK(i)); dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum); dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar); dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz); dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint); dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk); } if (!(chan->xfer_started && chan->qh)) continue; list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) { if (!qtd->in_process) break; urb = qtd->urb; dev_dbg(hsotg->dev, " URB Info:\n"); dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n", qtd, urb); if (urb) { dev_dbg(hsotg->dev, " Dev: %d, EP: %d %s\n", dwc2_hcd_get_dev_addr(&urb->pipe_info), dwc2_hcd_get_ep_num(&urb->pipe_info), dwc2_hcd_is_pipe_in(&urb->pipe_info) ? "IN" : "OUT"); dev_dbg(hsotg->dev, " Max packet size: %d (%d mult)\n", dwc2_hcd_get_maxp(&urb->pipe_info), dwc2_hcd_get_maxp_mult(&urb->pipe_info)); dev_dbg(hsotg->dev, " transfer_buffer: %p\n", urb->buf); dev_dbg(hsotg->dev, " transfer_dma: %08lx\n", (unsigned long)urb->dma); dev_dbg(hsotg->dev, " transfer_buffer_length: %d\n", urb->length); dev_dbg(hsotg->dev, " actual_length: %d\n", urb->actual_length); } } } dev_dbg(hsotg->dev, " non_periodic_channels: %d\n", hsotg->non_periodic_channels); dev_dbg(hsotg->dev, " periodic_channels: %d\n", hsotg->periodic_channels); dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs); np_tx_status = dwc2_readl(hsotg, GNPTXSTS); dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n", (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n", (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); p_tx_status = dwc2_readl(hsotg, HPTXSTS); dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n", (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT); dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n", (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT); dwc2_dump_global_registers(hsotg); dwc2_dump_host_registers(hsotg); dev_dbg(hsotg->dev, "************************************************************\n"); dev_dbg(hsotg->dev, "\n"); #endif } struct wrapper_priv_data { struct dwc2_hsotg *hsotg; }; /* Gets the dwc2_hsotg from a usb_hcd */ static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd) { struct wrapper_priv_data *p; p = (struct wrapper_priv_data *)&hcd->hcd_priv; return p->hsotg; } /** * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context * * This will get the dwc2_tt structure (and ttport) associated with the given * context (which is really just a struct urb pointer). * * The first time this is called for a given TT we allocate memory for our * structure. When everyone is done and has called dwc2_host_put_tt_info() * then the refcount for the structure will go to 0 and we'll free it. * * @hsotg: The HCD state structure for the DWC OTG controller. * @context: The priv pointer from a struct dwc2_hcd_urb. * @mem_flags: Flags for allocating memory. * @ttport: We'll return this device's port number here. That's used to * reference into the bitmap if we're on a multi_tt hub. * * Return: a pointer to a struct dwc2_tt. Don't forget to call * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure. */ struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context, gfp_t mem_flags, int *ttport) { struct urb *urb = context; struct dwc2_tt *dwc_tt = NULL; if (urb->dev->tt) { *ttport = urb->dev->ttport; dwc_tt = urb->dev->tt->hcpriv; if (!dwc_tt) { size_t bitmap_size; /* * For single_tt we need one schedule. For multi_tt * we need one per port. */ bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP * sizeof(dwc_tt->periodic_bitmaps[0]); if (urb->dev->tt->multi) bitmap_size *= urb->dev->tt->hub->maxchild; dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size, mem_flags); if (!dwc_tt) return NULL; dwc_tt->usb_tt = urb->dev->tt; dwc_tt->usb_tt->hcpriv = dwc_tt; } dwc_tt->refcount++; } return dwc_tt; } /** * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info() * * Frees resources allocated by dwc2_host_get_tt_info() if all current holders * of the structure are done. * * It's OK to call this with NULL. * * @hsotg: The HCD state structure for the DWC OTG controller. * @dwc_tt: The pointer returned by dwc2_host_get_tt_info. */ void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt) { /* Model kfree and make put of NULL a no-op */ if (!dwc_tt) return; WARN_ON(dwc_tt->refcount < 1); dwc_tt->refcount--; if (!dwc_tt->refcount) { dwc_tt->usb_tt->hcpriv = NULL; kfree(dwc_tt); } } int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context) { struct urb *urb = context; return urb->dev->speed; } static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw, struct urb *urb) { struct usb_bus *bus = hcd_to_bus(hcd); if (urb->interval) bus->bandwidth_allocated += bw / urb->interval; if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) bus->bandwidth_isoc_reqs++; else bus->bandwidth_int_reqs++; } static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw, struct urb *urb) { struct usb_bus *bus = hcd_to_bus(hcd); if (urb->interval) bus->bandwidth_allocated -= bw / urb->interval; if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) bus->bandwidth_isoc_reqs--; else bus->bandwidth_int_reqs--; } /* * Sets the final status of an URB and returns it to the upper layer. Any * required cleanup of the URB is performed. * * Must be called with interrupt disabled and spinlock held */ void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd, int status) { struct urb *urb; int i; if (!qtd) { dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__); return; } if (!qtd->urb) { dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__); return; } urb = qtd->urb->priv; if (!urb) { dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__); return; } urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb); if (dbg_urb(urb)) dev_vdbg(hsotg->dev, "%s: urb %p device %d ep %d-%s status %d actual %d\n", __func__, urb, usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "IN" : "OUT", status, urb->actual_length); if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { if (!hsotg->params.dma_desc_enable) urb->start_frame = qtd->qh->start_active_frame; urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb); for (i = 0; i < urb->number_of_packets; ++i) { urb->iso_frame_desc[i].actual_length = dwc2_hcd_urb_get_iso_desc_actual_length( qtd->urb, i); urb->iso_frame_desc[i].status = dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i); } } if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) { for (i = 0; i < urb->number_of_packets; i++) dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n", i, urb->iso_frame_desc[i].status); } urb->status = status; if (!status) { if ((urb->transfer_flags & URB_SHORT_NOT_OK) && urb->actual_length < urb->transfer_buffer_length) urb->status = -EREMOTEIO; } if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { struct usb_host_endpoint *ep = urb->ep; if (ep) dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg), dwc2_hcd_get_ep_bandwidth(hsotg, ep), urb); } usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb); urb->hcpriv = NULL; kfree(qtd->urb); qtd->urb = NULL; usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status); } /* * Work queue function for starting the HCD when A-Cable is connected */ static void dwc2_hcd_start_func(struct work_struct *work) { struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, start_work.work); dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg); dwc2_host_start(hsotg); } /* * Reset work queue function */ static void dwc2_hcd_reset_func(struct work_struct *work) { struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, reset_work.work); unsigned long flags; u32 hprt0; dev_dbg(hsotg->dev, "USB RESET function called\n"); spin_lock_irqsave(&hsotg->lock, flags); hprt0 = dwc2_read_hprt0(hsotg); hprt0 &= ~HPRT0_RST; dwc2_writel(hsotg, hprt0, HPRT0); hsotg->flags.b.port_reset_change = 1; spin_unlock_irqrestore(&hsotg->lock, flags); } static void dwc2_hcd_phy_reset_func(struct work_struct *work) { struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg, phy_reset_work); int ret; ret = phy_reset(hsotg->phy); if (ret) dev_warn(hsotg->dev, "PHY reset failed\n"); } /* * ========================================================================= * Linux HC Driver Functions * ========================================================================= */ /* * Initializes the DWC_otg controller and its root hub and prepares it for host * mode operation. Activates the root port. Returns 0 on success and a negative * error code on failure. */ static int _dwc2_hcd_start(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); struct usb_bus *bus = hcd_to_bus(hcd); unsigned long flags; u32 hprt0; int ret; dev_dbg(hsotg->dev, "DWC OTG HCD START\n"); spin_lock_irqsave(&hsotg->lock, flags); hsotg->lx_state = DWC2_L0; hcd->state = HC_STATE_RUNNING; set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); if (dwc2_is_device_mode(hsotg)) { spin_unlock_irqrestore(&hsotg->lock, flags); return 0; /* why 0 ?? */ } dwc2_hcd_reinit(hsotg); hprt0 = dwc2_read_hprt0(hsotg); /* Has vbus power been turned on in dwc2_core_host_init ? */ if (hprt0 & HPRT0_PWR) { /* Enable external vbus supply before resuming root hub */ spin_unlock_irqrestore(&hsotg->lock, flags); ret = dwc2_vbus_supply_init(hsotg); if (ret) return ret; spin_lock_irqsave(&hsotg->lock, flags); } /* Initialize and connect root hub if one is not already attached */ if (bus->root_hub) { dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n"); /* Inform the HUB driver to resume */ usb_hcd_resume_root_hub(hcd); } spin_unlock_irqrestore(&hsotg->lock, flags); return 0; } /* * Halts the DWC_otg host mode operations in a clean manner. USB transfers are * stopped. */ static void _dwc2_hcd_stop(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); unsigned long flags; u32 hprt0; /* Turn off all host-specific interrupts */ dwc2_disable_host_interrupts(hsotg); /* Wait for interrupt processing to finish */ synchronize_irq(hcd->irq); spin_lock_irqsave(&hsotg->lock, flags); hprt0 = dwc2_read_hprt0(hsotg); /* Ensure hcd is disconnected */ dwc2_hcd_disconnect(hsotg, true); dwc2_hcd_stop(hsotg); hsotg->lx_state = DWC2_L3; hcd->state = HC_STATE_HALT; clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); spin_unlock_irqrestore(&hsotg->lock, flags); /* keep balanced supply init/exit by checking HPRT0_PWR */ if (hprt0 & HPRT0_PWR) dwc2_vbus_supply_exit(hsotg); usleep_range(1000, 3000); } static int _dwc2_hcd_suspend(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); unsigned long flags; int ret = 0; spin_lock_irqsave(&hsotg->lock, flags); if (dwc2_is_device_mode(hsotg)) goto unlock; if (hsotg->lx_state != DWC2_L0) goto unlock; if (!HCD_HW_ACCESSIBLE(hcd)) goto unlock; if (hsotg->op_state == OTG_STATE_B_PERIPHERAL) goto unlock; if (hsotg->bus_suspended) goto skip_power_saving; if (hsotg->flags.b.port_connect_status == 0) goto skip_power_saving; switch (hsotg->params.power_down) { case DWC2_POWER_DOWN_PARAM_PARTIAL: /* Enter partial_power_down */ ret = dwc2_enter_partial_power_down(hsotg); if (ret) dev_err(hsotg->dev, "enter partial_power_down failed\n"); /* After entering suspend, hardware is not accessible */ clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); break; case DWC2_POWER_DOWN_PARAM_HIBERNATION: /* Enter hibernation */ spin_unlock_irqrestore(&hsotg->lock, flags); ret = dwc2_enter_hibernation(hsotg, 1); if (ret) dev_err(hsotg->dev, "enter hibernation failed\n"); spin_lock_irqsave(&hsotg->lock, flags); /* After entering suspend, hardware is not accessible */ clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); break; case DWC2_POWER_DOWN_PARAM_NONE: /* * If not hibernation nor partial power down are supported, * clock gating is used to save power. */ if (!hsotg->params.no_clock_gating) { dwc2_host_enter_clock_gating(hsotg); /* After entering suspend, hardware is not accessible */ clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); } break; default: goto skip_power_saving; } spin_unlock_irqrestore(&hsotg->lock, flags); dwc2_vbus_supply_exit(hsotg); spin_lock_irqsave(&hsotg->lock, flags); /* Ask phy to be suspended */ if (!IS_ERR_OR_NULL(hsotg->uphy)) { spin_unlock_irqrestore(&hsotg->lock, flags); usb_phy_set_suspend(hsotg->uphy, true); spin_lock_irqsave(&hsotg->lock, flags); } skip_power_saving: hsotg->lx_state = DWC2_L2; unlock: spin_unlock_irqrestore(&hsotg->lock, flags); return ret; } static int _dwc2_hcd_resume(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); unsigned long flags; u32 hprt0; int ret = 0; spin_lock_irqsave(&hsotg->lock, flags); if (dwc2_is_device_mode(hsotg)) goto unlock; if (hsotg->lx_state != DWC2_L2) goto unlock; hprt0 = dwc2_read_hprt0(hsotg); /* * Added port connection status checking which prevents exiting from * Partial Power Down mode from _dwc2_hcd_resume() if not in Partial * Power Down mode. */ if (hprt0 & HPRT0_CONNSTS) { hsotg->lx_state = DWC2_L0; goto unlock; } switch (hsotg->params.power_down) { case DWC2_POWER_DOWN_PARAM_PARTIAL: ret = dwc2_exit_partial_power_down(hsotg, 0, true); if (ret) dev_err(hsotg->dev, "exit partial_power_down failed\n"); /* * Set HW accessible bit before powering on the controller * since an interrupt may rise. */ set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); break; case DWC2_POWER_DOWN_PARAM_HIBERNATION: ret = dwc2_exit_hibernation(hsotg, 0, 0, 1); if (ret) dev_err(hsotg->dev, "exit hibernation failed.\n"); /* * Set HW accessible bit before powering on the controller * since an interrupt may rise. */ set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); break; case DWC2_POWER_DOWN_PARAM_NONE: /* * If not hibernation nor partial power down are supported, * port resume is done using the clock gating programming flow. */ spin_unlock_irqrestore(&hsotg->lock, flags); dwc2_host_exit_clock_gating(hsotg, 0); /* * Initialize the Core for Host mode, as after system resume * the global interrupts are disabled. */ dwc2_core_init(hsotg, false); dwc2_enable_global_interrupts(hsotg); dwc2_hcd_reinit(hsotg); spin_lock_irqsave(&hsotg->lock, flags); /* * Set HW accessible bit before powering on the controller * since an interrupt may rise. */ set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); break; default: hsotg->lx_state = DWC2_L0; goto unlock; } /* Change Root port status, as port status change occurred after resume.*/ hsotg->flags.b.port_suspend_change = 1; /* * Enable power if not already done. * This must not be spinlocked since duration * of this call is unknown. */ if (!IS_ERR_OR_NULL(hsotg->uphy)) { spin_unlock_irqrestore(&hsotg->lock, flags); usb_phy_set_suspend(hsotg->uphy, false); spin_lock_irqsave(&hsotg->lock, flags); } /* Enable external vbus supply after resuming the port. */ spin_unlock_irqrestore(&hsotg->lock, flags); dwc2_vbus_supply_init(hsotg); /* Wait for controller to correctly update D+/D- level */ usleep_range(3000, 5000); spin_lock_irqsave(&hsotg->lock, flags); /* * Clear Port Enable and Port Status changes. * Enable Port Power. */ dwc2_writel(hsotg, HPRT0_PWR | HPRT0_CONNDET | HPRT0_ENACHG, HPRT0); /* Wait for controller to detect Port Connect */ spin_unlock_irqrestore(&hsotg->lock, flags); usleep_range(5000, 7000); spin_lock_irqsave(&hsotg->lock, flags); unlock: spin_unlock_irqrestore(&hsotg->lock, flags); return ret; } /* Returns the current frame number */ static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); return dwc2_hcd_get_frame_number(hsotg); } static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb, char *fn_name) { #ifdef VERBOSE_DEBUG struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); char *pipetype = NULL; char *speed = NULL; dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb); dev_vdbg(hsotg->dev, " Device address: %d\n", usb_pipedevice(urb->pipe)); dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe), usb_pipein(urb->pipe) ? "IN" : "OUT"); switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: pipetype = "CONTROL"; break; case PIPE_BULK: pipetype = "BULK"; break; case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break; case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break; } dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype, usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ? "IN" : "OUT"); switch (urb->dev->speed) { case USB_SPEED_HIGH: speed = "HIGH"; break; case USB_SPEED_FULL: speed = "FULL"; break; case USB_SPEED_LOW: speed = "LOW"; break; default: speed = "UNKNOWN"; break; } dev_vdbg(hsotg->dev, " Speed: %s\n", speed); dev_vdbg(hsotg->dev, " Max packet size: %d (%d mult)\n", usb_endpoint_maxp(&urb->ep->desc), usb_endpoint_maxp_mult(&urb->ep->desc)); dev_vdbg(hsotg->dev, " Data buffer length: %d\n", urb->transfer_buffer_length); dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n", urb->transfer_buffer, (unsigned long)urb->transfer_dma); dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n", urb->setup_packet, (unsigned long)urb->setup_dma); dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval); if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { int i; for (i = 0; i < urb->number_of_packets; i++) { dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i); dev_vdbg(hsotg->dev, " offset: %d, length %d\n", urb->iso_frame_desc[i].offset, urb->iso_frame_desc[i].length); } } #endif } /* * Starts processing a USB transfer request specified by a USB Request Block * (URB). mem_flags indicates the type of memory allocation to use while * processing this URB. */ static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); struct usb_host_endpoint *ep = urb->ep; struct dwc2_hcd_urb *dwc2_urb; int i; int retval; int alloc_bandwidth = 0; u8 ep_type = 0; u32 tflags = 0; void *buf; unsigned long flags; struct dwc2_qh *qh; bool qh_allocated = false; struct dwc2_qtd *qtd; struct dwc2_gregs_backup *gr; gr = &hsotg->gr_backup; if (dbg_urb(urb)) { dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n"); dwc2_dump_urb_info(hcd, urb, "urb_enqueue"); } if (hsotg->hibernated) { if (gr->gotgctl & GOTGCTL_CURMODE_HOST) retval = dwc2_exit_hibernation(hsotg, 0, 0, 1); else retval = dwc2_exit_hibernation(hsotg, 0, 0, 0); if (retval) dev_err(hsotg->dev, "exit hibernation failed.\n"); } if (hsotg->in_ppd) { retval = dwc2_exit_partial_power_down(hsotg, 0, true); if (retval) dev_err(hsotg->dev, "exit partial_power_down failed\n"); } if (hsotg->params.power_down == DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended && !hsotg->params.no_clock_gating) { if (dwc2_is_device_mode(hsotg)) dwc2_gadget_exit_clock_gating(hsotg, 0); else dwc2_host_exit_clock_gating(hsotg, 0); } if (!ep) return -EINVAL; if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS || usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { spin_lock_irqsave(&hsotg->lock, flags); if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep)) alloc_bandwidth = 1; spin_unlock_irqrestore(&hsotg->lock, flags); } switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: ep_type = USB_ENDPOINT_XFER_CONTROL; break; case PIPE_ISOCHRONOUS: ep_type = USB_ENDPOINT_XFER_ISOC; break; case PIPE_BULK: ep_type = USB_ENDPOINT_XFER_BULK; break; case PIPE_INTERRUPT: ep_type = USB_ENDPOINT_XFER_INT; break; } dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets, mem_flags); if (!dwc2_urb) return -ENOMEM; dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe), ep_type, usb_pipein(urb->pipe), usb_endpoint_maxp(&ep->desc), usb_endpoint_maxp_mult(&ep->desc)); buf = urb->transfer_buffer; if (hcd_uses_dma(hcd)) { if (!buf && (urb->transfer_dma & 3)) { dev_err(hsotg->dev, "%s: unaligned transfer with no transfer_buffer", __func__); retval = -EINVAL; goto fail0; } } if (!(urb->transfer_flags & URB_NO_INTERRUPT)) tflags |= URB_GIVEBACK_ASAP; if (urb->transfer_flags & URB_ZERO_PACKET) tflags |= URB_SEND_ZERO_PACKET; dwc2_urb->priv = urb; dwc2_urb->buf = buf; dwc2_urb->dma = urb->transfer_dma; dwc2_urb->length = urb->transfer_buffer_length; dwc2_urb->setup_packet = urb->setup_packet; dwc2_urb->setup_dma = urb->setup_dma; dwc2_urb->flags = tflags; dwc2_urb->interval = urb->interval; dwc2_urb->status = -EINPROGRESS; for (i = 0; i < urb->number_of_packets; ++i) dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i, urb->iso_frame_desc[i].offset, urb->iso_frame_desc[i].length); urb->hcpriv = dwc2_urb; qh = (struct dwc2_qh *)ep->hcpriv; /* Create QH for the endpoint if it doesn't exist */ if (!qh) { qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags); if (!qh) { retval = -ENOMEM; goto fail0; } ep->hcpriv = qh; qh_allocated = true; } qtd = kzalloc(sizeof(*qtd), mem_flags); if (!qtd) { retval = -ENOMEM; goto fail1; } spin_lock_irqsave(&hsotg->lock, flags); retval = usb_hcd_link_urb_to_ep(hcd, urb); if (retval) goto fail2; retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd); if (retval) goto fail3; if (alloc_bandwidth) { dwc2_allocate_bus_bandwidth(hcd, dwc2_hcd_get_ep_bandwidth(hsotg, ep), urb); } spin_unlock_irqrestore(&hsotg->lock, flags); return 0; fail3: dwc2_urb->priv = NULL; usb_hcd_unlink_urb_from_ep(hcd, urb); if (qh_allocated && qh->channel && qh->channel->qh == qh) qh->channel->qh = NULL; fail2: urb->hcpriv = NULL; spin_unlock_irqrestore(&hsotg->lock, flags); kfree(qtd); fail1: if (qh_allocated) { struct dwc2_qtd *qtd2, *qtd2_tmp; ep->hcpriv = NULL; dwc2_hcd_qh_unlink(hsotg, qh); /* Free each QTD in the QH's QTD list */ list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list, qtd_list_entry) dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh); dwc2_hcd_qh_free(hsotg, qh); } fail0: kfree(dwc2_urb); return retval; } /* * Aborts/cancels a USB transfer request. Always returns 0 to indicate success. */ static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); int rc; unsigned long flags; dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n"); dwc2_dump_urb_info(hcd, urb, "urb_dequeue"); spin_lock_irqsave(&hsotg->lock, flags); rc = usb_hcd_check_unlink_urb(hcd, urb, status); if (rc) goto out; if (!urb->hcpriv) { dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n"); goto out; } rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv); usb_hcd_unlink_urb_from_ep(hcd, urb); kfree(urb->hcpriv); urb->hcpriv = NULL; /* Higher layer software sets URB status */ spin_unlock(&hsotg->lock); usb_hcd_giveback_urb(hcd, urb, status); spin_lock(&hsotg->lock); dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n"); dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status); out: spin_unlock_irqrestore(&hsotg->lock, flags); return rc; } /* * Frees resources in the DWC_otg controller related to a given endpoint. Also * clears state in the HCD related to the endpoint. Any URBs for the endpoint * must already be dequeued. */ static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); dev_dbg(hsotg->dev, "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n", ep->desc.bEndpointAddress, ep->hcpriv); dwc2_hcd_endpoint_disable(hsotg, ep, 250); } /* * Resets endpoint specific parameter values, in current version used to reset * the data toggle (as a WA). This function can be called from usb_clear_halt * routine. */ static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); unsigned long flags; dev_dbg(hsotg->dev, "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n", ep->desc.bEndpointAddress); spin_lock_irqsave(&hsotg->lock, flags); dwc2_hcd_endpoint_reset(hsotg, ep); spin_unlock_irqrestore(&hsotg->lock, flags); } /* * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid * interrupt. * * This function is called by the USB core when an interrupt occurs */ static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); return dwc2_handle_hcd_intr(hsotg); } /* * Creates Status Change bitmap for the root hub and root port. The bitmap is * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 * is the status change indicator for the single root port. Returns 1 if either * change indicator is 1, otherwise returns 0. */ static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1; return buf[0] != 0; } /* Handles hub class-specific requests */ static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue, u16 windex, char *buf, u16 wlength) { int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq, wvalue, windex, buf, wlength); return retval; } /* Handles hub TT buffer clear completions */ static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd, struct usb_host_endpoint *ep) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); struct dwc2_qh *qh; unsigned long flags; qh = ep->hcpriv; if (!qh) return; spin_lock_irqsave(&hsotg->lock, flags); qh->tt_buffer_dirty = 0; if (hsotg->flags.b.port_connect_status) dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL); spin_unlock_irqrestore(&hsotg->lock, flags); } /* * HPRT0_SPD_HIGH_SPEED: high speed * HPRT0_SPD_FULL_SPEED: full speed */ static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); if (hsotg->params.speed == speed) return; hsotg->params.speed = speed; queue_work(hsotg->wq_otg, &hsotg->wf_otg); } static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); if (!hsotg->params.change_speed_quirk) return; /* * On removal, set speed to default high-speed. */ if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN && udev->parent->speed < USB_SPEED_HIGH) { dev_info(hsotg->dev, "Set speed to default high-speed\n"); dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED); } } static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev) { struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd); if (!hsotg->params.change_speed_quirk) return 0; if (udev->speed == USB_SPEED_HIGH) { dev_info(hsotg->dev, "Set speed to high-speed\n"); dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED); } else if ((udev->speed == USB_SPEED_FULL || udev->speed == USB_SPEED_LOW)) { /* * Change speed setting to full-speed if there's * a full-speed or low-speed device plugged in. */ dev_info(hsotg->dev, "Set speed to full-speed\n"); dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED); } return 0; } static struct hc_driver dwc2_hc_driver = { .description = "dwc2_hsotg", .product_desc = "DWC OTG Controller", .hcd_priv_size = sizeof(struct wrapper_priv_data), .irq = _dwc2_hcd_irq, .flags = HCD_MEMORY | HCD_USB2 | HCD_BH, .start = _dwc2_hcd_start, .stop = _dwc2_hcd_stop, .urb_enqueue = _dwc2_hcd_urb_enqueue, .urb_dequeue = _dwc2_hcd_urb_dequeue, .endpoint_disable = _dwc2_hcd_endpoint_disable, .endpoint_reset = _dwc2_hcd_endpoint_reset, .get_frame_number = _dwc2_hcd_get_frame_number, .hub_status_data = _dwc2_hcd_hub_status_data, .hub_control = _dwc2_hcd_hub_control, .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete, .bus_suspend = _dwc2_hcd_suspend, .bus_resume = _dwc2_hcd_resume, .map_urb_for_dma = dwc2_map_urb_for_dma, .unmap_urb_for_dma = dwc2_unmap_urb_for_dma, }; /* * Frees secondary storage associated with the dwc2_hsotg structure contained * in the struct usb_hcd field */ static void dwc2_hcd_free(struct dwc2_hsotg *hsotg) { u32 ahbcfg; u32 dctl; int i; dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n"); /* Free memory for QH/QTD lists */ dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive); dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting); dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active); dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive); dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready); dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned); dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued); /* Free memory for the host channels */ for (i = 0; i < MAX_EPS_CHANNELS; i++) { struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i]; if (chan) { dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n", i, chan); hsotg->hc_ptr_array[i] = NULL; kfree(chan); } } if (hsotg->params.host_dma) { if (hsotg->status_buf) { dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE, hsotg->status_buf, hsotg->status_buf_dma); hsotg->status_buf = NULL; } } else { kfree(hsotg->status_buf); hsotg->status_buf = NULL; } ahbcfg = dwc2_readl(hsotg, GAHBCFG); /* Disable all interrupts */ ahbcfg &= ~GAHBCFG_GLBL_INTR_EN; dwc2_writel(hsotg, ahbcfg, GAHBCFG); dwc2_writel(hsotg, 0, GINTMSK); if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) { dctl = dwc2_readl(hsotg, DCTL); dctl |= DCTL_SFTDISCON; dwc2_writel(hsotg, dctl, DCTL); } if (hsotg->wq_otg) { if (!cancel_work_sync(&hsotg->wf_otg)) flush_workqueue(hsotg->wq_otg); destroy_workqueue(hsotg->wq_otg); } cancel_work_sync(&hsotg->phy_reset_work); del_timer(&hsotg->wkp_timer); } static void dwc2_hcd_release(struct dwc2_hsotg *hsotg) { /* Turn off all host-specific interrupts */ dwc2_disable_host_interrupts(hsotg); dwc2_hcd_free(hsotg); } /* * Initializes the HCD. This function allocates memory for and initializes the * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the * USB bus with the core and calls the hc_driver->start() function. It returns * a negative error on failure. */ int dwc2_hcd_init(struct dwc2_hsotg *hsotg) { struct platform_device *pdev = to_platform_device(hsotg->dev); struct resource *res; struct usb_hcd *hcd; struct dwc2_host_chan *channel; u32 hcfg; int i, num_channels; int retval; if (usb_disabled()) return -ENODEV; dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n"); retval = -ENOMEM; hcfg = dwc2_readl(hsotg, HCFG); dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg); #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE, sizeof(*hsotg->frame_num_array), GFP_KERNEL); if (!hsotg->frame_num_array) goto error1; hsotg->last_frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE, sizeof(*hsotg->last_frame_num_array), GFP_KERNEL); if (!hsotg->last_frame_num_array) goto error1; #endif hsotg->last_frame_num = HFNUM_MAX_FRNUM; /* Check if the bus driver or platform code has setup a dma_mask */ if (hsotg->params.host_dma && !hsotg->dev->dma_mask) { dev_warn(hsotg->dev, "dma_mask not set, disabling DMA\n"); hsotg->params.host_dma = false; hsotg->params.dma_desc_enable = false; } /* Set device flags indicating whether the HCD supports DMA */ if (hsotg->params.host_dma) { if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) dev_warn(hsotg->dev, "can't set DMA mask\n"); if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0) dev_warn(hsotg->dev, "can't set coherent DMA mask\n"); } if (hsotg->params.change_speed_quirk) { dwc2_hc_driver.free_dev = dwc2_free_dev; dwc2_hc_driver.reset_device = dwc2_reset_device; } if (hsotg->params.host_dma) dwc2_hc_driver.flags |= HCD_DMA; hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev)); if (!hcd) goto error1; hcd->has_tt = 1; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { retval = -EINVAL; goto error2; } hcd->rsrc_start = res->start; hcd->rsrc_len = resource_size(res); ((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg; hsotg->priv = hcd; /* * Disable the global interrupt until all the interrupt handlers are * installed */ dwc2_disable_global_interrupts(hsotg); /* Initialize the DWC_otg core, and select the Phy type */ retval = dwc2_core_init(hsotg, true); if (retval) goto error2; /* Create new workqueue and init work */ retval = -ENOMEM; hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0); if (!hsotg->wq_otg) { dev_err(hsotg->dev, "Failed to create workqueue\n"); goto error2; } INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change); timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0); /* Initialize the non-periodic schedule */ INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive); INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting); INIT_LIST_HEAD(&hsotg->non_periodic_sched_active); /* Initialize the periodic schedule */ INIT_LIST_HEAD(&hsotg->periodic_sched_inactive); INIT_LIST_HEAD(&hsotg->periodic_sched_ready); INIT_LIST_HEAD(&hsotg->periodic_sched_assigned); INIT_LIST_HEAD(&hsotg->periodic_sched_queued); INIT_LIST_HEAD(&hsotg->split_order); /* * Create a host channel descriptor for each host channel implemented * in the controller. Initialize the channel descriptor array. */ INIT_LIST_HEAD(&hsotg->free_hc_list); num_channels = hsotg->params.host_channels; memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array)); for (i = 0; i < num_channels; i++) { channel = kzalloc(sizeof(*channel), GFP_KERNEL); if (!channel) goto error3; channel->hc_num = i; INIT_LIST_HEAD(&channel->split_order_list_entry); hsotg->hc_ptr_array[i] = channel; } /* Initialize work */ INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func); INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func); INIT_WORK(&hsotg->phy_reset_work, dwc2_hcd_phy_reset_func); /* * Allocate space for storing data on status transactions. Normally no * data is sent, but this space acts as a bit bucket. This must be * done after usb_add_hcd since that function allocates the DMA buffer * pool. */ if (hsotg->params.host_dma) hsotg->status_buf = dma_alloc_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE, &hsotg->status_buf_dma, GFP_KERNEL); else hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE, GFP_KERNEL); if (!hsotg->status_buf) goto error3; /* * Create kmem caches to handle descriptor buffers in descriptor * DMA mode. * Alignment must be set to 512 bytes. */ if (hsotg->params.dma_desc_enable || hsotg->params.dma_desc_fs_enable) { hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc", sizeof(struct dwc2_dma_desc) * MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA, NULL); if (!hsotg->desc_gen_cache) { dev_err(hsotg->dev, "unable to create dwc2 generic desc cache\n"); /* * Disable descriptor dma mode since it will not be * usable. */ hsotg->params.dma_desc_enable = false; hsotg->params.dma_desc_fs_enable = false; } hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc", sizeof(struct dwc2_dma_desc) * MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL); if (!hsotg->desc_hsisoc_cache) { dev_err(hsotg->dev, "unable to create dwc2 hs isoc desc cache\n"); kmem_cache_destroy(hsotg->desc_gen_cache); /* * Disable descriptor dma mode since it will not be * usable. */ hsotg->params.dma_desc_enable = false; hsotg->params.dma_desc_fs_enable = false; } } if (hsotg->params.host_dma) { /* * Create kmem caches to handle non-aligned buffer * in Buffer DMA mode. */ hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma", DWC2_KMEM_UNALIGNED_BUF_SIZE, 4, SLAB_CACHE_DMA, NULL); if (!hsotg->unaligned_cache) dev_err(hsotg->dev, "unable to create dwc2 unaligned cache\n"); } hsotg->otg_port = 1; hsotg->frame_list = NULL; hsotg->frame_list_dma = 0; hsotg->periodic_qh_count = 0; /* Initiate lx_state to L3 disconnected state */ hsotg->lx_state = DWC2_L3; hcd->self.otg_port = hsotg->otg_port; /* Don't support SG list at this point */ hcd->self.sg_tablesize = 0; hcd->tpl_support = of_usb_host_tpl_support(hsotg->dev->of_node); if (!IS_ERR_OR_NULL(hsotg->uphy)) otg_set_host(hsotg->uphy->otg, &hcd->self); /* * Finish generic HCD initialization and start the HCD. This function * allocates the DMA buffer pool, registers the USB bus, requests the * IRQ line, and calls hcd_start method. */ retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED); if (retval < 0) goto error4; device_wakeup_enable(hcd->self.controller); dwc2_hcd_dump_state(hsotg); dwc2_enable_global_interrupts(hsotg); return 0; error4: kmem_cache_destroy(hsotg->unaligned_cache); kmem_cache_destroy(hsotg->desc_hsisoc_cache); kmem_cache_destroy(hsotg->desc_gen_cache); error3: dwc2_hcd_release(hsotg); error2: usb_put_hcd(hcd); error1: #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS kfree(hsotg->last_frame_num_array); kfree(hsotg->frame_num_array); #endif dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval); return retval; } /* * Removes the HCD. * Frees memory and resources associated with the HCD and deregisters the bus. */ void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) { struct usb_hcd *hcd; dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n"); hcd = dwc2_hsotg_to_hcd(hsotg); dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd); if (!hcd) { dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n", __func__); return; } if (!IS_ERR_OR_NULL(hsotg->uphy)) otg_set_host(hsotg->uphy->otg, NULL); usb_remove_hcd(hcd); hsotg->priv = NULL; kmem_cache_destroy(hsotg->unaligned_cache); kmem_cache_destroy(hsotg->desc_hsisoc_cache); kmem_cache_destroy(hsotg->desc_gen_cache); dwc2_hcd_release(hsotg); usb_put_hcd(hcd); #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS kfree(hsotg->last_frame_num_array); kfree(hsotg->frame_num_array); #endif } /** * dwc2_backup_host_registers() - Backup controller host registers. * When suspending usb bus, registers needs to be backuped * if controller power is disabled once suspended. * * @hsotg: Programming view of the DWC_otg controller */ int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg) { struct dwc2_hregs_backup *hr; int i; dev_dbg(hsotg->dev, "%s\n", __func__); /* Backup Host regs */ hr = &hsotg->hr_backup; hr->hcfg = dwc2_readl(hsotg, HCFG); hr->hflbaddr = dwc2_readl(hsotg, HFLBADDR); hr->haintmsk = dwc2_readl(hsotg, HAINTMSK); for (i = 0; i < hsotg->params.host_channels; ++i) { hr->hcchar[i] = dwc2_readl(hsotg, HCCHAR(i)); hr->hcsplt[i] = dwc2_readl(hsotg, HCSPLT(i)); hr->hcintmsk[i] = dwc2_readl(hsotg, HCINTMSK(i)); hr->hctsiz[i] = dwc2_readl(hsotg, HCTSIZ(i)); hr->hcidma[i] = dwc2_readl(hsotg, HCDMA(i)); hr->hcidmab[i] = dwc2_readl(hsotg, HCDMAB(i)); } hr->hprt0 = dwc2_read_hprt0(hsotg); hr->hfir = dwc2_readl(hsotg, HFIR); hr->hptxfsiz = dwc2_readl(hsotg, HPTXFSIZ); hr->valid = true; return 0; } /** * dwc2_restore_host_registers() - Restore controller host registers. * When resuming usb bus, device registers needs to be restored * if controller power were disabled. * * @hsotg: Programming view of the DWC_otg controller */ int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg) { struct dwc2_hregs_backup *hr; int i; dev_dbg(hsotg->dev, "%s\n", __func__); /* Restore host regs */ hr = &hsotg->hr_backup; if (!hr->valid) { dev_err(hsotg->dev, "%s: no host registers to restore\n", __func__); return -EINVAL; } hr->valid = false; dwc2_writel(hsotg, hr->hcfg, HCFG); dwc2_writel(hsotg, hr->hflbaddr, HFLBADDR); dwc2_writel(hsotg, hr->haintmsk, HAINTMSK); for (i = 0; i < hsotg->params.host_channels; ++i) { dwc2_writel(hsotg, hr->hcchar[i], HCCHAR(i)); dwc2_writel(hsotg, hr->hcsplt[i], HCSPLT(i)); dwc2_writel(hsotg, hr->hcintmsk[i], HCINTMSK(i)); dwc2_writel(hsotg, hr->hctsiz[i], HCTSIZ(i)); dwc2_writel(hsotg, hr->hcidma[i], HCDMA(i)); dwc2_writel(hsotg, hr->hcidmab[i], HCDMAB(i)); } dwc2_writel(hsotg, hr->hprt0, HPRT0); dwc2_writel(hsotg, hr->hfir, HFIR); dwc2_writel(hsotg, hr->hptxfsiz, HPTXFSIZ); hsotg->frame_number = 0; return 0; } /** * dwc2_host_enter_hibernation() - Put controller in Hibernation. * * @hsotg: Programming view of the DWC_otg controller */ int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg) { unsigned long flags; int ret = 0; u32 hprt0; u32 pcgcctl; u32 gusbcfg; u32 gpwrdn; dev_dbg(hsotg->dev, "Preparing host for hibernation\n"); ret = dwc2_backup_global_registers(hsotg); if (ret) { dev_err(hsotg->dev, "%s: failed to backup global registers\n", __func__); return ret; } ret = dwc2_backup_host_registers(hsotg); if (ret) { dev_err(hsotg->dev, "%s: failed to backup host registers\n", __func__); return ret; } /* Enter USB Suspend Mode */ hprt0 = dwc2_readl(hsotg, HPRT0); hprt0 |= HPRT0_SUSP; hprt0 &= ~HPRT0_ENA; dwc2_writel(hsotg, hprt0, HPRT0); /* Wait for the HPRT0.PrtSusp register field to be set */ if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 5000)) dev_warn(hsotg->dev, "Suspend wasn't generated\n"); /* * We need to disable interrupts to prevent servicing of any IRQ * during going to hibernation */ spin_lock_irqsave(&hsotg->lock, flags); hsotg->lx_state = DWC2_L2; gusbcfg = dwc2_readl(hsotg, GUSBCFG); if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) { /* ULPI interface */ udelay(10); gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn |= GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); /* Suspend the Phy Clock */ pcgcctl = dwc2_readl(hsotg, PCGCTL); pcgcctl |= PCGCTL_STOPPCLK; dwc2_writel(hsotg, pcgcctl, PCGCTL); udelay(10); gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn |= GPWRDN_PMUACTV; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); } else { /* UTMI+ Interface */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn |= GPWRDN_PMUACTV; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); pcgcctl = dwc2_readl(hsotg, PCGCTL); pcgcctl |= PCGCTL_STOPPCLK; dwc2_writel(hsotg, pcgcctl, PCGCTL); udelay(10); } /* Enable interrupts from wake up logic */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn |= GPWRDN_PMUINTSEL; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); /* Unmask host mode interrupts in GPWRDN */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn |= GPWRDN_DISCONN_DET_MSK; gpwrdn |= GPWRDN_LNSTSCHG_MSK; gpwrdn |= GPWRDN_STS_CHGINT_MSK; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); /* Enable Power Down Clamp */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn |= GPWRDN_PWRDNCLMP; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); /* Switch off VDD */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn |= GPWRDN_PWRDNSWTCH; dwc2_writel(hsotg, gpwrdn, GPWRDN); hsotg->hibernated = 1; hsotg->bus_suspended = 1; dev_dbg(hsotg->dev, "Host hibernation completed\n"); spin_unlock_irqrestore(&hsotg->lock, flags); return ret; } /* * dwc2_host_exit_hibernation() * * @hsotg: Programming view of the DWC_otg controller * @rem_wakeup: indicates whether resume is initiated by Device or Host. * @param reset: indicates whether resume is initiated by Reset. * * Return: non-zero if failed to enter to hibernation. * * This function is for exiting from Host mode hibernation by * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup. */ int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup, int reset) { u32 gpwrdn; u32 hprt0; int ret = 0; struct dwc2_gregs_backup *gr; struct dwc2_hregs_backup *hr; gr = &hsotg->gr_backup; hr = &hsotg->hr_backup; dev_dbg(hsotg->dev, "%s: called with rem_wakeup = %d reset = %d\n", __func__, rem_wakeup, reset); dwc2_hib_restore_common(hsotg, rem_wakeup, 1); hsotg->hibernated = 0; /* * This step is not described in functional spec but if not wait for * this delay, mismatch interrupts occurred because just after restore * core is in Device mode(gintsts.curmode == 0) */ mdelay(100); /* Clear all pending interupts */ dwc2_writel(hsotg, 0xffffffff, GINTSTS); /* De-assert Restore */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn &= ~GPWRDN_RESTORE; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); /* Restore GUSBCFG, HCFG */ dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); dwc2_writel(hsotg, hr->hcfg, HCFG); /* Reset ULPI latch */ gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn &= ~GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY; dwc2_writel(hsotg, gpwrdn, GPWRDN); /* De-assert Wakeup Logic */ if (!(rem_wakeup && hsotg->hw_params.snpsid >= DWC2_CORE_REV_4_30a)) { gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn &= ~GPWRDN_PMUACTV; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); } hprt0 = hr->hprt0; hprt0 |= HPRT0_PWR; hprt0 &= ~HPRT0_ENA; hprt0 &= ~HPRT0_SUSP; dwc2_writel(hsotg, hprt0, HPRT0); hprt0 = hr->hprt0; hprt0 |= HPRT0_PWR; hprt0 &= ~HPRT0_ENA; hprt0 &= ~HPRT0_SUSP; if (reset) { hprt0 |= HPRT0_RST; dwc2_writel(hsotg, hprt0, HPRT0); /* Wait for Resume time and then program HPRT again */ mdelay(60); hprt0 &= ~HPRT0_RST; dwc2_writel(hsotg, hprt0, HPRT0); } else { hprt0 |= HPRT0_RES; dwc2_writel(hsotg, hprt0, HPRT0); /* De-assert Wakeup Logic */ if ((rem_wakeup && hsotg->hw_params.snpsid >= DWC2_CORE_REV_4_30a)) { gpwrdn = dwc2_readl(hsotg, GPWRDN); gpwrdn &= ~GPWRDN_PMUACTV; dwc2_writel(hsotg, gpwrdn, GPWRDN); udelay(10); } /* Wait for Resume time and then program HPRT again */ mdelay(100); hprt0 &= ~HPRT0_RES; dwc2_writel(hsotg, hprt0, HPRT0); } /* Clear all interrupt status */ hprt0 = dwc2_readl(hsotg, HPRT0); hprt0 |= HPRT0_CONNDET; hprt0 |= HPRT0_ENACHG; hprt0 &= ~HPRT0_ENA; dwc2_writel(hsotg, hprt0, HPRT0); hprt0 = dwc2_readl(hsotg, HPRT0); /* Clear all pending interupts */ dwc2_writel(hsotg, 0xffffffff, GINTSTS); /* Restore global registers */ ret = dwc2_restore_global_registers(hsotg); if (ret) { dev_err(hsotg->dev, "%s: failed to restore registers\n", __func__); return ret; } /* Restore host registers */ ret = dwc2_restore_host_registers(hsotg); if (ret) { dev_err(hsotg->dev, "%s: failed to restore host registers\n", __func__); return ret; } if (rem_wakeup) { dwc2_hcd_rem_wakeup(hsotg); /* * Change "port_connect_status_change" flag to re-enumerate, * because after exit from hibernation port connection status * is not detected. */ hsotg->flags.b.port_connect_status_change = 1; } hsotg->hibernated = 0; hsotg->bus_suspended = 0; hsotg->lx_state = DWC2_L0; dev_dbg(hsotg->dev, "Host hibernation restore complete\n"); return ret; } bool dwc2_host_can_poweroff_phy(struct dwc2_hsotg *dwc2) { struct usb_device *root_hub = dwc2_hsotg_to_hcd(dwc2)->self.root_hub; /* If the controller isn't allowed to wakeup then we can power off. */ if (!device_may_wakeup(dwc2->dev)) return true; /* * We don't want to power off the PHY if something under the * root hub has wakeup enabled. */ if (usb_wakeup_enabled_descendants(root_hub)) return false; /* No reason to keep the PHY powered, so allow poweroff */ return true; } /** * dwc2_host_enter_partial_power_down() - Put controller in partial * power down. * * @hsotg: Programming view of the DWC_otg controller * * Return: non-zero if failed to enter host partial power down. * * This function is for entering Host mode partial power down. */ int dwc2_host_enter_partial_power_down(struct dwc2_hsotg *hsotg) { u32 pcgcctl; u32 hprt0; int ret = 0; dev_dbg(hsotg->dev, "Entering host partial power down started.\n"); /* Put this port in suspend mode. */ hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_SUSP; dwc2_writel(hsotg, hprt0, HPRT0); udelay(5); /* Wait for the HPRT0.PrtSusp register field to be set */ if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000)) dev_warn(hsotg->dev, "Suspend wasn't generated\n"); /* Backup all registers */ ret = dwc2_backup_global_registers(hsotg); if (ret) { dev_err(hsotg->dev, "%s: failed to backup global registers\n", __func__); return ret; } ret = dwc2_backup_host_registers(hsotg); if (ret) { dev_err(hsotg->dev, "%s: failed to backup host registers\n", __func__); return ret; } /* * Clear any pending interrupts since dwc2 will not be able to * clear them after entering partial_power_down. */ dwc2_writel(hsotg, 0xffffffff, GINTSTS); /* Put the controller in low power state */ pcgcctl = dwc2_readl(hsotg, PCGCTL); pcgcctl |= PCGCTL_PWRCLMP; dwc2_writel(hsotg, pcgcctl, PCGCTL); udelay(5); pcgcctl |= PCGCTL_RSTPDWNMODULE; dwc2_writel(hsotg, pcgcctl, PCGCTL); udelay(5); pcgcctl |= PCGCTL_STOPPCLK; dwc2_writel(hsotg, pcgcctl, PCGCTL); /* Set in_ppd flag to 1 as here core enters suspend. */ hsotg->in_ppd = 1; hsotg->lx_state = DWC2_L2; hsotg->bus_suspended = true; dev_dbg(hsotg->dev, "Entering host partial power down completed.\n"); return ret; } /* * dwc2_host_exit_partial_power_down() - Exit controller from host partial * power down. * * @hsotg: Programming view of the DWC_otg controller * @rem_wakeup: indicates whether resume is initiated by Reset. * @restore: indicates whether need to restore the registers or not. * * Return: non-zero if failed to exit host partial power down. * * This function is for exiting from Host mode partial power down. */ int dwc2_host_exit_partial_power_down(struct dwc2_hsotg *hsotg, int rem_wakeup, bool restore) { u32 pcgcctl; int ret = 0; u32 hprt0; dev_dbg(hsotg->dev, "Exiting host partial power down started.\n"); pcgcctl = dwc2_readl(hsotg, PCGCTL); pcgcctl &= ~PCGCTL_STOPPCLK; dwc2_writel(hsotg, pcgcctl, PCGCTL); udelay(5); pcgcctl = dwc2_readl(hsotg, PCGCTL); pcgcctl &= ~PCGCTL_PWRCLMP; dwc2_writel(hsotg, pcgcctl, PCGCTL); udelay(5); pcgcctl = dwc2_readl(hsotg, PCGCTL); pcgcctl &= ~PCGCTL_RSTPDWNMODULE; dwc2_writel(hsotg, pcgcctl, PCGCTL); udelay(100); if (restore) { ret = dwc2_restore_global_registers(hsotg); if (ret) { dev_err(hsotg->dev, "%s: failed to restore registers\n", __func__); return ret; } ret = dwc2_restore_host_registers(hsotg); if (ret) { dev_err(hsotg->dev, "%s: failed to restore host registers\n", __func__); return ret; } } /* Drive resume signaling and exit suspend mode on the port. */ hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_RES; hprt0 &= ~HPRT0_SUSP; dwc2_writel(hsotg, hprt0, HPRT0); udelay(5); if (!rem_wakeup) { /* Stop driveing resume signaling on the port. */ hprt0 = dwc2_read_hprt0(hsotg); hprt0 &= ~HPRT0_RES; dwc2_writel(hsotg, hprt0, HPRT0); hsotg->bus_suspended = false; } else { /* Turn on the port power bit. */ hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_PWR; dwc2_writel(hsotg, hprt0, HPRT0); /* Connect hcd. */ dwc2_hcd_connect(hsotg); mod_timer(&hsotg->wkp_timer, jiffies + msecs_to_jiffies(71)); } /* Set lx_state to and in_ppd to 0 as here core exits from suspend. */ hsotg->in_ppd = 0; hsotg->lx_state = DWC2_L0; dev_dbg(hsotg->dev, "Exiting host partial power down completed.\n"); return ret; } /** * dwc2_host_enter_clock_gating() - Put controller in clock gating. * * @hsotg: Programming view of the DWC_otg controller * * This function is for entering Host mode clock gating. */ void dwc2_host_enter_clock_gating(struct dwc2_hsotg *hsotg) { u32 hprt0; u32 pcgctl; dev_dbg(hsotg->dev, "Entering host clock gating.\n"); /* Put this port in suspend mode. */ hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_SUSP; dwc2_writel(hsotg, hprt0, HPRT0); /* Set the Phy Clock bit as suspend is received. */ pcgctl = dwc2_readl(hsotg, PCGCTL); pcgctl |= PCGCTL_STOPPCLK; dwc2_writel(hsotg, pcgctl, PCGCTL); udelay(5); /* Set the Gate hclk as suspend is received. */ pcgctl = dwc2_readl(hsotg, PCGCTL); pcgctl |= PCGCTL_GATEHCLK; dwc2_writel(hsotg, pcgctl, PCGCTL); udelay(5); hsotg->bus_suspended = true; hsotg->lx_state = DWC2_L2; } /** * dwc2_host_exit_clock_gating() - Exit controller from clock gating. * * @hsotg: Programming view of the DWC_otg controller * @rem_wakeup: indicates whether resume is initiated by remote wakeup * * This function is for exiting Host mode clock gating. */ void dwc2_host_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup) { u32 hprt0; u32 pcgctl; dev_dbg(hsotg->dev, "Exiting host clock gating.\n"); /* Clear the Gate hclk. */ pcgctl = dwc2_readl(hsotg, PCGCTL); pcgctl &= ~PCGCTL_GATEHCLK; dwc2_writel(hsotg, pcgctl, PCGCTL); udelay(5); /* Phy Clock bit. */ pcgctl = dwc2_readl(hsotg, PCGCTL); pcgctl &= ~PCGCTL_STOPPCLK; dwc2_writel(hsotg, pcgctl, PCGCTL); udelay(5); /* Drive resume signaling and exit suspend mode on the port. */ hprt0 = dwc2_read_hprt0(hsotg); hprt0 |= HPRT0_RES; hprt0 &= ~HPRT0_SUSP; dwc2_writel(hsotg, hprt0, HPRT0); udelay(5); if (!rem_wakeup) { /* In case of port resume need to wait for 40 ms */ msleep(USB_RESUME_TIMEOUT); /* Stop driveing resume signaling on the port. */ hprt0 = dwc2_read_hprt0(hsotg); hprt0 &= ~HPRT0_RES; dwc2_writel(hsotg, hprt0, HPRT0); hsotg->bus_suspended = false; hsotg->lx_state = DWC2_L0; } else { mod_timer(&hsotg->wkp_timer, jiffies + msecs_to_jiffies(71)); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1