Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pawel Laszczak | 11212 | 100.00% | 2 | 100.00% |
Total | 11212 | 2 |
// SPDX-License-Identifier: GPL-2.0 /* * Cadence USBHS-DEV Driver - gadget side. * * Copyright (C) 2023 Cadence Design Systems. * * Authors: Pawel Laszczak <pawell@cadence.com> */ /* * Work around 1: * At some situations, the controller may get stale data address in TRB * at below sequences: * 1. Controller read TRB includes data address * 2. Software updates TRBs includes data address and Cycle bit * 3. Controller read TRB which includes Cycle bit * 4. DMA run with stale data address * * To fix this problem, driver needs to make the first TRB in TD as invalid. * After preparing all TRBs driver needs to check the position of DMA and * if the DMA point to the first just added TRB and doorbell is 1, * then driver must defer making this TRB as valid. This TRB will be make * as valid during adding next TRB only if DMA is stopped or at TRBERR * interrupt. * */ #include <linux/dma-mapping.h> #include <linux/pm_runtime.h> #include <linux/interrupt.h> #include <linux/property.h> #include <linux/dmapool.h> #include <linux/iopoll.h> #include "cdns2-gadget.h" #include "cdns2-trace.h" /** * set_reg_bit_32 - set bit in given 32 bits register. * @ptr: register address. * @mask: bits to set. */ static void set_reg_bit_32(void __iomem *ptr, u32 mask) { mask = readl(ptr) | mask; writel(mask, ptr); } /* * clear_reg_bit_32 - clear bit in given 32 bits register. * @ptr: register address. * @mask: bits to clear. */ static void clear_reg_bit_32(void __iomem *ptr, u32 mask) { mask = readl(ptr) & ~mask; writel(mask, ptr); } /* Clear bit in given 8 bits register. */ static void clear_reg_bit_8(void __iomem *ptr, u8 mask) { mask = readb(ptr) & ~mask; writeb(mask, ptr); } /* Set bit in given 16 bits register. */ void set_reg_bit_8(void __iomem *ptr, u8 mask) { mask = readb(ptr) | mask; writeb(mask, ptr); } static int cdns2_get_dma_pos(struct cdns2_device *pdev, struct cdns2_endpoint *pep) { int dma_index; dma_index = readl(&pdev->adma_regs->ep_traddr) - pep->ring.dma; return dma_index / TRB_SIZE; } /* Get next private request from list. */ struct cdns2_request *cdns2_next_preq(struct list_head *list) { return list_first_entry_or_null(list, struct cdns2_request, list); } void cdns2_select_ep(struct cdns2_device *pdev, u32 ep) { if (pdev->selected_ep == ep) return; pdev->selected_ep = ep; writel(ep, &pdev->adma_regs->ep_sel); } dma_addr_t cdns2_trb_virt_to_dma(struct cdns2_endpoint *pep, struct cdns2_trb *trb) { u32 offset = (char *)trb - (char *)pep->ring.trbs; return pep->ring.dma + offset; } static void cdns2_free_tr_segment(struct cdns2_endpoint *pep) { struct cdns2_device *pdev = pep->pdev; struct cdns2_ring *ring = &pep->ring; if (pep->ring.trbs) { dma_pool_free(pdev->eps_dma_pool, ring->trbs, ring->dma); memset(ring, 0, sizeof(*ring)); } } /* Allocates Transfer Ring segment. */ static int cdns2_alloc_tr_segment(struct cdns2_endpoint *pep) { struct cdns2_device *pdev = pep->pdev; struct cdns2_trb *link_trb; struct cdns2_ring *ring; ring = &pep->ring; if (!ring->trbs) { ring->trbs = dma_pool_alloc(pdev->eps_dma_pool, GFP_DMA32 | GFP_ATOMIC, &ring->dma); if (!ring->trbs) return -ENOMEM; } memset(ring->trbs, 0, TR_SEG_SIZE); if (!pep->num) return 0; /* Initialize the last TRB as Link TRB */ link_trb = (ring->trbs + (TRBS_PER_SEGMENT - 1)); link_trb->buffer = cpu_to_le32(TRB_BUFFER(ring->dma)); link_trb->control = cpu_to_le32(TRB_CYCLE | TRB_TYPE(TRB_LINK) | TRB_TOGGLE); return 0; } /* * Stalls and flushes selected endpoint. * Endpoint must be selected before invoking this function. */ static void cdns2_ep_stall_flush(struct cdns2_endpoint *pep) { struct cdns2_device *pdev = pep->pdev; int val; trace_cdns2_ep_halt(pep, 1, 1); writel(DMA_EP_CMD_DFLUSH, &pdev->adma_regs->ep_cmd); /* Wait for DFLUSH cleared. */ readl_poll_timeout_atomic(&pdev->adma_regs->ep_cmd, val, !(val & DMA_EP_CMD_DFLUSH), 1, 1000); pep->ep_state |= EP_STALLED; pep->ep_state &= ~EP_STALL_PENDING; } /* * Increment a trb index. * * The index should never point to the last link TRB in TR. After incrementing, * if it point to the link TRB, wrap around to the beginning and revert * cycle state bit. The link TRB is always at the last TRB entry. */ static void cdns2_ep_inc_trb(int *index, u8 *cs, int trb_in_seg) { (*index)++; if (*index == (trb_in_seg - 1)) { *index = 0; *cs ^= 1; } } static void cdns2_ep_inc_enq(struct cdns2_ring *ring) { ring->free_trbs--; cdns2_ep_inc_trb(&ring->enqueue, &ring->pcs, TRBS_PER_SEGMENT); } static void cdns2_ep_inc_deq(struct cdns2_ring *ring) { ring->free_trbs++; cdns2_ep_inc_trb(&ring->dequeue, &ring->ccs, TRBS_PER_SEGMENT); } /* * Enable/disable LPM. * * If bit USBCS_LPMNYET is not set and device receive Extended Token packet, * then controller answer with ACK handshake. * If bit USBCS_LPMNYET is set and device receive Extended Token packet, * then controller answer with NYET handshake. */ static void cdns2_enable_l1(struct cdns2_device *pdev, int enable) { if (enable) { clear_reg_bit_8(&pdev->usb_regs->usbcs, USBCS_LPMNYET); writeb(LPMCLOCK_SLEEP_ENTRY, &pdev->usb_regs->lpmclock); } else { set_reg_bit_8(&pdev->usb_regs->usbcs, USBCS_LPMNYET); } } static enum usb_device_speed cdns2_get_speed(struct cdns2_device *pdev) { u8 speed = readb(&pdev->usb_regs->speedctrl); if (speed & SPEEDCTRL_HS) return USB_SPEED_HIGH; else if (speed & SPEEDCTRL_FS) return USB_SPEED_FULL; return USB_SPEED_UNKNOWN; } static struct cdns2_trb *cdns2_next_trb(struct cdns2_endpoint *pep, struct cdns2_trb *trb) { if (trb == (pep->ring.trbs + (TRBS_PER_SEGMENT - 1))) return pep->ring.trbs; else return ++trb; } void cdns2_gadget_giveback(struct cdns2_endpoint *pep, struct cdns2_request *preq, int status) { struct usb_request *request = &preq->request; struct cdns2_device *pdev = pep->pdev; list_del_init(&preq->list); if (request->status == -EINPROGRESS) request->status = status; usb_gadget_unmap_request_by_dev(pdev->dev, request, pep->dir); /* All TRBs have finished, clear the counter. */ preq->finished_trb = 0; trace_cdns2_request_giveback(preq); if (request->complete) { spin_unlock(&pdev->lock); usb_gadget_giveback_request(&pep->endpoint, request); spin_lock(&pdev->lock); } if (request->buf == pdev->zlp_buf) cdns2_gadget_ep_free_request(&pep->endpoint, request); } static void cdns2_wa1_restore_cycle_bit(struct cdns2_endpoint *pep) { /* Work around for stale data address in TRB. */ if (pep->wa1_set) { trace_cdns2_wa1(pep, "restore cycle bit"); pep->wa1_set = 0; pep->wa1_trb_index = 0xFFFF; if (pep->wa1_cycle_bit) pep->wa1_trb->control |= cpu_to_le32(0x1); else pep->wa1_trb->control &= cpu_to_le32(~0x1); } } static int cdns2_wa1_update_guard(struct cdns2_endpoint *pep, struct cdns2_trb *trb) { struct cdns2_device *pdev = pep->pdev; if (!pep->wa1_set) { u32 doorbell; doorbell = !!(readl(&pdev->adma_regs->ep_cmd) & DMA_EP_CMD_DRDY); if (doorbell) { pep->wa1_cycle_bit = pep->ring.pcs ? TRB_CYCLE : 0; pep->wa1_set = 1; pep->wa1_trb = trb; pep->wa1_trb_index = pep->ring.enqueue; trace_cdns2_wa1(pep, "set guard"); return 0; } } return 1; } static void cdns2_wa1_tray_restore_cycle_bit(struct cdns2_device *pdev, struct cdns2_endpoint *pep) { int dma_index; u32 doorbell; doorbell = !!(readl(&pdev->adma_regs->ep_cmd) & DMA_EP_CMD_DRDY); dma_index = cdns2_get_dma_pos(pdev, pep); if (!doorbell || dma_index != pep->wa1_trb_index) cdns2_wa1_restore_cycle_bit(pep); } static int cdns2_prepare_ring(struct cdns2_device *pdev, struct cdns2_endpoint *pep, int num_trbs) { struct cdns2_trb *link_trb = NULL; int doorbell, dma_index; struct cdns2_ring *ring; u32 ch_bit = 0; ring = &pep->ring; if (num_trbs > ring->free_trbs) { pep->ep_state |= EP_RING_FULL; trace_cdns2_no_room_on_ring("Ring full\n"); return -ENOBUFS; } if ((ring->enqueue + num_trbs) >= (TRBS_PER_SEGMENT - 1)) { doorbell = !!(readl(&pdev->adma_regs->ep_cmd) & DMA_EP_CMD_DRDY); dma_index = cdns2_get_dma_pos(pdev, pep); /* Driver can't update LINK TRB if it is current processed. */ if (doorbell && dma_index == TRBS_PER_SEGMENT - 1) { pep->ep_state |= EP_DEFERRED_DRDY; return -ENOBUFS; } /* Update C bt in Link TRB before starting DMA. */ link_trb = ring->trbs + (TRBS_PER_SEGMENT - 1); /* * For TRs size equal 2 enabling TRB_CHAIN for epXin causes * that DMA stuck at the LINK TRB. * On the other hand, removing TRB_CHAIN for longer TRs for * epXout cause that DMA stuck after handling LINK TRB. * To eliminate this strange behavioral driver set TRB_CHAIN * bit only for TR size > 2. */ if (pep->type == USB_ENDPOINT_XFER_ISOC || TRBS_PER_SEGMENT > 2) ch_bit = TRB_CHAIN; link_trb->control = cpu_to_le32(((ring->pcs) ? TRB_CYCLE : 0) | TRB_TYPE(TRB_LINK) | TRB_TOGGLE | ch_bit); } return 0; } static void cdns2_dbg_request_trbs(struct cdns2_endpoint *pep, struct cdns2_request *preq) { struct cdns2_trb *link_trb = pep->ring.trbs + (TRBS_PER_SEGMENT - 1); struct cdns2_trb *trb = preq->trb; int num_trbs = preq->num_of_trb; int i = 0; while (i < num_trbs) { trace_cdns2_queue_trb(pep, trb + i); if (trb + i == link_trb) { trb = pep->ring.trbs; num_trbs = num_trbs - i; i = 0; } else { i++; } } } static unsigned int cdns2_count_trbs(struct cdns2_endpoint *pep, u64 addr, u64 len) { unsigned int num_trbs = 1; if (pep->type == USB_ENDPOINT_XFER_ISOC) { /* * To speed up DMA performance address should not exceed 4KB. * for high bandwidth transfer and driver will split * such buffer into two TRBs. */ num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_ISO_BUFF_SIZE - 1)), TRB_MAX_ISO_BUFF_SIZE); if (pep->interval > 1) num_trbs = pep->dir ? num_trbs * pep->interval : 1; } else if (pep->dir) { /* * One extra link trb for IN direction. * Sometimes DMA doesn't want advance to next TD and transfer * hangs. This extra Link TRB force DMA to advance to next TD. */ num_trbs++; } return num_trbs; } static unsigned int cdns2_count_sg_trbs(struct cdns2_endpoint *pep, struct usb_request *req) { unsigned int i, len, full_len, num_trbs = 0; struct scatterlist *sg; int trb_len = 0; full_len = req->length; for_each_sg(req->sg, sg, req->num_sgs, i) { len = sg_dma_len(sg); num_trbs += cdns2_count_trbs(pep, sg_dma_address(sg), len); len = min(len, full_len); /* * For HS ISO transfer TRBs should not exceed max packet size. * When DMA is working, and data exceed max packet size then * some data will be read in single mode instead burst mode. * This behavior will drastically reduce the copying speed. * To avoid this we need one or two extra TRBs. * This issue occurs for UVC class with sg_supported = 1 * because buffers addresses are not aligned to 1024. */ if (pep->type == USB_ENDPOINT_XFER_ISOC) { u8 temp; trb_len += len; temp = trb_len >> 10; if (temp) { if (trb_len % 1024) num_trbs = num_trbs + temp; else num_trbs = num_trbs + temp - 1; trb_len = trb_len - (temp << 10); } } full_len -= len; if (full_len == 0) break; } return num_trbs; } /* * Function prepares the array with optimized AXI burst value for different * transfer lengths. Controller handles the final data which are less * then AXI burst size as single byte transactions. * e.g.: * Let's assume that driver prepares trb with trb->length 700 and burst size * will be set to 128. In this case the controller will handle a first 512 as * single AXI transaction but the next 188 bytes will be handled * as 47 separate AXI transaction. * The better solution is to use the burst size equal 16 and then we will * have only 25 AXI transaction (10 * 64 + 15 *4). */ static void cdsn2_isoc_burst_opt(struct cdns2_device *pdev) { int axi_burst_option[] = {1, 2, 4, 8, 16, 32, 64, 128}; int best_burst; int array_size; int opt_burst; int trb_size; int i, j; array_size = ARRAY_SIZE(axi_burst_option); for (i = 0; i <= MAX_ISO_SIZE; i++) { trb_size = i / 4; best_burst = trb_size ? trb_size : 1; for (j = 0; j < array_size; j++) { opt_burst = trb_size / axi_burst_option[j]; opt_burst += trb_size % axi_burst_option[j]; if (opt_burst < best_burst) { best_burst = opt_burst; pdev->burst_opt[i] = axi_burst_option[j]; } } } } static void cdns2_ep_tx_isoc(struct cdns2_endpoint *pep, struct cdns2_request *preq, int num_trbs) { struct scatterlist *sg = NULL; u32 remaining_packet_size = 0; struct cdns2_trb *trb; bool first_trb = true; dma_addr_t trb_dma; u32 trb_buff_len; u32 block_length; int td_idx = 0; int split_size; u32 full_len; int enqd_len; int sent_len; int sg_iter; u32 control; int num_tds; u32 length; /* * For OUT direction 1 TD per interval is enough * because TRBs are not dumped by controller. */ num_tds = pep->dir ? pep->interval : 1; split_size = preq->request.num_sgs ? 1024 : 3072; for (td_idx = 0; td_idx < num_tds; td_idx++) { if (preq->request.num_sgs) { sg = preq->request.sg; trb_dma = sg_dma_address(sg); block_length = sg_dma_len(sg); } else { trb_dma = preq->request.dma; block_length = preq->request.length; } full_len = preq->request.length; sg_iter = preq->request.num_sgs ? preq->request.num_sgs : 1; remaining_packet_size = split_size; for (enqd_len = 0; enqd_len < full_len; enqd_len += trb_buff_len) { if (remaining_packet_size == 0) remaining_packet_size = split_size; /* * Calculate TRB length.- buffer can't across 4KB * and max packet size. */ trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(trb_dma); trb_buff_len = min(trb_buff_len, remaining_packet_size); trb_buff_len = min(trb_buff_len, block_length); if (trb_buff_len > full_len - enqd_len) trb_buff_len = full_len - enqd_len; control = TRB_TYPE(TRB_NORMAL); /* * For IN direction driver has to set the IOC for * last TRB in last TD. * For OUT direction driver must set IOC and ISP * only for last TRB in each TDs. */ if (enqd_len + trb_buff_len >= full_len || !pep->dir) control |= TRB_IOC | TRB_ISP; /* * Don't give the first TRB to the hardware (by toggling * the cycle bit) until we've finished creating all the * other TRBs. */ if (first_trb) { first_trb = false; if (pep->ring.pcs == 0) control |= TRB_CYCLE; } else { control |= pep->ring.pcs; } if (enqd_len + trb_buff_len < full_len) control |= TRB_CHAIN; length = TRB_LEN(trb_buff_len) | TRB_BURST(pep->pdev->burst_opt[trb_buff_len]); trb = pep->ring.trbs + pep->ring.enqueue; trb->buffer = cpu_to_le32(TRB_BUFFER(trb_dma)); trb->length = cpu_to_le32(length); trb->control = cpu_to_le32(control); trb_dma += trb_buff_len; sent_len = trb_buff_len; if (sg && sent_len >= block_length) { /* New sg entry */ --sg_iter; sent_len -= block_length; if (sg_iter != 0) { sg = sg_next(sg); trb_dma = sg_dma_address(sg); block_length = sg_dma_len(sg); } } remaining_packet_size -= trb_buff_len; block_length -= sent_len; preq->end_trb = pep->ring.enqueue; cdns2_ep_inc_enq(&pep->ring); } } } static void cdns2_ep_tx_bulk(struct cdns2_endpoint *pep, struct cdns2_request *preq, int trbs_per_td) { struct scatterlist *sg = NULL; struct cdns2_ring *ring; struct cdns2_trb *trb; dma_addr_t trb_dma; int sg_iter = 0; u32 control; u32 length; if (preq->request.num_sgs) { sg = preq->request.sg; trb_dma = sg_dma_address(sg); length = sg_dma_len(sg); } else { trb_dma = preq->request.dma; length = preq->request.length; } ring = &pep->ring; for (sg_iter = 0; sg_iter < trbs_per_td; sg_iter++) { control = TRB_TYPE(TRB_NORMAL) | ring->pcs | TRB_ISP; trb = pep->ring.trbs + ring->enqueue; if (pep->dir && sg_iter == trbs_per_td - 1) { preq->end_trb = ring->enqueue; control = ring->pcs | TRB_TYPE(TRB_LINK) | TRB_CHAIN | TRB_IOC; cdns2_ep_inc_enq(&pep->ring); if (ring->enqueue == 0) control |= TRB_TOGGLE; /* Point to next bad TRB. */ trb->buffer = cpu_to_le32(pep->ring.dma + (ring->enqueue * TRB_SIZE)); trb->length = 0; trb->control = cpu_to_le32(control); break; } /* * Don't give the first TRB to the hardware (by toggling * the cycle bit) until we've finished creating all the * other TRBs. */ if (sg_iter == 0) control = control ^ TRB_CYCLE; /* For last TRB in TD. */ if (sg_iter == (trbs_per_td - (pep->dir ? 2 : 1))) control |= TRB_IOC; else control |= TRB_CHAIN; trb->buffer = cpu_to_le32(trb_dma); trb->length = cpu_to_le32(TRB_BURST(pep->trb_burst_size) | TRB_LEN(length)); trb->control = cpu_to_le32(control); if (sg && sg_iter < (trbs_per_td - 1)) { sg = sg_next(sg); trb_dma = sg_dma_address(sg); length = sg_dma_len(sg); } preq->end_trb = ring->enqueue; cdns2_ep_inc_enq(&pep->ring); } } static void cdns2_set_drdy(struct cdns2_device *pdev, struct cdns2_endpoint *pep) { trace_cdns2_ring(pep); /* * Memory barrier - Cycle Bit must be set before doorbell. */ dma_wmb(); /* Clearing TRBERR and DESCMIS before setting DRDY. */ writel(DMA_EP_STS_TRBERR | DMA_EP_STS_DESCMIS, &pdev->adma_regs->ep_sts); writel(DMA_EP_CMD_DRDY, &pdev->adma_regs->ep_cmd); if (readl(&pdev->adma_regs->ep_sts) & DMA_EP_STS_TRBERR) { writel(DMA_EP_STS_TRBERR, &pdev->adma_regs->ep_sts); writel(DMA_EP_CMD_DRDY, &pdev->adma_regs->ep_cmd); } trace_cdns2_doorbell_epx(pep, readl(&pdev->adma_regs->ep_traddr)); } static int cdns2_prepare_first_isoc_transfer(struct cdns2_device *pdev, struct cdns2_endpoint *pep) { struct cdns2_trb *trb; u32 buffer; u8 hw_ccs; if ((readl(&pdev->adma_regs->ep_cmd) & DMA_EP_CMD_DRDY)) return -EBUSY; if (!pep->dir) { set_reg_bit_32(&pdev->adma_regs->ep_cfg, DMA_EP_CFG_ENABLE); writel(pep->ring.dma + pep->ring.dequeue, &pdev->adma_regs->ep_traddr); return 0; } /* * The first packet after doorbell can be corrupted so, * driver prepares 0 length packet as first packet. */ buffer = pep->ring.dma + pep->ring.dequeue * TRB_SIZE; hw_ccs = !!DMA_EP_STS_CCS(readl(&pdev->adma_regs->ep_sts)); trb = &pep->ring.trbs[TRBS_PER_SEGMENT]; trb->length = 0; trb->buffer = cpu_to_le32(TRB_BUFFER(buffer)); trb->control = cpu_to_le32((hw_ccs ? TRB_CYCLE : 0) | TRB_TYPE(TRB_NORMAL)); /* * LINK TRB is used to force updating cycle bit in controller and * move to correct place in transfer ring. */ trb++; trb->length = 0; trb->buffer = cpu_to_le32(TRB_BUFFER(buffer)); trb->control = cpu_to_le32((hw_ccs ? TRB_CYCLE : 0) | TRB_TYPE(TRB_LINK) | TRB_CHAIN); if (hw_ccs != pep->ring.ccs) trb->control |= cpu_to_le32(TRB_TOGGLE); set_reg_bit_32(&pdev->adma_regs->ep_cfg, DMA_EP_CFG_ENABLE); writel(pep->ring.dma + (TRBS_PER_SEGMENT * TRB_SIZE), &pdev->adma_regs->ep_traddr); return 0; } /* Prepare and start transfer on no-default endpoint. */ static int cdns2_ep_run_transfer(struct cdns2_endpoint *pep, struct cdns2_request *preq) { struct cdns2_device *pdev = pep->pdev; struct cdns2_ring *ring; u32 togle_pcs = 1; int num_trbs; int ret; cdns2_select_ep(pdev, pep->endpoint.address); if (preq->request.sg) num_trbs = cdns2_count_sg_trbs(pep, &preq->request); else num_trbs = cdns2_count_trbs(pep, preq->request.dma, preq->request.length); ret = cdns2_prepare_ring(pdev, pep, num_trbs); if (ret) return ret; ring = &pep->ring; preq->start_trb = ring->enqueue; preq->trb = ring->trbs + ring->enqueue; if (usb_endpoint_xfer_isoc(pep->endpoint.desc)) { cdns2_ep_tx_isoc(pep, preq, num_trbs); } else { togle_pcs = cdns2_wa1_update_guard(pep, ring->trbs + ring->enqueue); cdns2_ep_tx_bulk(pep, preq, num_trbs); } preq->num_of_trb = num_trbs; /* * Memory barrier - cycle bit must be set as the last operation. */ dma_wmb(); /* Give the TD to the consumer. */ if (togle_pcs) preq->trb->control = preq->trb->control ^ cpu_to_le32(1); cdns2_wa1_tray_restore_cycle_bit(pdev, pep); cdns2_dbg_request_trbs(pep, preq); if (!pep->wa1_set && !(pep->ep_state & EP_STALLED) && !pep->skip) { if (pep->type == USB_ENDPOINT_XFER_ISOC) { ret = cdns2_prepare_first_isoc_transfer(pdev, pep); if (ret) return 0; } cdns2_set_drdy(pdev, pep); } return 0; } /* Prepare and start transfer for all not started requests. */ static int cdns2_start_all_request(struct cdns2_device *pdev, struct cdns2_endpoint *pep) { struct cdns2_request *preq; int ret; while (!list_empty(&pep->deferred_list)) { preq = cdns2_next_preq(&pep->deferred_list); ret = cdns2_ep_run_transfer(pep, preq); if (ret) return ret; list_move_tail(&preq->list, &pep->pending_list); } pep->ep_state &= ~EP_RING_FULL; return 0; } /* * Check whether trb has been handled by DMA. * * Endpoint must be selected before invoking this function. * * Returns false if request has not been handled by DMA, else returns true. * * SR - start ring * ER - end ring * DQ = ring->dequeue - dequeue position * EQ = ring->enqueue - enqueue position * ST = preq->start_trb - index of first TRB in transfer ring * ET = preq->end_trb - index of last TRB in transfer ring * CI = current_index - index of processed TRB by DMA. * * As first step, we check if the TRB between the ST and ET. * Then, we check if cycle bit for index pep->dequeue * is correct. * * some rules: * 1. ring->dequeue never equals to current_index. * 2 ring->enqueue never exceed ring->dequeue * 3. exception: ring->enqueue == ring->dequeue * and ring->free_trbs is zero. * This case indicate that TR is full. * * At below two cases, the request have been handled. * Case 1 - ring->dequeue < current_index * SR ... EQ ... DQ ... CI ... ER * SR ... DQ ... CI ... EQ ... ER * * Case 2 - ring->dequeue > current_index * This situation takes place when CI go through the LINK TRB at the end of * transfer ring. * SR ... CI ... EQ ... DQ ... ER */ static bool cdns2_trb_handled(struct cdns2_endpoint *pep, struct cdns2_request *preq) { struct cdns2_device *pdev = pep->pdev; struct cdns2_ring *ring; struct cdns2_trb *trb; int current_index = 0; int handled = 0; int doorbell; ring = &pep->ring; current_index = cdns2_get_dma_pos(pdev, pep); doorbell = !!(readl(&pdev->adma_regs->ep_cmd) & DMA_EP_CMD_DRDY); /* * Only ISO transfer can use 2 entries outside the standard * Transfer Ring. First of them is used as zero length packet and the * second as LINK TRB. */ if (current_index >= TRBS_PER_SEGMENT) goto finish; /* Current trb doesn't belong to this request. */ if (preq->start_trb < preq->end_trb) { if (ring->dequeue > preq->end_trb) goto finish; if (ring->dequeue < preq->start_trb) goto finish; } if (preq->start_trb > preq->end_trb && ring->dequeue > preq->end_trb && ring->dequeue < preq->start_trb) goto finish; if (preq->start_trb == preq->end_trb && ring->dequeue != preq->end_trb) goto finish; trb = &ring->trbs[ring->dequeue]; if ((le32_to_cpu(trb->control) & TRB_CYCLE) != ring->ccs) goto finish; if (doorbell == 1 && current_index == ring->dequeue) goto finish; /* The corner case for TRBS_PER_SEGMENT equal 2). */ if (TRBS_PER_SEGMENT == 2 && pep->type != USB_ENDPOINT_XFER_ISOC) { handled = 1; goto finish; } if (ring->enqueue == ring->dequeue && ring->free_trbs == 0) { handled = 1; } else if (ring->dequeue < current_index) { if ((current_index == (TRBS_PER_SEGMENT - 1)) && !ring->dequeue) goto finish; handled = 1; } else if (ring->dequeue > current_index) { handled = 1; } finish: trace_cdns2_request_handled(preq, current_index, handled); return handled; } static void cdns2_skip_isoc_td(struct cdns2_device *pdev, struct cdns2_endpoint *pep, struct cdns2_request *preq) { struct cdns2_trb *trb; int i; trb = pep->ring.trbs + pep->ring.dequeue; for (i = preq->finished_trb ; i < preq->num_of_trb; i++) { preq->finished_trb++; trace_cdns2_complete_trb(pep, trb); cdns2_ep_inc_deq(&pep->ring); trb = cdns2_next_trb(pep, trb); } cdns2_gadget_giveback(pep, preq, 0); cdns2_prepare_first_isoc_transfer(pdev, pep); pep->skip = false; cdns2_set_drdy(pdev, pep); } static void cdns2_transfer_completed(struct cdns2_device *pdev, struct cdns2_endpoint *pep) { struct cdns2_request *preq = NULL; bool request_handled = false; struct cdns2_trb *trb; while (!list_empty(&pep->pending_list)) { preq = cdns2_next_preq(&pep->pending_list); trb = pep->ring.trbs + pep->ring.dequeue; /* * The TRB was changed as link TRB, and the request * was handled at ep_dequeue. */ while (TRB_FIELD_TO_TYPE(le32_to_cpu(trb->control)) == TRB_LINK && le32_to_cpu(trb->length)) { trace_cdns2_complete_trb(pep, trb); cdns2_ep_inc_deq(&pep->ring); trb = pep->ring.trbs + pep->ring.dequeue; } /* * Re-select endpoint. It could be changed by other CPU * during handling usb_gadget_giveback_request. */ cdns2_select_ep(pdev, pep->endpoint.address); while (cdns2_trb_handled(pep, preq)) { preq->finished_trb++; if (preq->finished_trb >= preq->num_of_trb) request_handled = true; trb = pep->ring.trbs + pep->ring.dequeue; trace_cdns2_complete_trb(pep, trb); if (pep->dir && pep->type == USB_ENDPOINT_XFER_ISOC) /* * For ISOC IN controller doens't update the * trb->length. */ preq->request.actual = preq->request.length; else preq->request.actual += TRB_LEN(le32_to_cpu(trb->length)); cdns2_ep_inc_deq(&pep->ring); } if (request_handled) { cdns2_gadget_giveback(pep, preq, 0); request_handled = false; } else { goto prepare_next_td; } if (pep->type != USB_ENDPOINT_XFER_ISOC && TRBS_PER_SEGMENT == 2) break; } prepare_next_td: if (pep->skip && preq) cdns2_skip_isoc_td(pdev, pep, preq); if (!(pep->ep_state & EP_STALLED) && !(pep->ep_state & EP_STALL_PENDING)) cdns2_start_all_request(pdev, pep); } static void cdns2_wakeup(struct cdns2_device *pdev) { if (!pdev->may_wakeup) return; /* Start driving resume signaling to indicate remote wakeup. */ set_reg_bit_8(&pdev->usb_regs->usbcs, USBCS_SIGRSUME); } static void cdns2_rearm_transfer(struct cdns2_endpoint *pep, u8 rearm) { struct cdns2_device *pdev = pep->pdev; cdns2_wa1_restore_cycle_bit(pep); if (rearm) { trace_cdns2_ring(pep); /* Cycle Bit must be updated before arming DMA. */ dma_wmb(); writel(DMA_EP_CMD_DRDY, &pdev->adma_regs->ep_cmd); cdns2_wakeup(pdev); trace_cdns2_doorbell_epx(pep, readl(&pdev->adma_regs->ep_traddr)); } } static void cdns2_handle_epx_interrupt(struct cdns2_endpoint *pep) { struct cdns2_device *pdev = pep->pdev; u8 isoerror = 0; u32 ep_sts_reg; u32 val; cdns2_select_ep(pdev, pep->endpoint.address); trace_cdns2_epx_irq(pdev, pep); ep_sts_reg = readl(&pdev->adma_regs->ep_sts); writel(ep_sts_reg, &pdev->adma_regs->ep_sts); if (pep->type == USB_ENDPOINT_XFER_ISOC) { u8 mult; u8 cs; mult = USB_EP_MAXP_MULT(pep->endpoint.desc->wMaxPacketSize); cs = pep->dir ? readb(&pdev->epx_regs->ep[pep->num - 1].txcs) : readb(&pdev->epx_regs->ep[pep->num - 1].rxcs); if (mult > 0) isoerror = EPX_CS_ERR(cs); } /* * Sometimes ISO Error for mult=1 or mult=2 is not propagated on time * from USB module to DMA module. To protect against this driver * checks also the txcs/rxcs registers. */ if ((ep_sts_reg & DMA_EP_STS_ISOERR) || isoerror) { clear_reg_bit_32(&pdev->adma_regs->ep_cfg, DMA_EP_CFG_ENABLE); /* Wait for DBUSY cleared. */ readl_poll_timeout_atomic(&pdev->adma_regs->ep_sts, val, !(val & DMA_EP_STS_DBUSY), 1, 125); writel(DMA_EP_CMD_DFLUSH, &pep->pdev->adma_regs->ep_cmd); /* Wait for DFLUSH cleared. */ readl_poll_timeout_atomic(&pep->pdev->adma_regs->ep_cmd, val, !(val & DMA_EP_CMD_DFLUSH), 1, 10); pep->skip = true; } if (ep_sts_reg & DMA_EP_STS_TRBERR || pep->skip) { if (pep->ep_state & EP_STALL_PENDING && !(ep_sts_reg & DMA_EP_STS_DESCMIS)) cdns2_ep_stall_flush(pep); /* * For isochronous transfer driver completes request on * IOC or on TRBERR. IOC appears only when device receive * OUT data packet. If host disable stream or lost some packet * then the only way to finish all queued transfer is to do it * on TRBERR event. */ if (pep->type == USB_ENDPOINT_XFER_ISOC && !pep->wa1_set) { if (!pep->dir) clear_reg_bit_32(&pdev->adma_regs->ep_cfg, DMA_EP_CFG_ENABLE); cdns2_transfer_completed(pdev, pep); if (pep->ep_state & EP_DEFERRED_DRDY) { pep->ep_state &= ~EP_DEFERRED_DRDY; cdns2_set_drdy(pdev, pep); } return; } cdns2_transfer_completed(pdev, pep); if (!(pep->ep_state & EP_STALLED) && !(pep->ep_state & EP_STALL_PENDING)) { if (pep->ep_state & EP_DEFERRED_DRDY) { pep->ep_state &= ~EP_DEFERRED_DRDY; cdns2_start_all_request(pdev, pep); } else { cdns2_rearm_transfer(pep, pep->wa1_set); } } return; } if ((ep_sts_reg & DMA_EP_STS_IOC) || (ep_sts_reg & DMA_EP_STS_ISP)) cdns2_transfer_completed(pdev, pep); } static void cdns2_disconnect_gadget(struct cdns2_device *pdev) { if (pdev->gadget_driver && pdev->gadget_driver->disconnect) pdev->gadget_driver->disconnect(&pdev->gadget); } static irqreturn_t cdns2_usb_irq_handler(int irq, void *data) { struct cdns2_device *pdev = data; unsigned long reg_ep_ists; u8 reg_usb_irq_m; u8 reg_ext_irq_m; u8 reg_usb_irq; u8 reg_ext_irq; if (pdev->in_lpm) return IRQ_NONE; reg_usb_irq_m = readb(&pdev->interrupt_regs->usbien); reg_ext_irq_m = readb(&pdev->interrupt_regs->extien); /* Mask all sources of interrupt. */ writeb(0, &pdev->interrupt_regs->usbien); writeb(0, &pdev->interrupt_regs->extien); writel(0, &pdev->adma_regs->ep_ien); /* Clear interrupt sources. */ writel(0, &pdev->adma_regs->ep_sts); writeb(0, &pdev->interrupt_regs->usbirq); writeb(0, &pdev->interrupt_regs->extirq); reg_ep_ists = readl(&pdev->adma_regs->ep_ists); reg_usb_irq = readb(&pdev->interrupt_regs->usbirq); reg_ext_irq = readb(&pdev->interrupt_regs->extirq); if (reg_ep_ists || (reg_usb_irq & reg_usb_irq_m) || (reg_ext_irq & reg_ext_irq_m)) return IRQ_WAKE_THREAD; writeb(USB_IEN_INIT, &pdev->interrupt_regs->usbien); writeb(EXTIRQ_WAKEUP, &pdev->interrupt_regs->extien); writel(~0, &pdev->adma_regs->ep_ien); return IRQ_NONE; } static irqreturn_t cdns2_thread_usb_irq_handler(struct cdns2_device *pdev) { u8 usb_irq, ext_irq; int speed; int i; ext_irq = readb(&pdev->interrupt_regs->extirq) & EXTIRQ_WAKEUP; writeb(ext_irq, &pdev->interrupt_regs->extirq); usb_irq = readb(&pdev->interrupt_regs->usbirq) & USB_IEN_INIT; writeb(usb_irq, &pdev->interrupt_regs->usbirq); if (!ext_irq && !usb_irq) return IRQ_NONE; trace_cdns2_usb_irq(usb_irq, ext_irq); if (ext_irq & EXTIRQ_WAKEUP) { if (pdev->gadget_driver && pdev->gadget_driver->resume) { spin_unlock(&pdev->lock); pdev->gadget_driver->resume(&pdev->gadget); spin_lock(&pdev->lock); } } if (usb_irq & USBIRQ_LPM) { u8 reg = readb(&pdev->usb_regs->lpmctrl); /* LPM1 enter */ if (!(reg & LPMCTRLLH_LPMNYET)) writeb(0, &pdev->usb_regs->sleep_clkgate); } if (usb_irq & USBIRQ_SUSPEND) { if (pdev->gadget_driver && pdev->gadget_driver->suspend) { spin_unlock(&pdev->lock); pdev->gadget_driver->suspend(&pdev->gadget); spin_lock(&pdev->lock); } } if (usb_irq & USBIRQ_URESET) { if (pdev->gadget_driver) { pdev->dev_address = 0; spin_unlock(&pdev->lock); usb_gadget_udc_reset(&pdev->gadget, pdev->gadget_driver); spin_lock(&pdev->lock); /* * The USBIRQ_URESET is reported at the beginning of * reset signal. 100ms is enough time to finish reset * process. For high-speed reset procedure is completed * when controller detect HS mode. */ for (i = 0; i < 100; i++) { mdelay(1); speed = cdns2_get_speed(pdev); if (speed == USB_SPEED_HIGH) break; } pdev->gadget.speed = speed; cdns2_enable_l1(pdev, 0); cdns2_ep0_config(pdev); pdev->may_wakeup = 0; } } if (usb_irq & USBIRQ_SUDAV) { pdev->ep0_stage = CDNS2_SETUP_STAGE; cdns2_handle_setup_packet(pdev); } return IRQ_HANDLED; } /* Deferred USB interrupt handler. */ static irqreturn_t cdns2_thread_irq_handler(int irq, void *data) { struct cdns2_device *pdev = data; unsigned long dma_ep_ists; unsigned long flags; unsigned int bit; local_bh_disable(); spin_lock_irqsave(&pdev->lock, flags); cdns2_thread_usb_irq_handler(pdev); dma_ep_ists = readl(&pdev->adma_regs->ep_ists); if (!dma_ep_ists) goto unlock; trace_cdns2_dma_ep_ists(dma_ep_ists); /* Handle default endpoint OUT. */ if (dma_ep_ists & DMA_EP_ISTS_EP_OUT0) cdns2_handle_ep0_interrupt(pdev, USB_DIR_OUT); /* Handle default endpoint IN. */ if (dma_ep_ists & DMA_EP_ISTS_EP_IN0) cdns2_handle_ep0_interrupt(pdev, USB_DIR_IN); dma_ep_ists &= ~(DMA_EP_ISTS_EP_OUT0 | DMA_EP_ISTS_EP_IN0); for_each_set_bit(bit, &dma_ep_ists, sizeof(u32) * BITS_PER_BYTE) { u8 ep_idx = bit > 16 ? (bit - 16) * 2 : (bit * 2) - 1; /* * Endpoints in pdev->eps[] are held in order: * ep0, ep1out, ep1in, ep2out, ep2in... ep15out, ep15in. * but in dma_ep_ists in order: * ep0 ep1out ep2out ... ep15out ep0in ep1in .. ep15in */ cdns2_handle_epx_interrupt(&pdev->eps[ep_idx]); } unlock: writel(~0, &pdev->adma_regs->ep_ien); writeb(USB_IEN_INIT, &pdev->interrupt_regs->usbien); writeb(EXTIRQ_WAKEUP, &pdev->interrupt_regs->extien); spin_unlock_irqrestore(&pdev->lock, flags); local_bh_enable(); return IRQ_HANDLED; } /* Calculates and assigns onchip memory for endpoints. */ static void cdns2_eps_onchip_buffer_init(struct cdns2_device *pdev) { struct cdns2_endpoint *pep; int min_buf_tx = 0; int min_buf_rx = 0; u16 tx_offset = 0; u16 rx_offset = 0; int free; int i; for (i = 0; i < CDNS2_ENDPOINTS_NUM; i++) { pep = &pdev->eps[i]; if (!(pep->ep_state & EP_CLAIMED)) continue; if (pep->dir) min_buf_tx += pep->buffering; else min_buf_rx += pep->buffering; } for (i = 0; i < CDNS2_ENDPOINTS_NUM; i++) { pep = &pdev->eps[i]; if (!(pep->ep_state & EP_CLAIMED)) continue; if (pep->dir) { free = pdev->onchip_tx_buf - min_buf_tx; if (free + pep->buffering >= 4) free = 4; else free = free + pep->buffering; min_buf_tx = min_buf_tx - pep->buffering + free; pep->buffering = free; writel(tx_offset, &pdev->epx_regs->txstaddr[pep->num - 1]); pdev->epx_regs->txstaddr[pep->num - 1] = tx_offset; dev_dbg(pdev->dev, "%s onchip address %04x, buffering: %d\n", pep->name, tx_offset, pep->buffering); tx_offset += pep->buffering * 1024; } else { free = pdev->onchip_rx_buf - min_buf_rx; if (free + pep->buffering >= 4) free = 4; else free = free + pep->buffering; min_buf_rx = min_buf_rx - pep->buffering + free; pep->buffering = free; writel(rx_offset, &pdev->epx_regs->rxstaddr[pep->num - 1]); dev_dbg(pdev->dev, "%s onchip address %04x, buffering: %d\n", pep->name, rx_offset, pep->buffering); rx_offset += pep->buffering * 1024; } } } /* Configure hardware endpoint. */ static int cdns2_ep_config(struct cdns2_endpoint *pep, bool enable) { bool is_iso_ep = (pep->type == USB_ENDPOINT_XFER_ISOC); struct cdns2_device *pdev = pep->pdev; u32 max_packet_size; u8 dir = 0; u8 ep_cfg; u8 mult; u32 val; int ret; switch (pep->type) { case USB_ENDPOINT_XFER_INT: ep_cfg = EPX_CON_TYPE_INT; break; case USB_ENDPOINT_XFER_BULK: ep_cfg = EPX_CON_TYPE_BULK; break; default: mult = USB_EP_MAXP_MULT(pep->endpoint.desc->wMaxPacketSize); ep_cfg = mult << EPX_CON_ISOD_SHIFT; ep_cfg |= EPX_CON_TYPE_ISOC; if (pep->dir) { set_reg_bit_8(&pdev->epx_regs->isoautoarm, BIT(pep->num)); set_reg_bit_8(&pdev->epx_regs->isoautodump, BIT(pep->num)); set_reg_bit_8(&pdev->epx_regs->isodctrl, BIT(pep->num)); } } switch (pdev->gadget.speed) { case USB_SPEED_FULL: max_packet_size = is_iso_ep ? 1023 : 64; break; case USB_SPEED_HIGH: max_packet_size = is_iso_ep ? 1024 : 512; break; default: /* All other speed are not supported. */ return -EINVAL; } ep_cfg |= (EPX_CON_VAL | (pep->buffering - 1)); if (pep->dir) { dir = FIFOCTRL_IO_TX; writew(max_packet_size, &pdev->epx_regs->txmaxpack[pep->num - 1]); writeb(ep_cfg, &pdev->epx_regs->ep[pep->num - 1].txcon); } else { writew(max_packet_size, &pdev->epx_regs->rxmaxpack[pep->num - 1]); writeb(ep_cfg, &pdev->epx_regs->ep[pep->num - 1].rxcon); } writeb(pep->num | dir | FIFOCTRL_FIFOAUTO, &pdev->usb_regs->fifoctrl); writeb(pep->num | dir, &pdev->epx_regs->endprst); writeb(pep->num | ENDPRST_FIFORST | ENDPRST_TOGRST | dir, &pdev->epx_regs->endprst); if (max_packet_size == 1024) pep->trb_burst_size = 128; else if (max_packet_size >= 512) pep->trb_burst_size = 64; else pep->trb_burst_size = 16; cdns2_select_ep(pdev, pep->num | pep->dir); writel(DMA_EP_CMD_EPRST | DMA_EP_CMD_DFLUSH, &pdev->adma_regs->ep_cmd); ret = readl_poll_timeout_atomic(&pdev->adma_regs->ep_cmd, val, !(val & (DMA_EP_CMD_DFLUSH | DMA_EP_CMD_EPRST)), 1, 1000); if (ret) return ret; writel(DMA_EP_STS_TRBERR | DMA_EP_STS_ISOERR, &pdev->adma_regs->ep_sts_en); if (enable) writel(DMA_EP_CFG_ENABLE, &pdev->adma_regs->ep_cfg); trace_cdns2_epx_hw_cfg(pdev, pep); dev_dbg(pdev->dev, "Configure %s: with MPS: %08x, ep con: %02x\n", pep->name, max_packet_size, ep_cfg); return 0; } struct usb_request *cdns2_gadget_ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) { struct cdns2_endpoint *pep = ep_to_cdns2_ep(ep); struct cdns2_request *preq; preq = kzalloc(sizeof(*preq), gfp_flags); if (!preq) return NULL; preq->pep = pep; trace_cdns2_alloc_request(preq); return &preq->request; } void cdns2_gadget_ep_free_request(struct usb_ep *ep, struct usb_request *request) { struct cdns2_request *preq = to_cdns2_request(request); trace_cdns2_free_request(preq); kfree(preq); } static int cdns2_gadget_ep_enable(struct usb_ep *ep, const struct usb_endpoint_descriptor *desc) { u32 reg = DMA_EP_STS_EN_TRBERREN; struct cdns2_endpoint *pep; struct cdns2_device *pdev; unsigned long flags; int enable = 1; int ret = 0; if (!ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT || !desc->wMaxPacketSize) { return -EINVAL; } pep = ep_to_cdns2_ep(ep); pdev = pep->pdev; if (dev_WARN_ONCE(pdev->dev, pep->ep_state & EP_ENABLED, "%s is already enabled\n", pep->name)) return 0; spin_lock_irqsave(&pdev->lock, flags); pep->type = usb_endpoint_type(desc); pep->interval = desc->bInterval ? BIT(desc->bInterval - 1) : 0; if (pdev->gadget.speed == USB_SPEED_FULL) if (pep->type == USB_ENDPOINT_XFER_INT) pep->interval = desc->bInterval; if (pep->interval > ISO_MAX_INTERVAL && pep->type == USB_ENDPOINT_XFER_ISOC) { dev_err(pdev->dev, "ISO period is limited to %d (current: %d)\n", ISO_MAX_INTERVAL, pep->interval); ret = -EINVAL; goto exit; } /* * During ISO OUT traffic DMA reads Transfer Ring for the EP which has * never got doorbell. * This issue was detected only on simulation, but to avoid this issue * driver add protection against it. To fix it driver enable ISO OUT * endpoint before setting DRBL. This special treatment of ISO OUT * endpoints are recommended by controller specification. */ if (pep->type == USB_ENDPOINT_XFER_ISOC && !pep->dir) enable = 0; ret = cdns2_alloc_tr_segment(pep); if (ret) goto exit; ret = cdns2_ep_config(pep, enable); if (ret) { cdns2_free_tr_segment(pep); ret = -EINVAL; goto exit; } trace_cdns2_gadget_ep_enable(pep); pep->ep_state &= ~(EP_STALLED | EP_STALL_PENDING); pep->ep_state |= EP_ENABLED; pep->wa1_set = 0; pep->ring.enqueue = 0; pep->ring.dequeue = 0; reg = readl(&pdev->adma_regs->ep_sts); pep->ring.pcs = !!DMA_EP_STS_CCS(reg); pep->ring.ccs = !!DMA_EP_STS_CCS(reg); writel(pep->ring.dma, &pdev->adma_regs->ep_traddr); /* one TRB is reserved for link TRB used in DMULT mode*/ pep->ring.free_trbs = TRBS_PER_SEGMENT - 1; exit: spin_unlock_irqrestore(&pdev->lock, flags); return ret; } static int cdns2_gadget_ep_disable(struct usb_ep *ep) { struct cdns2_endpoint *pep; struct cdns2_request *preq; struct cdns2_device *pdev; unsigned long flags; int val; if (!ep) return -EINVAL; pep = ep_to_cdns2_ep(ep); pdev = pep->pdev; if (dev_WARN_ONCE(pdev->dev, !(pep->ep_state & EP_ENABLED), "%s is already disabled\n", pep->name)) return 0; spin_lock_irqsave(&pdev->lock, flags); trace_cdns2_gadget_ep_disable(pep); cdns2_select_ep(pdev, ep->desc->bEndpointAddress); clear_reg_bit_32(&pdev->adma_regs->ep_cfg, DMA_EP_CFG_ENABLE); /* * Driver needs some time before resetting endpoint. * It need waits for clearing DBUSY bit or for timeout expired. * 10us is enough time for controller to stop transfer. */ readl_poll_timeout_atomic(&pdev->adma_regs->ep_sts, val, !(val & DMA_EP_STS_DBUSY), 1, 10); writel(DMA_EP_CMD_EPRST, &pdev->adma_regs->ep_cmd); readl_poll_timeout_atomic(&pdev->adma_regs->ep_cmd, val, !(val & (DMA_EP_CMD_DFLUSH | DMA_EP_CMD_EPRST)), 1, 1000); while (!list_empty(&pep->pending_list)) { preq = cdns2_next_preq(&pep->pending_list); cdns2_gadget_giveback(pep, preq, -ESHUTDOWN); } while (!list_empty(&pep->deferred_list)) { preq = cdns2_next_preq(&pep->deferred_list); cdns2_gadget_giveback(pep, preq, -ESHUTDOWN); } ep->desc = NULL; pep->ep_state &= ~EP_ENABLED; spin_unlock_irqrestore(&pdev->lock, flags); return 0; } static int cdns2_ep_enqueue(struct cdns2_endpoint *pep, struct cdns2_request *preq, gfp_t gfp_flags) { struct cdns2_device *pdev = pep->pdev; struct usb_request *request; int ret; request = &preq->request; request->actual = 0; request->status = -EINPROGRESS; ret = usb_gadget_map_request_by_dev(pdev->dev, request, pep->dir); if (ret) { trace_cdns2_request_enqueue_error(preq); return ret; } list_add_tail(&preq->list, &pep->deferred_list); trace_cdns2_request_enqueue(preq); if (!(pep->ep_state & EP_STALLED) && !(pep->ep_state & EP_STALL_PENDING)) cdns2_start_all_request(pdev, pep); return 0; } static int cdns2_gadget_ep_queue(struct usb_ep *ep, struct usb_request *request, gfp_t gfp_flags) { struct usb_request *zlp_request; struct cdns2_request *preq; struct cdns2_endpoint *pep; struct cdns2_device *pdev; unsigned long flags; int ret; if (!request || !ep) return -EINVAL; pep = ep_to_cdns2_ep(ep); pdev = pep->pdev; if (!(pep->ep_state & EP_ENABLED)) { dev_err(pdev->dev, "%s: can't queue to disabled endpoint\n", pep->name); return -EINVAL; } spin_lock_irqsave(&pdev->lock, flags); preq = to_cdns2_request(request); ret = cdns2_ep_enqueue(pep, preq, gfp_flags); if (ret == 0 && request->zero && request->length && (request->length % ep->maxpacket == 0)) { struct cdns2_request *preq; zlp_request = cdns2_gadget_ep_alloc_request(ep, GFP_ATOMIC); zlp_request->buf = pdev->zlp_buf; zlp_request->length = 0; preq = to_cdns2_request(zlp_request); ret = cdns2_ep_enqueue(pep, preq, gfp_flags); } spin_unlock_irqrestore(&pdev->lock, flags); return ret; } int cdns2_gadget_ep_dequeue(struct usb_ep *ep, struct usb_request *request) { struct cdns2_request *preq, *preq_temp, *cur_preq; struct cdns2_endpoint *pep; struct cdns2_trb *link_trb; u8 req_on_hw_ring = 0; unsigned long flags; u32 buffer; int val, i; if (!ep || !request || !ep->desc) return -EINVAL; pep = ep_to_cdns2_ep(ep); if (!pep->endpoint.desc) { dev_err(pep->pdev->dev, "%s: can't dequeue to disabled endpoint\n", pep->name); return -ESHUTDOWN; } /* Requests has been dequeued during disabling endpoint. */ if (!(pep->ep_state & EP_ENABLED)) return 0; spin_lock_irqsave(&pep->pdev->lock, flags); cur_preq = to_cdns2_request(request); trace_cdns2_request_dequeue(cur_preq); list_for_each_entry_safe(preq, preq_temp, &pep->pending_list, list) { if (cur_preq == preq) { req_on_hw_ring = 1; goto found; } } list_for_each_entry_safe(preq, preq_temp, &pep->deferred_list, list) { if (cur_preq == preq) goto found; } goto not_found; found: link_trb = preq->trb; /* Update ring only if removed request is on pending_req_list list. */ if (req_on_hw_ring && link_trb) { /* Stop DMA */ writel(DMA_EP_CMD_DFLUSH, &pep->pdev->adma_regs->ep_cmd); /* Wait for DFLUSH cleared. */ readl_poll_timeout_atomic(&pep->pdev->adma_regs->ep_cmd, val, !(val & DMA_EP_CMD_DFLUSH), 1, 1000); buffer = cpu_to_le32(TRB_BUFFER(pep->ring.dma + ((preq->end_trb + 1) * TRB_SIZE))); for (i = 0; i < preq->num_of_trb; i++) { link_trb->buffer = buffer; link_trb->control = cpu_to_le32((le32_to_cpu(link_trb->control) & TRB_CYCLE) | TRB_CHAIN | TRB_TYPE(TRB_LINK)); trace_cdns2_queue_trb(pep, link_trb); link_trb = cdns2_next_trb(pep, link_trb); } if (pep->wa1_trb == preq->trb) cdns2_wa1_restore_cycle_bit(pep); } cdns2_gadget_giveback(pep, cur_preq, -ECONNRESET); preq = cdns2_next_preq(&pep->pending_list); if (preq) cdns2_rearm_transfer(pep, 1); not_found: spin_unlock_irqrestore(&pep->pdev->lock, flags); return 0; } int cdns2_halt_endpoint(struct cdns2_device *pdev, struct cdns2_endpoint *pep, int value) { u8 __iomem *conf; int dir = 0; if (!(pep->ep_state & EP_ENABLED)) return -EPERM; if (pep->dir) { dir = ENDPRST_IO_TX; conf = &pdev->epx_regs->ep[pep->num - 1].txcon; } else { conf = &pdev->epx_regs->ep[pep->num - 1].rxcon; } if (!value) { struct cdns2_trb *trb = NULL; struct cdns2_request *preq; struct cdns2_trb trb_tmp; preq = cdns2_next_preq(&pep->pending_list); if (preq) { trb = preq->trb; if (trb) { trb_tmp = *trb; trb->control = trb->control ^ cpu_to_le32(TRB_CYCLE); } } trace_cdns2_ep_halt(pep, 0, 0); /* Resets Sequence Number */ writeb(dir | pep->num, &pdev->epx_regs->endprst); writeb(dir | ENDPRST_TOGRST | pep->num, &pdev->epx_regs->endprst); clear_reg_bit_8(conf, EPX_CON_STALL); pep->ep_state &= ~(EP_STALLED | EP_STALL_PENDING); if (preq) { if (trb) *trb = trb_tmp; cdns2_rearm_transfer(pep, 1); } cdns2_start_all_request(pdev, pep); } else { trace_cdns2_ep_halt(pep, 1, 0); set_reg_bit_8(conf, EPX_CON_STALL); writeb(dir | pep->num, &pdev->epx_regs->endprst); writeb(dir | ENDPRST_FIFORST | pep->num, &pdev->epx_regs->endprst); pep->ep_state |= EP_STALLED; } return 0; } /* Sets/clears stall on selected endpoint. */ static int cdns2_gadget_ep_set_halt(struct usb_ep *ep, int value) { struct cdns2_endpoint *pep = ep_to_cdns2_ep(ep); struct cdns2_device *pdev = pep->pdev; struct cdns2_request *preq; unsigned long flags = 0; int ret; spin_lock_irqsave(&pdev->lock, flags); preq = cdns2_next_preq(&pep->pending_list); if (value && preq) { trace_cdns2_ep_busy_try_halt_again(pep); ret = -EAGAIN; goto done; } if (!value) pep->ep_state &= ~EP_WEDGE; ret = cdns2_halt_endpoint(pdev, pep, value); done: spin_unlock_irqrestore(&pdev->lock, flags); return ret; } static int cdns2_gadget_ep_set_wedge(struct usb_ep *ep) { struct cdns2_endpoint *pep = ep_to_cdns2_ep(ep); cdns2_gadget_ep_set_halt(ep, 1); pep->ep_state |= EP_WEDGE; return 0; } static struct cdns2_endpoint *cdns2_find_available_ep(struct cdns2_device *pdev, struct usb_endpoint_descriptor *desc) { struct cdns2_endpoint *pep; struct usb_ep *ep; int ep_correct; list_for_each_entry(ep, &pdev->gadget.ep_list, ep_list) { unsigned long num; int ret; /* ep name pattern likes epXin or epXout. */ char c[2] = {ep->name[2], '\0'}; ret = kstrtoul(c, 10, &num); if (ret) return ERR_PTR(ret); pep = ep_to_cdns2_ep(ep); if (pep->num != num) continue; ep_correct = (pep->endpoint.caps.dir_in && usb_endpoint_dir_in(desc)) || (pep->endpoint.caps.dir_out && usb_endpoint_dir_out(desc)); if (ep_correct && !(pep->ep_state & EP_CLAIMED)) return pep; } return ERR_PTR(-ENOENT); } /* * Function used to recognize which endpoints will be used to optimize * on-chip memory usage. */ static struct usb_ep *cdns2_gadget_match_ep(struct usb_gadget *gadget, struct usb_endpoint_descriptor *desc, struct usb_ss_ep_comp_descriptor *comp_desc) { struct cdns2_device *pdev = gadget_to_cdns2_device(gadget); struct cdns2_endpoint *pep; unsigned long flags; pep = cdns2_find_available_ep(pdev, desc); if (IS_ERR(pep)) { dev_err(pdev->dev, "no available ep\n"); return NULL; } spin_lock_irqsave(&pdev->lock, flags); if (usb_endpoint_type(desc) == USB_ENDPOINT_XFER_ISOC) pep->buffering = 4; else pep->buffering = 1; pep->ep_state |= EP_CLAIMED; spin_unlock_irqrestore(&pdev->lock, flags); return &pep->endpoint; } static const struct usb_ep_ops cdns2_gadget_ep_ops = { .enable = cdns2_gadget_ep_enable, .disable = cdns2_gadget_ep_disable, .alloc_request = cdns2_gadget_ep_alloc_request, .free_request = cdns2_gadget_ep_free_request, .queue = cdns2_gadget_ep_queue, .dequeue = cdns2_gadget_ep_dequeue, .set_halt = cdns2_gadget_ep_set_halt, .set_wedge = cdns2_gadget_ep_set_wedge, }; static int cdns2_gadget_get_frame(struct usb_gadget *gadget) { struct cdns2_device *pdev = gadget_to_cdns2_device(gadget); return readw(&pdev->usb_regs->frmnr); } static int cdns2_gadget_wakeup(struct usb_gadget *gadget) { struct cdns2_device *pdev = gadget_to_cdns2_device(gadget); unsigned long flags; spin_lock_irqsave(&pdev->lock, flags); cdns2_wakeup(pdev); spin_unlock_irqrestore(&pdev->lock, flags); return 0; } static int cdns2_gadget_set_selfpowered(struct usb_gadget *gadget, int is_selfpowered) { struct cdns2_device *pdev = gadget_to_cdns2_device(gadget); unsigned long flags; spin_lock_irqsave(&pdev->lock, flags); pdev->is_selfpowered = !!is_selfpowered; spin_unlock_irqrestore(&pdev->lock, flags); return 0; } /* Disable interrupts and begin the controller halting process. */ static void cdns2_quiesce(struct cdns2_device *pdev) { set_reg_bit_8(&pdev->usb_regs->usbcs, USBCS_DISCON); /* Disable interrupt. */ writeb(0, &pdev->interrupt_regs->extien), writeb(0, &pdev->interrupt_regs->usbien), writew(0, &pdev->adma_regs->ep_ien); /* Clear interrupt line. */ writeb(0x0, &pdev->interrupt_regs->usbirq); } static void cdns2_gadget_config(struct cdns2_device *pdev) { cdns2_ep0_config(pdev); /* Enable DMA interrupts for all endpoints. */ writel(~0x0, &pdev->adma_regs->ep_ien); cdns2_enable_l1(pdev, 0); writeb(USB_IEN_INIT, &pdev->interrupt_regs->usbien); writeb(EXTIRQ_WAKEUP, &pdev->interrupt_regs->extien); writel(DMA_CONF_DMULT, &pdev->adma_regs->conf); } static int cdns2_gadget_pullup(struct usb_gadget *gadget, int is_on) { struct cdns2_device *pdev = gadget_to_cdns2_device(gadget); unsigned long flags; trace_cdns2_pullup(is_on); /* * Disable events handling while controller is being * enabled/disabled. */ disable_irq(pdev->irq); spin_lock_irqsave(&pdev->lock, flags); if (is_on) { cdns2_gadget_config(pdev); clear_reg_bit_8(&pdev->usb_regs->usbcs, USBCS_DISCON); } else { cdns2_quiesce(pdev); } spin_unlock_irqrestore(&pdev->lock, flags); enable_irq(pdev->irq); return 0; } static int cdns2_gadget_udc_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { struct cdns2_device *pdev = gadget_to_cdns2_device(gadget); enum usb_device_speed max_speed = driver->max_speed; unsigned long flags; spin_lock_irqsave(&pdev->lock, flags); pdev->gadget_driver = driver; /* Limit speed if necessary. */ max_speed = min(driver->max_speed, gadget->max_speed); switch (max_speed) { case USB_SPEED_FULL: writeb(SPEEDCTRL_HSDISABLE, &pdev->usb_regs->speedctrl); break; case USB_SPEED_HIGH: writeb(0, &pdev->usb_regs->speedctrl); break; default: dev_err(pdev->dev, "invalid maximum_speed parameter %d\n", max_speed); fallthrough; case USB_SPEED_UNKNOWN: /* Default to highspeed. */ max_speed = USB_SPEED_HIGH; break; } /* Reset all USB endpoints. */ writeb(ENDPRST_IO_TX, &pdev->usb_regs->endprst); writeb(ENDPRST_FIFORST | ENDPRST_TOGRST | ENDPRST_IO_TX, &pdev->usb_regs->endprst); writeb(ENDPRST_FIFORST | ENDPRST_TOGRST, &pdev->usb_regs->endprst); cdns2_eps_onchip_buffer_init(pdev); cdns2_gadget_config(pdev); spin_unlock_irqrestore(&pdev->lock, flags); return 0; } static int cdns2_gadget_udc_stop(struct usb_gadget *gadget) { struct cdns2_device *pdev = gadget_to_cdns2_device(gadget); struct cdns2_endpoint *pep; u32 bEndpointAddress; struct usb_ep *ep; int val; pdev->gadget_driver = NULL; pdev->gadget.speed = USB_SPEED_UNKNOWN; list_for_each_entry(ep, &pdev->gadget.ep_list, ep_list) { pep = ep_to_cdns2_ep(ep); bEndpointAddress = pep->num | pep->dir; cdns2_select_ep(pdev, bEndpointAddress); writel(DMA_EP_CMD_EPRST, &pdev->adma_regs->ep_cmd); readl_poll_timeout_atomic(&pdev->adma_regs->ep_cmd, val, !(val & DMA_EP_CMD_EPRST), 1, 100); } cdns2_quiesce(pdev); writeb(ENDPRST_IO_TX, &pdev->usb_regs->endprst); writeb(ENDPRST_FIFORST | ENDPRST_TOGRST | ENDPRST_IO_TX, &pdev->epx_regs->endprst); writeb(ENDPRST_FIFORST | ENDPRST_TOGRST, &pdev->epx_regs->endprst); return 0; } static const struct usb_gadget_ops cdns2_gadget_ops = { .get_frame = cdns2_gadget_get_frame, .wakeup = cdns2_gadget_wakeup, .set_selfpowered = cdns2_gadget_set_selfpowered, .pullup = cdns2_gadget_pullup, .udc_start = cdns2_gadget_udc_start, .udc_stop = cdns2_gadget_udc_stop, .match_ep = cdns2_gadget_match_ep, }; static void cdns2_free_all_eps(struct cdns2_device *pdev) { int i; for (i = 0; i < CDNS2_ENDPOINTS_NUM; i++) cdns2_free_tr_segment(&pdev->eps[i]); } /* Initializes software endpoints of gadget. */ static int cdns2_init_eps(struct cdns2_device *pdev) { struct cdns2_endpoint *pep; int i; for (i = 0; i < CDNS2_ENDPOINTS_NUM; i++) { bool direction = !(i & 1); /* Start from OUT endpoint. */ u8 epnum = ((i + 1) >> 1); /* * Endpoints are being held in pdev->eps[] in form: * ep0, ep1out, ep1in ... ep15out, ep15in. */ if (!CDNS2_IF_EP_EXIST(pdev, epnum, direction)) continue; pep = &pdev->eps[i]; pep->pdev = pdev; pep->num = epnum; /* 0 for OUT, 1 for IN. */ pep->dir = direction ? USB_DIR_IN : USB_DIR_OUT; pep->idx = i; /* Ep0in and ep0out are represented by pdev->eps[0]. */ if (!epnum) { int ret; snprintf(pep->name, sizeof(pep->name), "ep%d%s", epnum, "BiDir"); cdns2_init_ep0(pdev, pep); ret = cdns2_alloc_tr_segment(pep); if (ret) { dev_err(pdev->dev, "Failed to init ep0\n"); return ret; } } else { snprintf(pep->name, sizeof(pep->name), "ep%d%s", epnum, !!direction ? "in" : "out"); pep->endpoint.name = pep->name; usb_ep_set_maxpacket_limit(&pep->endpoint, 1024); pep->endpoint.ops = &cdns2_gadget_ep_ops; list_add_tail(&pep->endpoint.ep_list, &pdev->gadget.ep_list); pep->endpoint.caps.dir_in = direction; pep->endpoint.caps.dir_out = !direction; pep->endpoint.caps.type_iso = 1; pep->endpoint.caps.type_bulk = 1; pep->endpoint.caps.type_int = 1; } pep->endpoint.name = pep->name; pep->ep_state = 0; dev_dbg(pdev->dev, "Init %s, SupType: CTRL: %s, INT: %s, " "BULK: %s, ISOC %s, SupDir IN: %s, OUT: %s\n", pep->name, (pep->endpoint.caps.type_control) ? "yes" : "no", (pep->endpoint.caps.type_int) ? "yes" : "no", (pep->endpoint.caps.type_bulk) ? "yes" : "no", (pep->endpoint.caps.type_iso) ? "yes" : "no", (pep->endpoint.caps.dir_in) ? "yes" : "no", (pep->endpoint.caps.dir_out) ? "yes" : "no"); INIT_LIST_HEAD(&pep->pending_list); INIT_LIST_HEAD(&pep->deferred_list); } return 0; } static int cdns2_gadget_start(struct cdns2_device *pdev) { u32 max_speed; void *buf; int val; int ret; pdev->usb_regs = pdev->regs; pdev->ep0_regs = pdev->regs; pdev->epx_regs = pdev->regs; pdev->interrupt_regs = pdev->regs; pdev->adma_regs = pdev->regs + CDNS2_ADMA_REGS_OFFSET; /* Reset controller. */ set_reg_bit_8(&pdev->usb_regs->cpuctrl, CPUCTRL_SW_RST); ret = readl_poll_timeout_atomic(&pdev->usb_regs->cpuctrl, val, !(val & CPUCTRL_SW_RST), 1, 10000); if (ret) { dev_err(pdev->dev, "Error: reset controller timeout\n"); return -EINVAL; } usb_initialize_gadget(pdev->dev, &pdev->gadget, NULL); device_property_read_u16(pdev->dev, "cdns,on-chip-tx-buff-size", &pdev->onchip_tx_buf); device_property_read_u16(pdev->dev, "cdns,on-chip-rx-buff-size", &pdev->onchip_rx_buf); device_property_read_u32(pdev->dev, "cdns,avail-endpoints", &pdev->eps_supported); /* * Driver assumes that each USBHS controller has at least * one IN and one OUT non control endpoint. */ if (!pdev->onchip_tx_buf && !pdev->onchip_rx_buf) { ret = -EINVAL; dev_err(pdev->dev, "Invalid on-chip memory configuration\n"); goto put_gadget; } if (!(pdev->eps_supported & ~0x00010001)) { ret = -EINVAL; dev_err(pdev->dev, "No hardware endpoints available\n"); goto put_gadget; } max_speed = usb_get_maximum_speed(pdev->dev); switch (max_speed) { case USB_SPEED_FULL: case USB_SPEED_HIGH: break; default: dev_err(pdev->dev, "invalid maximum_speed parameter %d\n", max_speed); fallthrough; case USB_SPEED_UNKNOWN: max_speed = USB_SPEED_HIGH; break; } pdev->gadget.max_speed = max_speed; pdev->gadget.speed = USB_SPEED_UNKNOWN; pdev->gadget.ops = &cdns2_gadget_ops; pdev->gadget.name = "usbhs-gadget"; pdev->gadget.quirk_avoids_skb_reserve = 1; pdev->gadget.irq = pdev->irq; spin_lock_init(&pdev->lock); INIT_WORK(&pdev->pending_status_wq, cdns2_pending_setup_status_handler); /* Initialize endpoint container. */ INIT_LIST_HEAD(&pdev->gadget.ep_list); pdev->eps_dma_pool = dma_pool_create("cdns2_eps_dma_pool", pdev->dev, TR_SEG_SIZE, 8, 0); if (!pdev->eps_dma_pool) { dev_err(pdev->dev, "Failed to create TRB dma pool\n"); ret = -ENOMEM; goto put_gadget; } ret = cdns2_init_eps(pdev); if (ret) { dev_err(pdev->dev, "Failed to create endpoints\n"); goto destroy_dma_pool; } pdev->gadget.sg_supported = 1; pdev->zlp_buf = kzalloc(CDNS2_EP_ZLP_BUF_SIZE, GFP_KERNEL); if (!pdev->zlp_buf) { ret = -ENOMEM; goto destroy_dma_pool; } /* Allocate memory for setup packet buffer. */ buf = dma_alloc_coherent(pdev->dev, 8, &pdev->ep0_preq.request.dma, GFP_DMA); pdev->ep0_preq.request.buf = buf; if (!pdev->ep0_preq.request.buf) { ret = -ENOMEM; goto free_zlp_buf; } /* Add USB gadget device. */ ret = usb_add_gadget(&pdev->gadget); if (ret < 0) { dev_err(pdev->dev, "Failed to add gadget\n"); goto free_ep0_buf; } return 0; free_ep0_buf: dma_free_coherent(pdev->dev, 8, pdev->ep0_preq.request.buf, pdev->ep0_preq.request.dma); free_zlp_buf: kfree(pdev->zlp_buf); destroy_dma_pool: dma_pool_destroy(pdev->eps_dma_pool); put_gadget: usb_put_gadget(&pdev->gadget); return ret; } int cdns2_gadget_suspend(struct cdns2_device *pdev) { unsigned long flags; cdns2_disconnect_gadget(pdev); spin_lock_irqsave(&pdev->lock, flags); pdev->gadget.speed = USB_SPEED_UNKNOWN; trace_cdns2_device_state("notattached"); usb_gadget_set_state(&pdev->gadget, USB_STATE_NOTATTACHED); cdns2_enable_l1(pdev, 0); /* Disable interrupt for device. */ writeb(0, &pdev->interrupt_regs->usbien); writel(0, &pdev->adma_regs->ep_ien); spin_unlock_irqrestore(&pdev->lock, flags); return 0; } int cdns2_gadget_resume(struct cdns2_device *pdev, bool hibernated) { unsigned long flags; spin_lock_irqsave(&pdev->lock, flags); if (!pdev->gadget_driver) { spin_unlock_irqrestore(&pdev->lock, flags); return 0; } cdns2_gadget_config(pdev); if (hibernated) clear_reg_bit_8(&pdev->usb_regs->usbcs, USBCS_DISCON); spin_unlock_irqrestore(&pdev->lock, flags); return 0; } void cdns2_gadget_remove(struct cdns2_device *pdev) { pm_runtime_mark_last_busy(pdev->dev); pm_runtime_put_autosuspend(pdev->dev); usb_del_gadget(&pdev->gadget); cdns2_free_all_eps(pdev); dma_pool_destroy(pdev->eps_dma_pool); kfree(pdev->zlp_buf); usb_put_gadget(&pdev->gadget); } int cdns2_gadget_init(struct cdns2_device *pdev) { int ret; /* Ensure 32-bit DMA Mask. */ ret = dma_set_mask_and_coherent(pdev->dev, DMA_BIT_MASK(32)); if (ret) { dev_err(pdev->dev, "Failed to set dma mask: %d\n", ret); return ret; } pm_runtime_get_sync(pdev->dev); cdsn2_isoc_burst_opt(pdev); ret = cdns2_gadget_start(pdev); if (ret) { pm_runtime_put_sync(pdev->dev); return ret; } /* * Because interrupt line can be shared with other components in * driver it can't use IRQF_ONESHOT flag here. */ ret = devm_request_threaded_irq(pdev->dev, pdev->irq, cdns2_usb_irq_handler, cdns2_thread_irq_handler, IRQF_SHARED, dev_name(pdev->dev), pdev); if (ret) goto err0; return 0; err0: cdns2_gadget_remove(pdev); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1