Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alan Stern | 6428 | 50.77% | 50 | 32.47% |
Sebastian Andrzej Siewior | 2554 | 20.17% | 25 | 16.23% |
Tatyana Brokhman | 2389 | 18.87% | 4 | 2.60% |
David Brownell | 329 | 2.60% | 3 | 1.95% |
Robert Baldyga | 293 | 2.31% | 2 | 1.30% |
Marcello Sylvester Bauer | 85 | 0.67% | 2 | 1.30% |
Greg Kroah-Hartman | 82 | 0.65% | 8 | 5.19% |
Felipe Balbi | 75 | 0.59% | 3 | 1.95% |
Igor Kotrasinski | 58 | 0.46% | 4 | 2.60% |
Anirudh Rayabharam | 46 | 0.36% | 1 | 0.65% |
Russell King | 44 | 0.35% | 2 | 1.30% |
Peter Chen | 25 | 0.20% | 2 | 1.30% |
Chunfeng Yun | 24 | 0.19% | 1 | 0.65% |
Ingo van Lil | 19 | 0.15% | 1 | 0.65% |
Andrey Konovalov | 18 | 0.14% | 3 | 1.95% |
Marc Zyngier | 16 | 0.13% | 1 | 0.65% |
Gustavo A. R. Silva | 15 | 0.12% | 2 | 1.30% |
Yuyang Du | 14 | 0.11% | 1 | 0.65% |
Jakob Koschel | 12 | 0.09% | 1 | 0.65% |
Kees Cook | 11 | 0.09% | 1 | 0.65% |
Yani Ioannou | 10 | 0.08% | 1 | 0.65% |
Sergei Shtylyov | 8 | 0.06% | 2 | 1.30% |
Harvey Harrison | 7 | 0.06% | 2 | 1.30% |
WEN Pingbo | 7 | 0.06% | 1 | 0.65% |
Uwe Kleine-König | 7 | 0.06% | 2 | 1.30% |
Wei Yongjun | 7 | 0.06% | 1 | 0.65% |
John Youn | 6 | 0.05% | 1 | 0.65% |
Allen Pais | 6 | 0.05% | 1 | 0.65% |
Jacky.Cao | 6 | 0.05% | 1 | 0.65% |
Michal Sojka | 5 | 0.04% | 1 | 0.65% |
Seth Levy | 4 | 0.03% | 1 | 0.65% |
Kay Sievers | 4 | 0.03% | 1 | 0.65% |
Eric Sesterhenn / Snakebyte | 4 | 0.03% | 1 | 0.65% |
Eric Lescouet | 4 | 0.03% | 1 | 0.65% |
Sasha Levin | 4 | 0.03% | 1 | 0.65% |
Randy Dunlap | 4 | 0.03% | 1 | 0.65% |
Al Viro | 4 | 0.03% | 2 | 1.30% |
Irenge Jules Bashizi | 4 | 0.03% | 1 | 0.65% |
Michal Nazarewicz | 3 | 0.02% | 2 | 1.30% |
Johan Hovold | 3 | 0.02% | 1 | 0.65% |
Dan Carpenter | 3 | 0.02% | 1 | 0.65% |
Joe Perches | 2 | 0.02% | 1 | 0.65% |
Bui Quang Minh | 2 | 0.02% | 1 | 0.65% |
Arnd Bergmann | 2 | 0.02% | 1 | 0.65% |
Lee Jones | 1 | 0.01% | 1 | 0.65% |
Rasmus Villemoes | 1 | 0.01% | 1 | 0.65% |
Ahmed S. Darwish | 1 | 0.01% | 1 | 0.65% |
Kim Jae Joong | 1 | 0.01% | 1 | 0.65% |
Kuninori Morimoto | 1 | 0.01% | 1 | 0.65% |
Julia Lawall | 1 | 0.01% | 1 | 0.65% |
Sage Sharp | 1 | 0.01% | 1 | 0.65% |
Colin Ian King | 1 | 0.01% | 1 | 0.65% |
Total | 12661 | 154 |
// SPDX-License-Identifier: GPL-2.0+ /* * dummy_hcd.c -- Dummy/Loopback USB host and device emulator driver. * * Maintainer: Alan Stern <stern@rowland.harvard.edu> * * Copyright (C) 2003 David Brownell * Copyright (C) 2003-2005 Alan Stern */ /* * This exposes a device side "USB gadget" API, driven by requests to a * Linux-USB host controller driver. USB traffic is simulated; there's * no need for USB hardware. Use this with two other drivers: * * - Gadget driver, responding to requests (device); * - Host-side device driver, as already familiar in Linux. * * Having this all in one kernel can help some stages of development, * bypassing some hardware (and driver) issues. UML could help too. * * Note: The emulation does not include isochronous transfers! */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/hrtimer.h> #include <linux/list.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/usb.h> #include <linux/usb/gadget.h> #include <linux/usb/hcd.h> #include <linux/scatterlist.h> #include <asm/byteorder.h> #include <linux/io.h> #include <asm/irq.h> #include <asm/unaligned.h> #define DRIVER_DESC "USB Host+Gadget Emulator" #define DRIVER_VERSION "02 May 2005" #define POWER_BUDGET 500 /* in mA; use 8 for low-power port testing */ #define POWER_BUDGET_3 900 /* in mA */ #define DUMMY_TIMER_INT_NSECS 125000 /* 1 microframe */ static const char driver_name[] = "dummy_hcd"; static const char driver_desc[] = "USB Host+Gadget Emulator"; static const char gadget_name[] = "dummy_udc"; MODULE_DESCRIPTION(DRIVER_DESC); MODULE_AUTHOR("David Brownell"); MODULE_LICENSE("GPL"); struct dummy_hcd_module_parameters { bool is_super_speed; bool is_high_speed; unsigned int num; }; static struct dummy_hcd_module_parameters mod_data = { .is_super_speed = false, .is_high_speed = true, .num = 1, }; module_param_named(is_super_speed, mod_data.is_super_speed, bool, S_IRUGO); MODULE_PARM_DESC(is_super_speed, "true to simulate SuperSpeed connection"); module_param_named(is_high_speed, mod_data.is_high_speed, bool, S_IRUGO); MODULE_PARM_DESC(is_high_speed, "true to simulate HighSpeed connection"); module_param_named(num, mod_data.num, uint, S_IRUGO); MODULE_PARM_DESC(num, "number of emulated controllers"); /*-------------------------------------------------------------------------*/ /* gadget side driver data structres */ struct dummy_ep { struct list_head queue; unsigned long last_io; /* jiffies timestamp */ struct usb_gadget *gadget; const struct usb_endpoint_descriptor *desc; struct usb_ep ep; unsigned halted:1; unsigned wedged:1; unsigned already_seen:1; unsigned setup_stage:1; unsigned stream_en:1; }; struct dummy_request { struct list_head queue; /* ep's requests */ struct usb_request req; }; static inline struct dummy_ep *usb_ep_to_dummy_ep(struct usb_ep *_ep) { return container_of(_ep, struct dummy_ep, ep); } static inline struct dummy_request *usb_request_to_dummy_request (struct usb_request *_req) { return container_of(_req, struct dummy_request, req); } /*-------------------------------------------------------------------------*/ /* * Every device has ep0 for control requests, plus up to 30 more endpoints, * in one of two types: * * - Configurable: direction (in/out), type (bulk, iso, etc), and endpoint * number can be changed. Names like "ep-a" are used for this type. * * - Fixed Function: in other cases. some characteristics may be mutable; * that'd be hardware-specific. Names like "ep12out-bulk" are used. * * Gadget drivers are responsible for not setting up conflicting endpoint * configurations, illegal or unsupported packet lengths, and so on. */ static const char ep0name[] = "ep0"; static const struct { const char *name; const struct usb_ep_caps caps; } ep_info[] = { #define EP_INFO(_name, _caps) \ { \ .name = _name, \ .caps = _caps, \ } /* we don't provide isochronous endpoints since we don't support them */ #define TYPE_BULK_OR_INT (USB_EP_CAPS_TYPE_BULK | USB_EP_CAPS_TYPE_INT) /* everyone has ep0 */ EP_INFO(ep0name, USB_EP_CAPS(USB_EP_CAPS_TYPE_CONTROL, USB_EP_CAPS_DIR_ALL)), /* act like a pxa250: fifteen fixed function endpoints */ EP_INFO("ep1in-bulk", USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), EP_INFO("ep2out-bulk", USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), /* EP_INFO("ep3in-iso", USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, USB_EP_CAPS_DIR_IN)), EP_INFO("ep4out-iso", USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, USB_EP_CAPS_DIR_OUT)), */ EP_INFO("ep5in-int", USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, USB_EP_CAPS_DIR_IN)), EP_INFO("ep6in-bulk", USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), EP_INFO("ep7out-bulk", USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), /* EP_INFO("ep8in-iso", USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, USB_EP_CAPS_DIR_IN)), EP_INFO("ep9out-iso", USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, USB_EP_CAPS_DIR_OUT)), */ EP_INFO("ep10in-int", USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, USB_EP_CAPS_DIR_IN)), EP_INFO("ep11in-bulk", USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), EP_INFO("ep12out-bulk", USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), /* EP_INFO("ep13in-iso", USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, USB_EP_CAPS_DIR_IN)), EP_INFO("ep14out-iso", USB_EP_CAPS(USB_EP_CAPS_TYPE_ISO, USB_EP_CAPS_DIR_OUT)), */ EP_INFO("ep15in-int", USB_EP_CAPS(USB_EP_CAPS_TYPE_INT, USB_EP_CAPS_DIR_IN)), /* or like sa1100: two fixed function endpoints */ EP_INFO("ep1out-bulk", USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_OUT)), EP_INFO("ep2in-bulk", USB_EP_CAPS(USB_EP_CAPS_TYPE_BULK, USB_EP_CAPS_DIR_IN)), /* and now some generic EPs so we have enough in multi config */ EP_INFO("ep-aout", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_OUT)), EP_INFO("ep-bin", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_IN)), EP_INFO("ep-cout", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_OUT)), EP_INFO("ep-dout", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_OUT)), EP_INFO("ep-ein", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_IN)), EP_INFO("ep-fout", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_OUT)), EP_INFO("ep-gin", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_IN)), EP_INFO("ep-hout", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_OUT)), EP_INFO("ep-iout", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_OUT)), EP_INFO("ep-jin", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_IN)), EP_INFO("ep-kout", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_OUT)), EP_INFO("ep-lin", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_IN)), EP_INFO("ep-mout", USB_EP_CAPS(TYPE_BULK_OR_INT, USB_EP_CAPS_DIR_OUT)), #undef EP_INFO }; #define DUMMY_ENDPOINTS ARRAY_SIZE(ep_info) /*-------------------------------------------------------------------------*/ #define FIFO_SIZE 64 struct urbp { struct urb *urb; struct list_head urbp_list; struct sg_mapping_iter miter; u32 miter_started; }; enum dummy_rh_state { DUMMY_RH_RESET, DUMMY_RH_SUSPENDED, DUMMY_RH_RUNNING }; struct dummy_hcd { struct dummy *dum; enum dummy_rh_state rh_state; struct hrtimer timer; u32 port_status; u32 old_status; unsigned long re_timeout; struct usb_device *udev; struct list_head urbp_list; struct urbp *next_frame_urbp; u32 stream_en_ep; u8 num_stream[30 / 2]; unsigned active:1; unsigned old_active:1; unsigned resuming:1; }; struct dummy { spinlock_t lock; /* * DEVICE/GADGET side support */ struct dummy_ep ep[DUMMY_ENDPOINTS]; int address; int callback_usage; struct usb_gadget gadget; struct usb_gadget_driver *driver; struct dummy_request fifo_req; u8 fifo_buf[FIFO_SIZE]; u16 devstatus; unsigned ints_enabled:1; unsigned udc_suspended:1; unsigned pullup:1; /* * HOST side support */ struct dummy_hcd *hs_hcd; struct dummy_hcd *ss_hcd; }; static inline struct dummy_hcd *hcd_to_dummy_hcd(struct usb_hcd *hcd) { return (struct dummy_hcd *) (hcd->hcd_priv); } static inline struct usb_hcd *dummy_hcd_to_hcd(struct dummy_hcd *dum) { return container_of((void *) dum, struct usb_hcd, hcd_priv); } static inline struct device *dummy_dev(struct dummy_hcd *dum) { return dummy_hcd_to_hcd(dum)->self.controller; } static inline struct device *udc_dev(struct dummy *dum) { return dum->gadget.dev.parent; } static inline struct dummy *ep_to_dummy(struct dummy_ep *ep) { return container_of(ep->gadget, struct dummy, gadget); } static inline struct dummy_hcd *gadget_to_dummy_hcd(struct usb_gadget *gadget) { struct dummy *dum = container_of(gadget, struct dummy, gadget); if (dum->gadget.speed == USB_SPEED_SUPER) return dum->ss_hcd; else return dum->hs_hcd; } static inline struct dummy *gadget_dev_to_dummy(struct device *dev) { return container_of(dev, struct dummy, gadget.dev); } /*-------------------------------------------------------------------------*/ /* DEVICE/GADGET SIDE UTILITY ROUTINES */ /* called with spinlock held */ static void nuke(struct dummy *dum, struct dummy_ep *ep) { while (!list_empty(&ep->queue)) { struct dummy_request *req; req = list_entry(ep->queue.next, struct dummy_request, queue); list_del_init(&req->queue); req->req.status = -ESHUTDOWN; spin_unlock(&dum->lock); usb_gadget_giveback_request(&ep->ep, &req->req); spin_lock(&dum->lock); } } /* caller must hold lock */ static void stop_activity(struct dummy *dum) { int i; /* prevent any more requests */ dum->address = 0; /* The timer is left running so that outstanding URBs can fail */ /* nuke any pending requests first, so driver i/o is quiesced */ for (i = 0; i < DUMMY_ENDPOINTS; ++i) nuke(dum, &dum->ep[i]); /* driver now does any non-usb quiescing necessary */ } /** * set_link_state_by_speed() - Sets the current state of the link according to * the hcd speed * @dum_hcd: pointer to the dummy_hcd structure to update the link state for * * This function updates the port_status according to the link state and the * speed of the hcd. */ static void set_link_state_by_speed(struct dummy_hcd *dum_hcd) { struct dummy *dum = dum_hcd->dum; if (dummy_hcd_to_hcd(dum_hcd)->speed == HCD_USB3) { if ((dum_hcd->port_status & USB_SS_PORT_STAT_POWER) == 0) { dum_hcd->port_status = 0; } else if (!dum->pullup || dum->udc_suspended) { /* UDC suspend must cause a disconnect */ dum_hcd->port_status &= ~(USB_PORT_STAT_CONNECTION | USB_PORT_STAT_ENABLE); if ((dum_hcd->old_status & USB_PORT_STAT_CONNECTION) != 0) dum_hcd->port_status |= (USB_PORT_STAT_C_CONNECTION << 16); } else { /* device is connected and not suspended */ dum_hcd->port_status |= (USB_PORT_STAT_CONNECTION | USB_PORT_STAT_SPEED_5GBPS) ; if ((dum_hcd->old_status & USB_PORT_STAT_CONNECTION) == 0) dum_hcd->port_status |= (USB_PORT_STAT_C_CONNECTION << 16); if ((dum_hcd->port_status & USB_PORT_STAT_ENABLE) && (dum_hcd->port_status & USB_PORT_STAT_LINK_STATE) == USB_SS_PORT_LS_U0 && dum_hcd->rh_state != DUMMY_RH_SUSPENDED) dum_hcd->active = 1; } } else { if ((dum_hcd->port_status & USB_PORT_STAT_POWER) == 0) { dum_hcd->port_status = 0; } else if (!dum->pullup || dum->udc_suspended) { /* UDC suspend must cause a disconnect */ dum_hcd->port_status &= ~(USB_PORT_STAT_CONNECTION | USB_PORT_STAT_ENABLE | USB_PORT_STAT_LOW_SPEED | USB_PORT_STAT_HIGH_SPEED | USB_PORT_STAT_SUSPEND); if ((dum_hcd->old_status & USB_PORT_STAT_CONNECTION) != 0) dum_hcd->port_status |= (USB_PORT_STAT_C_CONNECTION << 16); } else { dum_hcd->port_status |= USB_PORT_STAT_CONNECTION; if ((dum_hcd->old_status & USB_PORT_STAT_CONNECTION) == 0) dum_hcd->port_status |= (USB_PORT_STAT_C_CONNECTION << 16); if ((dum_hcd->port_status & USB_PORT_STAT_ENABLE) == 0) dum_hcd->port_status &= ~USB_PORT_STAT_SUSPEND; else if ((dum_hcd->port_status & USB_PORT_STAT_SUSPEND) == 0 && dum_hcd->rh_state != DUMMY_RH_SUSPENDED) dum_hcd->active = 1; } } } /* caller must hold lock */ static void set_link_state(struct dummy_hcd *dum_hcd) __must_hold(&dum->lock) { struct dummy *dum = dum_hcd->dum; unsigned int power_bit; dum_hcd->active = 0; if (dum->pullup) if ((dummy_hcd_to_hcd(dum_hcd)->speed == HCD_USB3 && dum->gadget.speed != USB_SPEED_SUPER) || (dummy_hcd_to_hcd(dum_hcd)->speed != HCD_USB3 && dum->gadget.speed == USB_SPEED_SUPER)) return; set_link_state_by_speed(dum_hcd); power_bit = (dummy_hcd_to_hcd(dum_hcd)->speed == HCD_USB3 ? USB_SS_PORT_STAT_POWER : USB_PORT_STAT_POWER); if ((dum_hcd->port_status & USB_PORT_STAT_ENABLE) == 0 || dum_hcd->active) dum_hcd->resuming = 0; /* Currently !connected or in reset */ if ((dum_hcd->port_status & power_bit) == 0 || (dum_hcd->port_status & USB_PORT_STAT_RESET) != 0) { unsigned int disconnect = power_bit & dum_hcd->old_status & (~dum_hcd->port_status); unsigned int reset = USB_PORT_STAT_RESET & (~dum_hcd->old_status) & dum_hcd->port_status; /* Report reset and disconnect events to the driver */ if (dum->ints_enabled && (disconnect || reset)) { stop_activity(dum); ++dum->callback_usage; spin_unlock(&dum->lock); if (reset) usb_gadget_udc_reset(&dum->gadget, dum->driver); else dum->driver->disconnect(&dum->gadget); spin_lock(&dum->lock); --dum->callback_usage; } } else if (dum_hcd->active != dum_hcd->old_active && dum->ints_enabled) { ++dum->callback_usage; spin_unlock(&dum->lock); if (dum_hcd->old_active && dum->driver->suspend) dum->driver->suspend(&dum->gadget); else if (!dum_hcd->old_active && dum->driver->resume) dum->driver->resume(&dum->gadget); spin_lock(&dum->lock); --dum->callback_usage; } dum_hcd->old_status = dum_hcd->port_status; dum_hcd->old_active = dum_hcd->active; } /*-------------------------------------------------------------------------*/ /* DEVICE/GADGET SIDE DRIVER * * This only tracks gadget state. All the work is done when the host * side tries some (emulated) i/o operation. Real device controller * drivers would do real i/o using dma, fifos, irqs, timers, etc. */ #define is_enabled(dum) \ (dum->port_status & USB_PORT_STAT_ENABLE) static int dummy_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc) { struct dummy *dum; struct dummy_hcd *dum_hcd; struct dummy_ep *ep; unsigned max; int retval; ep = usb_ep_to_dummy_ep(_ep); if (!_ep || !desc || ep->desc || _ep->name == ep0name || desc->bDescriptorType != USB_DT_ENDPOINT) return -EINVAL; dum = ep_to_dummy(ep); if (!dum->driver) return -ESHUTDOWN; dum_hcd = gadget_to_dummy_hcd(&dum->gadget); if (!is_enabled(dum_hcd)) return -ESHUTDOWN; /* * For HS/FS devices only bits 0..10 of the wMaxPacketSize represent the * maximum packet size. * For SS devices the wMaxPacketSize is limited by 1024. */ max = usb_endpoint_maxp(desc); /* drivers must not request bad settings, since lower levels * (hardware or its drivers) may not check. some endpoints * can't do iso, many have maxpacket limitations, etc. * * since this "hardware" driver is here to help debugging, we * have some extra sanity checks. (there could be more though, * especially for "ep9out" style fixed function ones.) */ retval = -EINVAL; switch (usb_endpoint_type(desc)) { case USB_ENDPOINT_XFER_BULK: if (strstr(ep->ep.name, "-iso") || strstr(ep->ep.name, "-int")) { goto done; } switch (dum->gadget.speed) { case USB_SPEED_SUPER: if (max == 1024) break; goto done; case USB_SPEED_HIGH: if (max == 512) break; goto done; case USB_SPEED_FULL: if (max == 8 || max == 16 || max == 32 || max == 64) /* we'll fake any legal size */ break; /* save a return statement */ fallthrough; default: goto done; } break; case USB_ENDPOINT_XFER_INT: if (strstr(ep->ep.name, "-iso")) /* bulk is ok */ goto done; /* real hardware might not handle all packet sizes */ switch (dum->gadget.speed) { case USB_SPEED_SUPER: case USB_SPEED_HIGH: if (max <= 1024) break; /* save a return statement */ fallthrough; case USB_SPEED_FULL: if (max <= 64) break; /* save a return statement */ fallthrough; default: if (max <= 8) break; goto done; } break; case USB_ENDPOINT_XFER_ISOC: if (strstr(ep->ep.name, "-bulk") || strstr(ep->ep.name, "-int")) goto done; /* real hardware might not handle all packet sizes */ switch (dum->gadget.speed) { case USB_SPEED_SUPER: case USB_SPEED_HIGH: if (max <= 1024) break; /* save a return statement */ fallthrough; case USB_SPEED_FULL: if (max <= 1023) break; /* save a return statement */ fallthrough; default: goto done; } break; default: /* few chips support control except on ep0 */ goto done; } _ep->maxpacket = max; if (usb_ss_max_streams(_ep->comp_desc)) { if (!usb_endpoint_xfer_bulk(desc)) { dev_err(udc_dev(dum), "Can't enable stream support on " "non-bulk ep %s\n", _ep->name); return -EINVAL; } ep->stream_en = 1; } ep->desc = desc; dev_dbg(udc_dev(dum), "enabled %s (ep%d%s-%s) maxpacket %d stream %s\n", _ep->name, desc->bEndpointAddress & 0x0f, (desc->bEndpointAddress & USB_DIR_IN) ? "in" : "out", usb_ep_type_string(usb_endpoint_type(desc)), max, ep->stream_en ? "enabled" : "disabled"); /* at this point real hardware should be NAKing transfers * to that endpoint, until a buffer is queued to it. */ ep->halted = ep->wedged = 0; retval = 0; done: return retval; } static int dummy_disable(struct usb_ep *_ep) { struct dummy_ep *ep; struct dummy *dum; unsigned long flags; ep = usb_ep_to_dummy_ep(_ep); if (!_ep || !ep->desc || _ep->name == ep0name) return -EINVAL; dum = ep_to_dummy(ep); spin_lock_irqsave(&dum->lock, flags); ep->desc = NULL; ep->stream_en = 0; nuke(dum, ep); spin_unlock_irqrestore(&dum->lock, flags); dev_dbg(udc_dev(dum), "disabled %s\n", _ep->name); return 0; } static struct usb_request *dummy_alloc_request(struct usb_ep *_ep, gfp_t mem_flags) { struct dummy_request *req; if (!_ep) return NULL; req = kzalloc(sizeof(*req), mem_flags); if (!req) return NULL; INIT_LIST_HEAD(&req->queue); return &req->req; } static void dummy_free_request(struct usb_ep *_ep, struct usb_request *_req) { struct dummy_request *req; if (!_ep || !_req) { WARN_ON(1); return; } req = usb_request_to_dummy_request(_req); WARN_ON(!list_empty(&req->queue)); kfree(req); } static void fifo_complete(struct usb_ep *ep, struct usb_request *req) { } static int dummy_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t mem_flags) { struct dummy_ep *ep; struct dummy_request *req; struct dummy *dum; struct dummy_hcd *dum_hcd; unsigned long flags; req = usb_request_to_dummy_request(_req); if (!_req || !list_empty(&req->queue) || !_req->complete) return -EINVAL; ep = usb_ep_to_dummy_ep(_ep); if (!_ep || (!ep->desc && _ep->name != ep0name)) return -EINVAL; dum = ep_to_dummy(ep); dum_hcd = gadget_to_dummy_hcd(&dum->gadget); if (!dum->driver || !is_enabled(dum_hcd)) return -ESHUTDOWN; #if 0 dev_dbg(udc_dev(dum), "ep %p queue req %p to %s, len %d buf %p\n", ep, _req, _ep->name, _req->length, _req->buf); #endif _req->status = -EINPROGRESS; _req->actual = 0; spin_lock_irqsave(&dum->lock, flags); /* implement an emulated single-request FIFO */ if (ep->desc && (ep->desc->bEndpointAddress & USB_DIR_IN) && list_empty(&dum->fifo_req.queue) && list_empty(&ep->queue) && _req->length <= FIFO_SIZE) { req = &dum->fifo_req; req->req = *_req; req->req.buf = dum->fifo_buf; memcpy(dum->fifo_buf, _req->buf, _req->length); req->req.context = dum; req->req.complete = fifo_complete; list_add_tail(&req->queue, &ep->queue); spin_unlock(&dum->lock); _req->actual = _req->length; _req->status = 0; usb_gadget_giveback_request(_ep, _req); spin_lock(&dum->lock); } else list_add_tail(&req->queue, &ep->queue); spin_unlock_irqrestore(&dum->lock, flags); /* real hardware would likely enable transfers here, in case * it'd been left NAKing. */ return 0; } static int dummy_dequeue(struct usb_ep *_ep, struct usb_request *_req) { struct dummy_ep *ep; struct dummy *dum; int retval = -EINVAL; unsigned long flags; struct dummy_request *req = NULL, *iter; if (!_ep || !_req) return retval; ep = usb_ep_to_dummy_ep(_ep); dum = ep_to_dummy(ep); if (!dum->driver) return -ESHUTDOWN; local_irq_save(flags); spin_lock(&dum->lock); list_for_each_entry(iter, &ep->queue, queue) { if (&iter->req != _req) continue; list_del_init(&iter->queue); _req->status = -ECONNRESET; req = iter; retval = 0; break; } spin_unlock(&dum->lock); if (retval == 0) { dev_dbg(udc_dev(dum), "dequeued req %p from %s, len %d buf %p\n", req, _ep->name, _req->length, _req->buf); usb_gadget_giveback_request(_ep, _req); } local_irq_restore(flags); return retval; } static int dummy_set_halt_and_wedge(struct usb_ep *_ep, int value, int wedged) { struct dummy_ep *ep; struct dummy *dum; if (!_ep) return -EINVAL; ep = usb_ep_to_dummy_ep(_ep); dum = ep_to_dummy(ep); if (!dum->driver) return -ESHUTDOWN; if (!value) ep->halted = ep->wedged = 0; else if (ep->desc && (ep->desc->bEndpointAddress & USB_DIR_IN) && !list_empty(&ep->queue)) return -EAGAIN; else { ep->halted = 1; if (wedged) ep->wedged = 1; } /* FIXME clear emulated data toggle too */ return 0; } static int dummy_set_halt(struct usb_ep *_ep, int value) { return dummy_set_halt_and_wedge(_ep, value, 0); } static int dummy_set_wedge(struct usb_ep *_ep) { if (!_ep || _ep->name == ep0name) return -EINVAL; return dummy_set_halt_and_wedge(_ep, 1, 1); } static const struct usb_ep_ops dummy_ep_ops = { .enable = dummy_enable, .disable = dummy_disable, .alloc_request = dummy_alloc_request, .free_request = dummy_free_request, .queue = dummy_queue, .dequeue = dummy_dequeue, .set_halt = dummy_set_halt, .set_wedge = dummy_set_wedge, }; /*-------------------------------------------------------------------------*/ /* there are both host and device side versions of this call ... */ static int dummy_g_get_frame(struct usb_gadget *_gadget) { struct timespec64 ts64; ktime_get_ts64(&ts64); return ts64.tv_nsec / NSEC_PER_MSEC; } static int dummy_wakeup(struct usb_gadget *_gadget) { struct dummy_hcd *dum_hcd; dum_hcd = gadget_to_dummy_hcd(_gadget); if (!(dum_hcd->dum->devstatus & ((1 << USB_DEVICE_B_HNP_ENABLE) | (1 << USB_DEVICE_REMOTE_WAKEUP)))) return -EINVAL; if ((dum_hcd->port_status & USB_PORT_STAT_CONNECTION) == 0) return -ENOLINK; if ((dum_hcd->port_status & USB_PORT_STAT_SUSPEND) == 0 && dum_hcd->rh_state != DUMMY_RH_SUSPENDED) return -EIO; /* FIXME: What if the root hub is suspended but the port isn't? */ /* hub notices our request, issues downstream resume, etc */ dum_hcd->resuming = 1; dum_hcd->re_timeout = jiffies + msecs_to_jiffies(20); mod_timer(&dummy_hcd_to_hcd(dum_hcd)->rh_timer, dum_hcd->re_timeout); return 0; } static int dummy_set_selfpowered(struct usb_gadget *_gadget, int value) { struct dummy *dum; _gadget->is_selfpowered = (value != 0); dum = gadget_to_dummy_hcd(_gadget)->dum; if (value) dum->devstatus |= (1 << USB_DEVICE_SELF_POWERED); else dum->devstatus &= ~(1 << USB_DEVICE_SELF_POWERED); return 0; } static void dummy_udc_update_ep0(struct dummy *dum) { if (dum->gadget.speed == USB_SPEED_SUPER) dum->ep[0].ep.maxpacket = 9; else dum->ep[0].ep.maxpacket = 64; } static int dummy_pullup(struct usb_gadget *_gadget, int value) { struct dummy_hcd *dum_hcd; struct dummy *dum; unsigned long flags; dum = gadget_dev_to_dummy(&_gadget->dev); dum_hcd = gadget_to_dummy_hcd(_gadget); spin_lock_irqsave(&dum->lock, flags); dum->pullup = (value != 0); set_link_state(dum_hcd); if (value == 0) { /* * Emulate synchronize_irq(): wait for callbacks to finish. * This seems to be the best place to emulate the call to * synchronize_irq() that's in usb_gadget_remove_driver(). * Doing it in dummy_udc_stop() would be too late since it * is called after the unbind callback and unbind shouldn't * be invoked until all the other callbacks are finished. */ while (dum->callback_usage > 0) { spin_unlock_irqrestore(&dum->lock, flags); usleep_range(1000, 2000); spin_lock_irqsave(&dum->lock, flags); } } spin_unlock_irqrestore(&dum->lock, flags); usb_hcd_poll_rh_status(dummy_hcd_to_hcd(dum_hcd)); return 0; } static void dummy_udc_set_speed(struct usb_gadget *_gadget, enum usb_device_speed speed) { struct dummy *dum; dum = gadget_dev_to_dummy(&_gadget->dev); dum->gadget.speed = speed; dummy_udc_update_ep0(dum); } static void dummy_udc_async_callbacks(struct usb_gadget *_gadget, bool enable) { struct dummy *dum = gadget_dev_to_dummy(&_gadget->dev); spin_lock_irq(&dum->lock); dum->ints_enabled = enable; spin_unlock_irq(&dum->lock); } static int dummy_udc_start(struct usb_gadget *g, struct usb_gadget_driver *driver); static int dummy_udc_stop(struct usb_gadget *g); static const struct usb_gadget_ops dummy_ops = { .get_frame = dummy_g_get_frame, .wakeup = dummy_wakeup, .set_selfpowered = dummy_set_selfpowered, .pullup = dummy_pullup, .udc_start = dummy_udc_start, .udc_stop = dummy_udc_stop, .udc_set_speed = dummy_udc_set_speed, .udc_async_callbacks = dummy_udc_async_callbacks, }; /*-------------------------------------------------------------------------*/ /* "function" sysfs attribute */ static ssize_t function_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dummy *dum = gadget_dev_to_dummy(dev); if (!dum->driver || !dum->driver->function) return 0; return scnprintf(buf, PAGE_SIZE, "%s\n", dum->driver->function); } static DEVICE_ATTR_RO(function); /*-------------------------------------------------------------------------*/ /* * Driver registration/unregistration. * * This is basically hardware-specific; there's usually only one real USB * device (not host) controller since that's how USB devices are intended * to work. So most implementations of these api calls will rely on the * fact that only one driver will ever bind to the hardware. But curious * hardware can be built with discrete components, so the gadget API doesn't * require that assumption. * * For this emulator, it might be convenient to create a usb device * for each driver that registers: just add to a big root hub. */ static int dummy_udc_start(struct usb_gadget *g, struct usb_gadget_driver *driver) { struct dummy_hcd *dum_hcd = gadget_to_dummy_hcd(g); struct dummy *dum = dum_hcd->dum; switch (g->speed) { /* All the speeds we support */ case USB_SPEED_LOW: case USB_SPEED_FULL: case USB_SPEED_HIGH: case USB_SPEED_SUPER: break; default: dev_err(dummy_dev(dum_hcd), "Unsupported driver max speed %d\n", driver->max_speed); return -EINVAL; } /* * DEVICE side init ... the layer above hardware, which * can't enumerate without help from the driver we're binding. */ spin_lock_irq(&dum->lock); dum->devstatus = 0; dum->driver = driver; spin_unlock_irq(&dum->lock); return 0; } static int dummy_udc_stop(struct usb_gadget *g) { struct dummy_hcd *dum_hcd = gadget_to_dummy_hcd(g); struct dummy *dum = dum_hcd->dum; spin_lock_irq(&dum->lock); dum->ints_enabled = 0; stop_activity(dum); dum->driver = NULL; spin_unlock_irq(&dum->lock); return 0; } #undef is_enabled /* The gadget structure is stored inside the hcd structure and will be * released along with it. */ static void init_dummy_udc_hw(struct dummy *dum) { int i; INIT_LIST_HEAD(&dum->gadget.ep_list); for (i = 0; i < DUMMY_ENDPOINTS; i++) { struct dummy_ep *ep = &dum->ep[i]; if (!ep_info[i].name) break; ep->ep.name = ep_info[i].name; ep->ep.caps = ep_info[i].caps; ep->ep.ops = &dummy_ep_ops; list_add_tail(&ep->ep.ep_list, &dum->gadget.ep_list); ep->halted = ep->wedged = ep->already_seen = ep->setup_stage = 0; usb_ep_set_maxpacket_limit(&ep->ep, ~0); ep->ep.max_streams = 16; ep->last_io = jiffies; ep->gadget = &dum->gadget; ep->desc = NULL; INIT_LIST_HEAD(&ep->queue); } dum->gadget.ep0 = &dum->ep[0].ep; list_del_init(&dum->ep[0].ep.ep_list); INIT_LIST_HEAD(&dum->fifo_req.queue); #ifdef CONFIG_USB_OTG dum->gadget.is_otg = 1; #endif } static int dummy_udc_probe(struct platform_device *pdev) { struct dummy *dum; int rc; dum = *((void **)dev_get_platdata(&pdev->dev)); /* Clear usb_gadget region for new registration to udc-core */ memzero_explicit(&dum->gadget, sizeof(struct usb_gadget)); dum->gadget.name = gadget_name; dum->gadget.ops = &dummy_ops; if (mod_data.is_super_speed) dum->gadget.max_speed = USB_SPEED_SUPER; else if (mod_data.is_high_speed) dum->gadget.max_speed = USB_SPEED_HIGH; else dum->gadget.max_speed = USB_SPEED_FULL; dum->gadget.dev.parent = &pdev->dev; init_dummy_udc_hw(dum); rc = usb_add_gadget_udc(&pdev->dev, &dum->gadget); if (rc < 0) goto err_udc; rc = device_create_file(&dum->gadget.dev, &dev_attr_function); if (rc < 0) goto err_dev; platform_set_drvdata(pdev, dum); return rc; err_dev: usb_del_gadget_udc(&dum->gadget); err_udc: return rc; } static void dummy_udc_remove(struct platform_device *pdev) { struct dummy *dum = platform_get_drvdata(pdev); device_remove_file(&dum->gadget.dev, &dev_attr_function); usb_del_gadget_udc(&dum->gadget); } static void dummy_udc_pm(struct dummy *dum, struct dummy_hcd *dum_hcd, int suspend) { spin_lock_irq(&dum->lock); dum->udc_suspended = suspend; set_link_state(dum_hcd); spin_unlock_irq(&dum->lock); } static int dummy_udc_suspend(struct platform_device *pdev, pm_message_t state) { struct dummy *dum = platform_get_drvdata(pdev); struct dummy_hcd *dum_hcd = gadget_to_dummy_hcd(&dum->gadget); dev_dbg(&pdev->dev, "%s\n", __func__); dummy_udc_pm(dum, dum_hcd, 1); usb_hcd_poll_rh_status(dummy_hcd_to_hcd(dum_hcd)); return 0; } static int dummy_udc_resume(struct platform_device *pdev) { struct dummy *dum = platform_get_drvdata(pdev); struct dummy_hcd *dum_hcd = gadget_to_dummy_hcd(&dum->gadget); dev_dbg(&pdev->dev, "%s\n", __func__); dummy_udc_pm(dum, dum_hcd, 0); usb_hcd_poll_rh_status(dummy_hcd_to_hcd(dum_hcd)); return 0; } static struct platform_driver dummy_udc_driver = { .probe = dummy_udc_probe, .remove_new = dummy_udc_remove, .suspend = dummy_udc_suspend, .resume = dummy_udc_resume, .driver = { .name = gadget_name, }, }; /*-------------------------------------------------------------------------*/ static unsigned int dummy_get_ep_idx(const struct usb_endpoint_descriptor *desc) { unsigned int index; index = usb_endpoint_num(desc) << 1; if (usb_endpoint_dir_in(desc)) index |= 1; return index; } /* HOST SIDE DRIVER * * this uses the hcd framework to hook up to host side drivers. * its root hub will only have one device, otherwise it acts like * a normal host controller. * * when urbs are queued, they're just stuck on a list that we * scan in a timer callback. that callback connects writes from * the host with reads from the device, and so on, based on the * usb 2.0 rules. */ static int dummy_ep_stream_en(struct dummy_hcd *dum_hcd, struct urb *urb) { const struct usb_endpoint_descriptor *desc = &urb->ep->desc; u32 index; if (!usb_endpoint_xfer_bulk(desc)) return 0; index = dummy_get_ep_idx(desc); return (1 << index) & dum_hcd->stream_en_ep; } /* * The max stream number is saved as a nibble so for the 30 possible endpoints * we only 15 bytes of memory. Therefore we are limited to max 16 streams (0 * means we use only 1 stream). The maximum according to the spec is 16bit so * if the 16 stream limit is about to go, the array size should be incremented * to 30 elements of type u16. */ static int get_max_streams_for_pipe(struct dummy_hcd *dum_hcd, unsigned int pipe) { int max_streams; max_streams = dum_hcd->num_stream[usb_pipeendpoint(pipe)]; if (usb_pipeout(pipe)) max_streams >>= 4; else max_streams &= 0xf; max_streams++; return max_streams; } static void set_max_streams_for_pipe(struct dummy_hcd *dum_hcd, unsigned int pipe, unsigned int streams) { int max_streams; streams--; max_streams = dum_hcd->num_stream[usb_pipeendpoint(pipe)]; if (usb_pipeout(pipe)) { streams <<= 4; max_streams &= 0xf; } else { max_streams &= 0xf0; } max_streams |= streams; dum_hcd->num_stream[usb_pipeendpoint(pipe)] = max_streams; } static int dummy_validate_stream(struct dummy_hcd *dum_hcd, struct urb *urb) { unsigned int max_streams; int enabled; enabled = dummy_ep_stream_en(dum_hcd, urb); if (!urb->stream_id) { if (enabled) return -EINVAL; return 0; } if (!enabled) return -EINVAL; max_streams = get_max_streams_for_pipe(dum_hcd, usb_pipeendpoint(urb->pipe)); if (urb->stream_id > max_streams) { dev_err(dummy_dev(dum_hcd), "Stream id %d is out of range.\n", urb->stream_id); BUG(); return -EINVAL; } return 0; } static int dummy_urb_enqueue( struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags ) { struct dummy_hcd *dum_hcd; struct urbp *urbp; unsigned long flags; int rc; urbp = kmalloc(sizeof *urbp, mem_flags); if (!urbp) return -ENOMEM; urbp->urb = urb; urbp->miter_started = 0; dum_hcd = hcd_to_dummy_hcd(hcd); spin_lock_irqsave(&dum_hcd->dum->lock, flags); rc = dummy_validate_stream(dum_hcd, urb); if (rc) { kfree(urbp); goto done; } rc = usb_hcd_link_urb_to_ep(hcd, urb); if (rc) { kfree(urbp); goto done; } if (!dum_hcd->udev) { dum_hcd->udev = urb->dev; usb_get_dev(dum_hcd->udev); } else if (unlikely(dum_hcd->udev != urb->dev)) dev_err(dummy_dev(dum_hcd), "usb_device address has changed!\n"); list_add_tail(&urbp->urbp_list, &dum_hcd->urbp_list); urb->hcpriv = urbp; if (!dum_hcd->next_frame_urbp) dum_hcd->next_frame_urbp = urbp; if (usb_pipetype(urb->pipe) == PIPE_CONTROL) urb->error_count = 1; /* mark as a new urb */ /* kick the scheduler, it'll do the rest */ if (!hrtimer_active(&dum_hcd->timer)) hrtimer_start(&dum_hcd->timer, ns_to_ktime(DUMMY_TIMER_INT_NSECS), HRTIMER_MODE_REL); done: spin_unlock_irqrestore(&dum_hcd->dum->lock, flags); return rc; } static int dummy_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) { struct dummy_hcd *dum_hcd; unsigned long flags; int rc; /* giveback happens automatically in timer callback, * so make sure the callback happens */ dum_hcd = hcd_to_dummy_hcd(hcd); spin_lock_irqsave(&dum_hcd->dum->lock, flags); rc = usb_hcd_check_unlink_urb(hcd, urb, status); if (!rc && dum_hcd->rh_state != DUMMY_RH_RUNNING && !list_empty(&dum_hcd->urbp_list)) hrtimer_start(&dum_hcd->timer, ns_to_ktime(0), HRTIMER_MODE_REL); spin_unlock_irqrestore(&dum_hcd->dum->lock, flags); return rc; } static int dummy_perform_transfer(struct urb *urb, struct dummy_request *req, u32 len) { void *ubuf, *rbuf; struct urbp *urbp = urb->hcpriv; int to_host; struct sg_mapping_iter *miter = &urbp->miter; u32 trans = 0; u32 this_sg; bool next_sg; to_host = usb_urb_dir_in(urb); rbuf = req->req.buf + req->req.actual; if (!urb->num_sgs) { ubuf = urb->transfer_buffer + urb->actual_length; if (to_host) memcpy(ubuf, rbuf, len); else memcpy(rbuf, ubuf, len); return len; } if (!urbp->miter_started) { u32 flags = SG_MITER_ATOMIC; if (to_host) flags |= SG_MITER_TO_SG; else flags |= SG_MITER_FROM_SG; sg_miter_start(miter, urb->sg, urb->num_sgs, flags); urbp->miter_started = 1; } next_sg = sg_miter_next(miter); if (next_sg == false) { WARN_ON_ONCE(1); return -EINVAL; } do { ubuf = miter->addr; this_sg = min_t(u32, len, miter->length); miter->consumed = this_sg; trans += this_sg; if (to_host) memcpy(ubuf, rbuf, this_sg); else memcpy(rbuf, ubuf, this_sg); len -= this_sg; if (!len) break; next_sg = sg_miter_next(miter); if (next_sg == false) { WARN_ON_ONCE(1); return -EINVAL; } rbuf += this_sg; } while (1); sg_miter_stop(miter); return trans; } /* transfer up to a frame's worth; caller must own lock */ static int transfer(struct dummy_hcd *dum_hcd, struct urb *urb, struct dummy_ep *ep, int limit, int *status) { struct dummy *dum = dum_hcd->dum; struct dummy_request *req; int sent = 0; top: /* if there's no request queued, the device is NAKing; return */ list_for_each_entry(req, &ep->queue, queue) { unsigned host_len, dev_len, len; int is_short, to_host; int rescan = 0; if (dummy_ep_stream_en(dum_hcd, urb)) { if ((urb->stream_id != req->req.stream_id)) continue; } /* 1..N packets of ep->ep.maxpacket each ... the last one * may be short (including zero length). * * writer can send a zlp explicitly (length 0) or implicitly * (length mod maxpacket zero, and 'zero' flag); they always * terminate reads. */ host_len = urb->transfer_buffer_length - urb->actual_length; dev_len = req->req.length - req->req.actual; len = min(host_len, dev_len); /* FIXME update emulated data toggle too */ to_host = usb_urb_dir_in(urb); if (unlikely(len == 0)) is_short = 1; else { /* not enough bandwidth left? */ if (limit < ep->ep.maxpacket && limit < len) break; len = min_t(unsigned, len, limit); if (len == 0) break; /* send multiple of maxpacket first, then remainder */ if (len >= ep->ep.maxpacket) { is_short = 0; if (len % ep->ep.maxpacket) rescan = 1; len -= len % ep->ep.maxpacket; } else { is_short = 1; } len = dummy_perform_transfer(urb, req, len); ep->last_io = jiffies; if ((int)len < 0) { req->req.status = len; } else { limit -= len; sent += len; urb->actual_length += len; req->req.actual += len; } } /* short packets terminate, maybe with overflow/underflow. * it's only really an error to write too much. * * partially filling a buffer optionally blocks queue advances * (so completion handlers can clean up the queue) but we don't * need to emulate such data-in-flight. */ if (is_short) { if (host_len == dev_len) { req->req.status = 0; *status = 0; } else if (to_host) { req->req.status = 0; if (dev_len > host_len) *status = -EOVERFLOW; else *status = 0; } else { *status = 0; if (host_len > dev_len) req->req.status = -EOVERFLOW; else req->req.status = 0; } /* * many requests terminate without a short packet. * send a zlp if demanded by flags. */ } else { if (req->req.length == req->req.actual) { if (req->req.zero && to_host) rescan = 1; else req->req.status = 0; } if (urb->transfer_buffer_length == urb->actual_length) { if (urb->transfer_flags & URB_ZERO_PACKET && !to_host) rescan = 1; else *status = 0; } } /* device side completion --> continuable */ if (req->req.status != -EINPROGRESS) { list_del_init(&req->queue); spin_unlock(&dum->lock); usb_gadget_giveback_request(&ep->ep, &req->req); spin_lock(&dum->lock); /* requests might have been unlinked... */ rescan = 1; } /* host side completion --> terminate */ if (*status != -EINPROGRESS) break; /* rescan to continue with any other queued i/o */ if (rescan) goto top; } return sent; } static int periodic_bytes(struct dummy *dum, struct dummy_ep *ep) { int limit = ep->ep.maxpacket; if (dum->gadget.speed == USB_SPEED_HIGH) { int tmp; /* high bandwidth mode */ tmp = usb_endpoint_maxp_mult(ep->desc); tmp *= 8 /* applies to entire frame */; limit += limit * tmp; } if (dum->gadget.speed == USB_SPEED_SUPER) { switch (usb_endpoint_type(ep->desc)) { case USB_ENDPOINT_XFER_ISOC: /* Sec. 4.4.8.2 USB3.0 Spec */ limit = 3 * 16 * 1024 * 8; break; case USB_ENDPOINT_XFER_INT: /* Sec. 4.4.7.2 USB3.0 Spec */ limit = 3 * 1024 * 8; break; case USB_ENDPOINT_XFER_BULK: default: break; } } return limit; } #define is_active(dum_hcd) ((dum_hcd->port_status & \ (USB_PORT_STAT_CONNECTION | USB_PORT_STAT_ENABLE | \ USB_PORT_STAT_SUSPEND)) \ == (USB_PORT_STAT_CONNECTION | USB_PORT_STAT_ENABLE)) static struct dummy_ep *find_endpoint(struct dummy *dum, u8 address) { int i; if (!is_active((dum->gadget.speed == USB_SPEED_SUPER ? dum->ss_hcd : dum->hs_hcd))) return NULL; if (!dum->ints_enabled) return NULL; if ((address & ~USB_DIR_IN) == 0) return &dum->ep[0]; for (i = 1; i < DUMMY_ENDPOINTS; i++) { struct dummy_ep *ep = &dum->ep[i]; if (!ep->desc) continue; if (ep->desc->bEndpointAddress == address) return ep; } return NULL; } #undef is_active #define Dev_Request (USB_TYPE_STANDARD | USB_RECIP_DEVICE) #define Dev_InRequest (Dev_Request | USB_DIR_IN) #define Intf_Request (USB_TYPE_STANDARD | USB_RECIP_INTERFACE) #define Intf_InRequest (Intf_Request | USB_DIR_IN) #define Ep_Request (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT) #define Ep_InRequest (Ep_Request | USB_DIR_IN) /** * handle_control_request() - handles all control transfers * @dum_hcd: pointer to dummy (the_controller) * @urb: the urb request to handle * @setup: pointer to the setup data for a USB device control * request * @status: pointer to request handling status * * Return 0 - if the request was handled * 1 - if the request wasn't handles * error code on error */ static int handle_control_request(struct dummy_hcd *dum_hcd, struct urb *urb, struct usb_ctrlrequest *setup, int *status) { struct dummy_ep *ep2; struct dummy *dum = dum_hcd->dum; int ret_val = 1; unsigned w_index; unsigned w_value; w_index = le16_to_cpu(setup->wIndex); w_value = le16_to_cpu(setup->wValue); switch (setup->bRequest) { case USB_REQ_SET_ADDRESS: if (setup->bRequestType != Dev_Request) break; dum->address = w_value; *status = 0; dev_dbg(udc_dev(dum), "set_address = %d\n", w_value); ret_val = 0; break; case USB_REQ_SET_FEATURE: if (setup->bRequestType == Dev_Request) { ret_val = 0; switch (w_value) { case USB_DEVICE_REMOTE_WAKEUP: break; case USB_DEVICE_B_HNP_ENABLE: dum->gadget.b_hnp_enable = 1; break; case USB_DEVICE_A_HNP_SUPPORT: dum->gadget.a_hnp_support = 1; break; case USB_DEVICE_A_ALT_HNP_SUPPORT: dum->gadget.a_alt_hnp_support = 1; break; case USB_DEVICE_U1_ENABLE: if (dummy_hcd_to_hcd(dum_hcd)->speed == HCD_USB3) w_value = USB_DEV_STAT_U1_ENABLED; else ret_val = -EOPNOTSUPP; break; case USB_DEVICE_U2_ENABLE: if (dummy_hcd_to_hcd(dum_hcd)->speed == HCD_USB3) w_value = USB_DEV_STAT_U2_ENABLED; else ret_val = -EOPNOTSUPP; break; case USB_DEVICE_LTM_ENABLE: if (dummy_hcd_to_hcd(dum_hcd)->speed == HCD_USB3) w_value = USB_DEV_STAT_LTM_ENABLED; else ret_val = -EOPNOTSUPP; break; default: ret_val = -EOPNOTSUPP; } if (ret_val == 0) { dum->devstatus |= (1 << w_value); *status = 0; } } else if (setup->bRequestType == Ep_Request) { /* endpoint halt */ ep2 = find_endpoint(dum, w_index); if (!ep2 || ep2->ep.name == ep0name) { ret_val = -EOPNOTSUPP; break; } ep2->halted = 1; ret_val = 0; *status = 0; } break; case USB_REQ_CLEAR_FEATURE: if (setup->bRequestType == Dev_Request) { ret_val = 0; switch (w_value) { case USB_DEVICE_REMOTE_WAKEUP: w_value = USB_DEVICE_REMOTE_WAKEUP; break; case USB_DEVICE_U1_ENABLE: if (dummy_hcd_to_hcd(dum_hcd)->speed == HCD_USB3) w_value = USB_DEV_STAT_U1_ENABLED; else ret_val = -EOPNOTSUPP; break; case USB_DEVICE_U2_ENABLE: if (dummy_hcd_to_hcd(dum_hcd)->speed == HCD_USB3) w_value = USB_DEV_STAT_U2_ENABLED; else ret_val = -EOPNOTSUPP; break; case USB_DEVICE_LTM_ENABLE: if (dummy_hcd_to_hcd(dum_hcd)->speed == HCD_USB3) w_value = USB_DEV_STAT_LTM_ENABLED; else ret_val = -EOPNOTSUPP; break; default: ret_val = -EOPNOTSUPP; break; } if (ret_val == 0) { dum->devstatus &= ~(1 << w_value); *status = 0; } } else if (setup->bRequestType == Ep_Request) { /* endpoint halt */ ep2 = find_endpoint(dum, w_index); if (!ep2) { ret_val = -EOPNOTSUPP; break; } if (!ep2->wedged) ep2->halted = 0; ret_val = 0; *status = 0; } break; case USB_REQ_GET_STATUS: if (setup->bRequestType == Dev_InRequest || setup->bRequestType == Intf_InRequest || setup->bRequestType == Ep_InRequest) { char *buf; /* * device: remote wakeup, selfpowered * interface: nothing * endpoint: halt */ buf = (char *)urb->transfer_buffer; if (urb->transfer_buffer_length > 0) { if (setup->bRequestType == Ep_InRequest) { ep2 = find_endpoint(dum, w_index); if (!ep2) { ret_val = -EOPNOTSUPP; break; } buf[0] = ep2->halted; } else if (setup->bRequestType == Dev_InRequest) { buf[0] = (u8)dum->devstatus; } else buf[0] = 0; } if (urb->transfer_buffer_length > 1) buf[1] = 0; urb->actual_length = min_t(u32, 2, urb->transfer_buffer_length); ret_val = 0; *status = 0; } break; } return ret_val; } /* * Drive both sides of the transfers; looks like irq handlers to both * drivers except that the callbacks are invoked from soft interrupt * context. */ static enum hrtimer_restart dummy_timer(struct hrtimer *t) { struct dummy_hcd *dum_hcd = from_timer(dum_hcd, t, timer); struct dummy *dum = dum_hcd->dum; struct urbp *urbp, *tmp; unsigned long flags; int limit, total; int i; /* simplistic model for one frame's bandwidth */ /* FIXME: account for transaction and packet overhead */ switch (dum->gadget.speed) { case USB_SPEED_LOW: total = 8/*bytes*/ * 12/*packets*/; break; case USB_SPEED_FULL: total = 64/*bytes*/ * 19/*packets*/; break; case USB_SPEED_HIGH: total = 512/*bytes*/ * 13/*packets*/ * 8/*uframes*/; break; case USB_SPEED_SUPER: /* Bus speed is 500000 bytes/ms, so use a little less */ total = 490000; break; default: /* Can't happen */ dev_err(dummy_dev(dum_hcd), "bogus device speed\n"); total = 0; break; } /* look at each urb queued by the host side driver */ spin_lock_irqsave(&dum->lock, flags); if (!dum_hcd->udev) { dev_err(dummy_dev(dum_hcd), "timer fired with no URBs pending?\n"); spin_unlock_irqrestore(&dum->lock, flags); return HRTIMER_NORESTART; } dum_hcd->next_frame_urbp = NULL; for (i = 0; i < DUMMY_ENDPOINTS; i++) { if (!ep_info[i].name) break; dum->ep[i].already_seen = 0; } restart: list_for_each_entry_safe(urbp, tmp, &dum_hcd->urbp_list, urbp_list) { struct urb *urb; struct dummy_request *req; u8 address; struct dummy_ep *ep = NULL; int status = -EINPROGRESS; /* stop when we reach URBs queued after the timer interrupt */ if (urbp == dum_hcd->next_frame_urbp) break; urb = urbp->urb; if (urb->unlinked) goto return_urb; else if (dum_hcd->rh_state != DUMMY_RH_RUNNING) continue; /* Used up this frame's bandwidth? */ if (total <= 0) continue; /* find the gadget's ep for this request (if configured) */ address = usb_pipeendpoint (urb->pipe); if (usb_urb_dir_in(urb)) address |= USB_DIR_IN; ep = find_endpoint(dum, address); if (!ep) { /* set_configuration() disagreement */ dev_dbg(dummy_dev(dum_hcd), "no ep configured for urb %p\n", urb); status = -EPROTO; goto return_urb; } if (ep->already_seen) continue; ep->already_seen = 1; if (ep == &dum->ep[0] && urb->error_count) { ep->setup_stage = 1; /* a new urb */ urb->error_count = 0; } if (ep->halted && !ep->setup_stage) { /* NOTE: must not be iso! */ dev_dbg(dummy_dev(dum_hcd), "ep %s halted, urb %p\n", ep->ep.name, urb); status = -EPIPE; goto return_urb; } /* FIXME make sure both ends agree on maxpacket */ /* handle control requests */ if (ep == &dum->ep[0] && ep->setup_stage) { struct usb_ctrlrequest setup; int value; setup = *(struct usb_ctrlrequest *) urb->setup_packet; /* paranoia, in case of stale queued data */ list_for_each_entry(req, &ep->queue, queue) { list_del_init(&req->queue); req->req.status = -EOVERFLOW; dev_dbg(udc_dev(dum), "stale req = %p\n", req); spin_unlock(&dum->lock); usb_gadget_giveback_request(&ep->ep, &req->req); spin_lock(&dum->lock); ep->already_seen = 0; goto restart; } /* gadget driver never sees set_address or operations * on standard feature flags. some hardware doesn't * even expose them. */ ep->last_io = jiffies; ep->setup_stage = 0; ep->halted = 0; value = handle_control_request(dum_hcd, urb, &setup, &status); /* gadget driver handles all other requests. block * until setup() returns; no reentrancy issues etc. */ if (value > 0) { ++dum->callback_usage; spin_unlock(&dum->lock); value = dum->driver->setup(&dum->gadget, &setup); spin_lock(&dum->lock); --dum->callback_usage; if (value >= 0) { /* no delays (max 64KB data stage) */ limit = 64*1024; goto treat_control_like_bulk; } /* error, see below */ } if (value < 0) { if (value != -EOPNOTSUPP) dev_dbg(udc_dev(dum), "setup --> %d\n", value); status = -EPIPE; urb->actual_length = 0; } goto return_urb; } /* non-control requests */ limit = total; switch (usb_pipetype(urb->pipe)) { case PIPE_ISOCHRONOUS: /* * We don't support isochronous. But if we did, * here are some of the issues we'd have to face: * * Is it urb->interval since the last xfer? * Use urb->iso_frame_desc[i]. * Complete whether or not ep has requests queued. * Report random errors, to debug drivers. */ limit = max(limit, periodic_bytes(dum, ep)); status = -EINVAL; /* fail all xfers */ break; case PIPE_INTERRUPT: /* FIXME is it urb->interval since the last xfer? * this almost certainly polls too fast. */ limit = max(limit, periodic_bytes(dum, ep)); fallthrough; default: treat_control_like_bulk: ep->last_io = jiffies; total -= transfer(dum_hcd, urb, ep, limit, &status); break; } /* incomplete transfer? */ if (status == -EINPROGRESS) continue; return_urb: list_del(&urbp->urbp_list); kfree(urbp); if (ep) ep->already_seen = ep->setup_stage = 0; usb_hcd_unlink_urb_from_ep(dummy_hcd_to_hcd(dum_hcd), urb); spin_unlock(&dum->lock); usb_hcd_giveback_urb(dummy_hcd_to_hcd(dum_hcd), urb, status); spin_lock(&dum->lock); goto restart; } if (list_empty(&dum_hcd->urbp_list)) { usb_put_dev(dum_hcd->udev); dum_hcd->udev = NULL; } else if (dum_hcd->rh_state == DUMMY_RH_RUNNING) { /* want a 1 msec delay here */ hrtimer_start(&dum_hcd->timer, ns_to_ktime(DUMMY_TIMER_INT_NSECS), HRTIMER_MODE_REL); } spin_unlock_irqrestore(&dum->lock, flags); return HRTIMER_NORESTART; } /*-------------------------------------------------------------------------*/ #define PORT_C_MASK \ ((USB_PORT_STAT_C_CONNECTION \ | USB_PORT_STAT_C_ENABLE \ | USB_PORT_STAT_C_SUSPEND \ | USB_PORT_STAT_C_OVERCURRENT \ | USB_PORT_STAT_C_RESET) << 16) static int dummy_hub_status(struct usb_hcd *hcd, char *buf) { struct dummy_hcd *dum_hcd; unsigned long flags; int retval = 0; dum_hcd = hcd_to_dummy_hcd(hcd); spin_lock_irqsave(&dum_hcd->dum->lock, flags); if (!HCD_HW_ACCESSIBLE(hcd)) goto done; if (dum_hcd->resuming && time_after_eq(jiffies, dum_hcd->re_timeout)) { dum_hcd->port_status |= (USB_PORT_STAT_C_SUSPEND << 16); dum_hcd->port_status &= ~USB_PORT_STAT_SUSPEND; set_link_state(dum_hcd); } if ((dum_hcd->port_status & PORT_C_MASK) != 0) { *buf = (1 << 1); dev_dbg(dummy_dev(dum_hcd), "port status 0x%08x has changes\n", dum_hcd->port_status); retval = 1; if (dum_hcd->rh_state == DUMMY_RH_SUSPENDED) usb_hcd_resume_root_hub(hcd); } done: spin_unlock_irqrestore(&dum_hcd->dum->lock, flags); return retval; } /* usb 3.0 root hub device descriptor */ static struct { struct usb_bos_descriptor bos; struct usb_ss_cap_descriptor ss_cap; } __packed usb3_bos_desc = { .bos = { .bLength = USB_DT_BOS_SIZE, .bDescriptorType = USB_DT_BOS, .wTotalLength = cpu_to_le16(sizeof(usb3_bos_desc)), .bNumDeviceCaps = 1, }, .ss_cap = { .bLength = USB_DT_USB_SS_CAP_SIZE, .bDescriptorType = USB_DT_DEVICE_CAPABILITY, .bDevCapabilityType = USB_SS_CAP_TYPE, .wSpeedSupported = cpu_to_le16(USB_5GBPS_OPERATION), .bFunctionalitySupport = ilog2(USB_5GBPS_OPERATION), }, }; static inline void ss_hub_descriptor(struct usb_hub_descriptor *desc) { memset(desc, 0, sizeof *desc); desc->bDescriptorType = USB_DT_SS_HUB; desc->bDescLength = 12; desc->wHubCharacteristics = cpu_to_le16( HUB_CHAR_INDV_PORT_LPSM | HUB_CHAR_COMMON_OCPM); desc->bNbrPorts = 1; desc->u.ss.bHubHdrDecLat = 0x04; /* Worst case: 0.4 micro sec*/ desc->u.ss.DeviceRemovable = 0; } static inline void hub_descriptor(struct usb_hub_descriptor *desc) { memset(desc, 0, sizeof *desc); desc->bDescriptorType = USB_DT_HUB; desc->bDescLength = 9; desc->wHubCharacteristics = cpu_to_le16( HUB_CHAR_INDV_PORT_LPSM | HUB_CHAR_COMMON_OCPM); desc->bNbrPorts = 1; desc->u.hs.DeviceRemovable[0] = 0; desc->u.hs.DeviceRemovable[1] = 0xff; /* PortPwrCtrlMask */ } static int dummy_hub_control( struct usb_hcd *hcd, u16 typeReq, u16 wValue, u16 wIndex, char *buf, u16 wLength ) { struct dummy_hcd *dum_hcd; int retval = 0; unsigned long flags; if (!HCD_HW_ACCESSIBLE(hcd)) return -ETIMEDOUT; dum_hcd = hcd_to_dummy_hcd(hcd); spin_lock_irqsave(&dum_hcd->dum->lock, flags); switch (typeReq) { case ClearHubFeature: break; case ClearPortFeature: switch (wValue) { case USB_PORT_FEAT_SUSPEND: if (hcd->speed == HCD_USB3) { dev_dbg(dummy_dev(dum_hcd), "USB_PORT_FEAT_SUSPEND req not " "supported for USB 3.0 roothub\n"); goto error; } if (dum_hcd->port_status & USB_PORT_STAT_SUSPEND) { /* 20msec resume signaling */ dum_hcd->resuming = 1; dum_hcd->re_timeout = jiffies + msecs_to_jiffies(20); } break; case USB_PORT_FEAT_POWER: dev_dbg(dummy_dev(dum_hcd), "power-off\n"); if (hcd->speed == HCD_USB3) dum_hcd->port_status &= ~USB_SS_PORT_STAT_POWER; else dum_hcd->port_status &= ~USB_PORT_STAT_POWER; set_link_state(dum_hcd); break; case USB_PORT_FEAT_ENABLE: case USB_PORT_FEAT_C_ENABLE: case USB_PORT_FEAT_C_SUSPEND: /* Not allowed for USB-3 */ if (hcd->speed == HCD_USB3) goto error; fallthrough; case USB_PORT_FEAT_C_CONNECTION: case USB_PORT_FEAT_C_RESET: dum_hcd->port_status &= ~(1 << wValue); set_link_state(dum_hcd); break; default: /* Disallow INDICATOR and C_OVER_CURRENT */ goto error; } break; case GetHubDescriptor: if (hcd->speed == HCD_USB3 && (wLength < USB_DT_SS_HUB_SIZE || wValue != (USB_DT_SS_HUB << 8))) { dev_dbg(dummy_dev(dum_hcd), "Wrong hub descriptor type for " "USB 3.0 roothub.\n"); goto error; } if (hcd->speed == HCD_USB3) ss_hub_descriptor((struct usb_hub_descriptor *) buf); else hub_descriptor((struct usb_hub_descriptor *) buf); break; case DeviceRequest | USB_REQ_GET_DESCRIPTOR: if (hcd->speed != HCD_USB3) goto error; if ((wValue >> 8) != USB_DT_BOS) goto error; memcpy(buf, &usb3_bos_desc, sizeof(usb3_bos_desc)); retval = sizeof(usb3_bos_desc); break; case GetHubStatus: *(__le32 *) buf = cpu_to_le32(0); break; case GetPortStatus: if (wIndex != 1) retval = -EPIPE; /* whoever resets or resumes must GetPortStatus to * complete it!! */ if (dum_hcd->resuming && time_after_eq(jiffies, dum_hcd->re_timeout)) { dum_hcd->port_status |= (USB_PORT_STAT_C_SUSPEND << 16); dum_hcd->port_status &= ~USB_PORT_STAT_SUSPEND; } if ((dum_hcd->port_status & USB_PORT_STAT_RESET) != 0 && time_after_eq(jiffies, dum_hcd->re_timeout)) { dum_hcd->port_status |= (USB_PORT_STAT_C_RESET << 16); dum_hcd->port_status &= ~USB_PORT_STAT_RESET; if (dum_hcd->dum->pullup) { dum_hcd->port_status |= USB_PORT_STAT_ENABLE; if (hcd->speed < HCD_USB3) { switch (dum_hcd->dum->gadget.speed) { case USB_SPEED_HIGH: dum_hcd->port_status |= USB_PORT_STAT_HIGH_SPEED; break; case USB_SPEED_LOW: dum_hcd->dum->gadget.ep0-> maxpacket = 8; dum_hcd->port_status |= USB_PORT_STAT_LOW_SPEED; break; default: break; } } } } set_link_state(dum_hcd); ((__le16 *) buf)[0] = cpu_to_le16(dum_hcd->port_status); ((__le16 *) buf)[1] = cpu_to_le16(dum_hcd->port_status >> 16); break; case SetHubFeature: retval = -EPIPE; break; case SetPortFeature: switch (wValue) { case USB_PORT_FEAT_LINK_STATE: if (hcd->speed != HCD_USB3) { dev_dbg(dummy_dev(dum_hcd), "USB_PORT_FEAT_LINK_STATE req not " "supported for USB 2.0 roothub\n"); goto error; } /* * Since this is dummy we don't have an actual link so * there is nothing to do for the SET_LINK_STATE cmd */ break; case USB_PORT_FEAT_U1_TIMEOUT: case USB_PORT_FEAT_U2_TIMEOUT: /* TODO: add suspend/resume support! */ if (hcd->speed != HCD_USB3) { dev_dbg(dummy_dev(dum_hcd), "USB_PORT_FEAT_U1/2_TIMEOUT req not " "supported for USB 2.0 roothub\n"); goto error; } break; case USB_PORT_FEAT_SUSPEND: /* Applicable only for USB2.0 hub */ if (hcd->speed == HCD_USB3) { dev_dbg(dummy_dev(dum_hcd), "USB_PORT_FEAT_SUSPEND req not " "supported for USB 3.0 roothub\n"); goto error; } if (dum_hcd->active) { dum_hcd->port_status |= USB_PORT_STAT_SUSPEND; /* HNP would happen here; for now we * assume b_bus_req is always true. */ set_link_state(dum_hcd); if (((1 << USB_DEVICE_B_HNP_ENABLE) & dum_hcd->dum->devstatus) != 0) dev_dbg(dummy_dev(dum_hcd), "no HNP yet!\n"); } break; case USB_PORT_FEAT_POWER: if (hcd->speed == HCD_USB3) dum_hcd->port_status |= USB_SS_PORT_STAT_POWER; else dum_hcd->port_status |= USB_PORT_STAT_POWER; set_link_state(dum_hcd); break; case USB_PORT_FEAT_BH_PORT_RESET: /* Applicable only for USB3.0 hub */ if (hcd->speed != HCD_USB3) { dev_dbg(dummy_dev(dum_hcd), "USB_PORT_FEAT_BH_PORT_RESET req not " "supported for USB 2.0 roothub\n"); goto error; } fallthrough; case USB_PORT_FEAT_RESET: if (!(dum_hcd->port_status & USB_PORT_STAT_CONNECTION)) break; /* if it's already enabled, disable */ if (hcd->speed == HCD_USB3) { dum_hcd->port_status = (USB_SS_PORT_STAT_POWER | USB_PORT_STAT_CONNECTION | USB_PORT_STAT_RESET); } else { dum_hcd->port_status &= ~(USB_PORT_STAT_ENABLE | USB_PORT_STAT_LOW_SPEED | USB_PORT_STAT_HIGH_SPEED); dum_hcd->port_status |= USB_PORT_STAT_RESET; } /* * We want to reset device status. All but the * Self powered feature */ dum_hcd->dum->devstatus &= (1 << USB_DEVICE_SELF_POWERED); /* * FIXME USB3.0: what is the correct reset signaling * interval? Is it still 50msec as for HS? */ dum_hcd->re_timeout = jiffies + msecs_to_jiffies(50); set_link_state(dum_hcd); break; case USB_PORT_FEAT_C_CONNECTION: case USB_PORT_FEAT_C_RESET: case USB_PORT_FEAT_C_ENABLE: case USB_PORT_FEAT_C_SUSPEND: /* Not allowed for USB-3, and ignored for USB-2 */ if (hcd->speed == HCD_USB3) goto error; break; default: /* Disallow TEST, INDICATOR, and C_OVER_CURRENT */ goto error; } break; case GetPortErrorCount: if (hcd->speed != HCD_USB3) { dev_dbg(dummy_dev(dum_hcd), "GetPortErrorCount req not " "supported for USB 2.0 roothub\n"); goto error; } /* We'll always return 0 since this is a dummy hub */ *(__le32 *) buf = cpu_to_le32(0); break; case SetHubDepth: if (hcd->speed != HCD_USB3) { dev_dbg(dummy_dev(dum_hcd), "SetHubDepth req not supported for " "USB 2.0 roothub\n"); goto error; } break; default: dev_dbg(dummy_dev(dum_hcd), "hub control req%04x v%04x i%04x l%d\n", typeReq, wValue, wIndex, wLength); error: /* "protocol stall" on error */ retval = -EPIPE; } spin_unlock_irqrestore(&dum_hcd->dum->lock, flags); if ((dum_hcd->port_status & PORT_C_MASK) != 0) usb_hcd_poll_rh_status(hcd); return retval; } static int dummy_bus_suspend(struct usb_hcd *hcd) { struct dummy_hcd *dum_hcd = hcd_to_dummy_hcd(hcd); dev_dbg(&hcd->self.root_hub->dev, "%s\n", __func__); spin_lock_irq(&dum_hcd->dum->lock); dum_hcd->rh_state = DUMMY_RH_SUSPENDED; set_link_state(dum_hcd); hcd->state = HC_STATE_SUSPENDED; spin_unlock_irq(&dum_hcd->dum->lock); return 0; } static int dummy_bus_resume(struct usb_hcd *hcd) { struct dummy_hcd *dum_hcd = hcd_to_dummy_hcd(hcd); int rc = 0; dev_dbg(&hcd->self.root_hub->dev, "%s\n", __func__); spin_lock_irq(&dum_hcd->dum->lock); if (!HCD_HW_ACCESSIBLE(hcd)) { rc = -ESHUTDOWN; } else { dum_hcd->rh_state = DUMMY_RH_RUNNING; set_link_state(dum_hcd); if (!list_empty(&dum_hcd->urbp_list)) hrtimer_start(&dum_hcd->timer, ns_to_ktime(0), HRTIMER_MODE_REL); hcd->state = HC_STATE_RUNNING; } spin_unlock_irq(&dum_hcd->dum->lock); return rc; } /*-------------------------------------------------------------------------*/ static inline ssize_t show_urb(char *buf, size_t size, struct urb *urb) { int ep = usb_pipeendpoint(urb->pipe); return scnprintf(buf, size, "urb/%p %s ep%d%s%s len %d/%d\n", urb, ({ char *s; switch (urb->dev->speed) { case USB_SPEED_LOW: s = "ls"; break; case USB_SPEED_FULL: s = "fs"; break; case USB_SPEED_HIGH: s = "hs"; break; case USB_SPEED_SUPER: s = "ss"; break; default: s = "?"; break; } s; }), ep, ep ? (usb_urb_dir_in(urb) ? "in" : "out") : "", ({ char *s; \ switch (usb_pipetype(urb->pipe)) { \ case PIPE_CONTROL: \ s = ""; \ break; \ case PIPE_BULK: \ s = "-bulk"; \ break; \ case PIPE_INTERRUPT: \ s = "-int"; \ break; \ default: \ s = "-iso"; \ break; \ } s; }), urb->actual_length, urb->transfer_buffer_length); } static ssize_t urbs_show(struct device *dev, struct device_attribute *attr, char *buf) { struct usb_hcd *hcd = dev_get_drvdata(dev); struct dummy_hcd *dum_hcd = hcd_to_dummy_hcd(hcd); struct urbp *urbp; size_t size = 0; unsigned long flags; spin_lock_irqsave(&dum_hcd->dum->lock, flags); list_for_each_entry(urbp, &dum_hcd->urbp_list, urbp_list) { size_t temp; temp = show_urb(buf, PAGE_SIZE - size, urbp->urb); buf += temp; size += temp; } spin_unlock_irqrestore(&dum_hcd->dum->lock, flags); return size; } static DEVICE_ATTR_RO(urbs); static int dummy_start_ss(struct dummy_hcd *dum_hcd) { hrtimer_init(&dum_hcd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); dum_hcd->timer.function = dummy_timer; dum_hcd->rh_state = DUMMY_RH_RUNNING; dum_hcd->stream_en_ep = 0; INIT_LIST_HEAD(&dum_hcd->urbp_list); dummy_hcd_to_hcd(dum_hcd)->power_budget = POWER_BUDGET_3; dummy_hcd_to_hcd(dum_hcd)->state = HC_STATE_RUNNING; dummy_hcd_to_hcd(dum_hcd)->uses_new_polling = 1; #ifdef CONFIG_USB_OTG dummy_hcd_to_hcd(dum_hcd)->self.otg_port = 1; #endif return 0; /* FIXME 'urbs' should be a per-device thing, maybe in usbcore */ return device_create_file(dummy_dev(dum_hcd), &dev_attr_urbs); } static int dummy_start(struct usb_hcd *hcd) { struct dummy_hcd *dum_hcd = hcd_to_dummy_hcd(hcd); /* * HOST side init ... we emulate a root hub that'll only ever * talk to one device (the gadget side). Also appears in sysfs, * just like more familiar pci-based HCDs. */ if (!usb_hcd_is_primary_hcd(hcd)) return dummy_start_ss(dum_hcd); spin_lock_init(&dum_hcd->dum->lock); hrtimer_init(&dum_hcd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); dum_hcd->timer.function = dummy_timer; dum_hcd->rh_state = DUMMY_RH_RUNNING; INIT_LIST_HEAD(&dum_hcd->urbp_list); hcd->power_budget = POWER_BUDGET; hcd->state = HC_STATE_RUNNING; hcd->uses_new_polling = 1; #ifdef CONFIG_USB_OTG hcd->self.otg_port = 1; #endif /* FIXME 'urbs' should be a per-device thing, maybe in usbcore */ return device_create_file(dummy_dev(dum_hcd), &dev_attr_urbs); } static void dummy_stop(struct usb_hcd *hcd) { struct dummy_hcd *dum_hcd = hcd_to_dummy_hcd(hcd); hrtimer_cancel(&dum_hcd->timer); device_remove_file(dummy_dev(dum_hcd), &dev_attr_urbs); dev_info(dummy_dev(dum_hcd), "stopped\n"); } /*-------------------------------------------------------------------------*/ static int dummy_h_get_frame(struct usb_hcd *hcd) { return dummy_g_get_frame(NULL); } static int dummy_setup(struct usb_hcd *hcd) { struct dummy *dum; dum = *((void **)dev_get_platdata(hcd->self.controller)); hcd->self.sg_tablesize = ~0; if (usb_hcd_is_primary_hcd(hcd)) { dum->hs_hcd = hcd_to_dummy_hcd(hcd); dum->hs_hcd->dum = dum; /* * Mark the first roothub as being USB 2.0. * The USB 3.0 roothub will be registered later by * dummy_hcd_probe() */ hcd->speed = HCD_USB2; hcd->self.root_hub->speed = USB_SPEED_HIGH; } else { dum->ss_hcd = hcd_to_dummy_hcd(hcd); dum->ss_hcd->dum = dum; hcd->speed = HCD_USB3; hcd->self.root_hub->speed = USB_SPEED_SUPER; } return 0; } /* Change a group of bulk endpoints to support multiple stream IDs */ static int dummy_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, unsigned int num_streams, gfp_t mem_flags) { struct dummy_hcd *dum_hcd = hcd_to_dummy_hcd(hcd); unsigned long flags; int max_stream; int ret_streams = num_streams; unsigned int index; unsigned int i; if (!num_eps) return -EINVAL; spin_lock_irqsave(&dum_hcd->dum->lock, flags); for (i = 0; i < num_eps; i++) { index = dummy_get_ep_idx(&eps[i]->desc); if ((1 << index) & dum_hcd->stream_en_ep) { ret_streams = -EINVAL; goto out; } max_stream = usb_ss_max_streams(&eps[i]->ss_ep_comp); if (!max_stream) { ret_streams = -EINVAL; goto out; } if (max_stream < ret_streams) { dev_dbg(dummy_dev(dum_hcd), "Ep 0x%x only supports %u " "stream IDs.\n", eps[i]->desc.bEndpointAddress, max_stream); ret_streams = max_stream; } } for (i = 0; i < num_eps; i++) { index = dummy_get_ep_idx(&eps[i]->desc); dum_hcd->stream_en_ep |= 1 << index; set_max_streams_for_pipe(dum_hcd, usb_endpoint_num(&eps[i]->desc), ret_streams); } out: spin_unlock_irqrestore(&dum_hcd->dum->lock, flags); return ret_streams; } /* Reverts a group of bulk endpoints back to not using stream IDs. */ static int dummy_free_streams(struct usb_hcd *hcd, struct usb_device *udev, struct usb_host_endpoint **eps, unsigned int num_eps, gfp_t mem_flags) { struct dummy_hcd *dum_hcd = hcd_to_dummy_hcd(hcd); unsigned long flags; int ret; unsigned int index; unsigned int i; spin_lock_irqsave(&dum_hcd->dum->lock, flags); for (i = 0; i < num_eps; i++) { index = dummy_get_ep_idx(&eps[i]->desc); if (!((1 << index) & dum_hcd->stream_en_ep)) { ret = -EINVAL; goto out; } } for (i = 0; i < num_eps; i++) { index = dummy_get_ep_idx(&eps[i]->desc); dum_hcd->stream_en_ep &= ~(1 << index); set_max_streams_for_pipe(dum_hcd, usb_endpoint_num(&eps[i]->desc), 0); } ret = 0; out: spin_unlock_irqrestore(&dum_hcd->dum->lock, flags); return ret; } static struct hc_driver dummy_hcd = { .description = (char *) driver_name, .product_desc = "Dummy host controller", .hcd_priv_size = sizeof(struct dummy_hcd), .reset = dummy_setup, .start = dummy_start, .stop = dummy_stop, .urb_enqueue = dummy_urb_enqueue, .urb_dequeue = dummy_urb_dequeue, .get_frame_number = dummy_h_get_frame, .hub_status_data = dummy_hub_status, .hub_control = dummy_hub_control, .bus_suspend = dummy_bus_suspend, .bus_resume = dummy_bus_resume, .alloc_streams = dummy_alloc_streams, .free_streams = dummy_free_streams, }; static int dummy_hcd_probe(struct platform_device *pdev) { struct dummy *dum; struct usb_hcd *hs_hcd; struct usb_hcd *ss_hcd; int retval; dev_info(&pdev->dev, "%s, driver " DRIVER_VERSION "\n", driver_desc); dum = *((void **)dev_get_platdata(&pdev->dev)); if (mod_data.is_super_speed) dummy_hcd.flags = HCD_USB3 | HCD_SHARED; else if (mod_data.is_high_speed) dummy_hcd.flags = HCD_USB2; else dummy_hcd.flags = HCD_USB11; hs_hcd = usb_create_hcd(&dummy_hcd, &pdev->dev, dev_name(&pdev->dev)); if (!hs_hcd) return -ENOMEM; hs_hcd->has_tt = 1; retval = usb_add_hcd(hs_hcd, 0, 0); if (retval) goto put_usb2_hcd; if (mod_data.is_super_speed) { ss_hcd = usb_create_shared_hcd(&dummy_hcd, &pdev->dev, dev_name(&pdev->dev), hs_hcd); if (!ss_hcd) { retval = -ENOMEM; goto dealloc_usb2_hcd; } retval = usb_add_hcd(ss_hcd, 0, 0); if (retval) goto put_usb3_hcd; } return 0; put_usb3_hcd: usb_put_hcd(ss_hcd); dealloc_usb2_hcd: usb_remove_hcd(hs_hcd); put_usb2_hcd: usb_put_hcd(hs_hcd); dum->hs_hcd = dum->ss_hcd = NULL; return retval; } static void dummy_hcd_remove(struct platform_device *pdev) { struct dummy *dum; dum = hcd_to_dummy_hcd(platform_get_drvdata(pdev))->dum; if (dum->ss_hcd) { usb_remove_hcd(dummy_hcd_to_hcd(dum->ss_hcd)); usb_put_hcd(dummy_hcd_to_hcd(dum->ss_hcd)); } usb_remove_hcd(dummy_hcd_to_hcd(dum->hs_hcd)); usb_put_hcd(dummy_hcd_to_hcd(dum->hs_hcd)); dum->hs_hcd = NULL; dum->ss_hcd = NULL; } static int dummy_hcd_suspend(struct platform_device *pdev, pm_message_t state) { struct usb_hcd *hcd; struct dummy_hcd *dum_hcd; int rc = 0; dev_dbg(&pdev->dev, "%s\n", __func__); hcd = platform_get_drvdata(pdev); dum_hcd = hcd_to_dummy_hcd(hcd); if (dum_hcd->rh_state == DUMMY_RH_RUNNING) { dev_warn(&pdev->dev, "Root hub isn't suspended!\n"); rc = -EBUSY; } else clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); return rc; } static int dummy_hcd_resume(struct platform_device *pdev) { struct usb_hcd *hcd; dev_dbg(&pdev->dev, "%s\n", __func__); hcd = platform_get_drvdata(pdev); set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); usb_hcd_poll_rh_status(hcd); return 0; } static struct platform_driver dummy_hcd_driver = { .probe = dummy_hcd_probe, .remove_new = dummy_hcd_remove, .suspend = dummy_hcd_suspend, .resume = dummy_hcd_resume, .driver = { .name = driver_name, }, }; /*-------------------------------------------------------------------------*/ #define MAX_NUM_UDC 32 static struct platform_device *the_udc_pdev[MAX_NUM_UDC]; static struct platform_device *the_hcd_pdev[MAX_NUM_UDC]; static int __init dummy_hcd_init(void) { int retval = -ENOMEM; int i; struct dummy *dum[MAX_NUM_UDC] = {}; if (usb_disabled()) return -ENODEV; if (!mod_data.is_high_speed && mod_data.is_super_speed) return -EINVAL; if (mod_data.num < 1 || mod_data.num > MAX_NUM_UDC) { pr_err("Number of emulated UDC must be in range of 1...%d\n", MAX_NUM_UDC); return -EINVAL; } for (i = 0; i < mod_data.num; i++) { the_hcd_pdev[i] = platform_device_alloc(driver_name, i); if (!the_hcd_pdev[i]) { i--; while (i >= 0) platform_device_put(the_hcd_pdev[i--]); return retval; } } for (i = 0; i < mod_data.num; i++) { the_udc_pdev[i] = platform_device_alloc(gadget_name, i); if (!the_udc_pdev[i]) { i--; while (i >= 0) platform_device_put(the_udc_pdev[i--]); goto err_alloc_udc; } } for (i = 0; i < mod_data.num; i++) { dum[i] = kzalloc(sizeof(struct dummy), GFP_KERNEL); if (!dum[i]) { retval = -ENOMEM; goto err_add_pdata; } retval = platform_device_add_data(the_hcd_pdev[i], &dum[i], sizeof(void *)); if (retval) goto err_add_pdata; retval = platform_device_add_data(the_udc_pdev[i], &dum[i], sizeof(void *)); if (retval) goto err_add_pdata; } retval = platform_driver_register(&dummy_hcd_driver); if (retval < 0) goto err_add_pdata; retval = platform_driver_register(&dummy_udc_driver); if (retval < 0) goto err_register_udc_driver; for (i = 0; i < mod_data.num; i++) { retval = platform_device_add(the_hcd_pdev[i]); if (retval < 0) { i--; while (i >= 0) platform_device_del(the_hcd_pdev[i--]); goto err_add_hcd; } } for (i = 0; i < mod_data.num; i++) { if (!dum[i]->hs_hcd || (!dum[i]->ss_hcd && mod_data.is_super_speed)) { /* * The hcd was added successfully but its probe * function failed for some reason. */ retval = -EINVAL; goto err_add_udc; } } for (i = 0; i < mod_data.num; i++) { retval = platform_device_add(the_udc_pdev[i]); if (retval < 0) { i--; while (i >= 0) platform_device_del(the_udc_pdev[i--]); goto err_add_udc; } } for (i = 0; i < mod_data.num; i++) { if (!platform_get_drvdata(the_udc_pdev[i])) { /* * The udc was added successfully but its probe * function failed for some reason. */ retval = -EINVAL; goto err_probe_udc; } } return retval; err_probe_udc: for (i = 0; i < mod_data.num; i++) platform_device_del(the_udc_pdev[i]); err_add_udc: for (i = 0; i < mod_data.num; i++) platform_device_del(the_hcd_pdev[i]); err_add_hcd: platform_driver_unregister(&dummy_udc_driver); err_register_udc_driver: platform_driver_unregister(&dummy_hcd_driver); err_add_pdata: for (i = 0; i < mod_data.num; i++) kfree(dum[i]); for (i = 0; i < mod_data.num; i++) platform_device_put(the_udc_pdev[i]); err_alloc_udc: for (i = 0; i < mod_data.num; i++) platform_device_put(the_hcd_pdev[i]); return retval; } module_init(dummy_hcd_init); static void __exit dummy_hcd_cleanup(void) { int i; for (i = 0; i < mod_data.num; i++) { struct dummy *dum; dum = *((void **)dev_get_platdata(&the_udc_pdev[i]->dev)); platform_device_unregister(the_udc_pdev[i]); platform_device_unregister(the_hcd_pdev[i]); kfree(dum); } platform_driver_unregister(&dummy_udc_driver); platform_driver_unregister(&dummy_hcd_driver); } module_exit(dummy_hcd_cleanup);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1