Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anton Vorontsov | 4162 | 98.16% | 1 | 7.14% |
Alan Stern | 24 | 0.57% | 1 | 7.14% |
Guilherme Maciel Ferreira | 15 | 0.35% | 1 | 7.14% |
Jerry Huang | 13 | 0.31% | 1 | 7.14% |
Yan Zhu | 12 | 0.28% | 1 | 7.14% |
Stefani Seibold | 5 | 0.12% | 1 | 7.14% |
Greg Kroah-Hartman | 2 | 0.05% | 2 | 14.29% |
Eric Lescouet | 2 | 0.05% | 1 | 7.14% |
Zhao Qiang | 1 | 0.02% | 1 | 7.14% |
Wei Yongjun | 1 | 0.02% | 1 | 7.14% |
André Goddard Rosa | 1 | 0.02% | 1 | 7.14% |
Kees Cook | 1 | 0.02% | 1 | 7.14% |
Uwe Kleine-König | 1 | 0.02% | 1 | 7.14% |
Total | 4240 | 14 |
// SPDX-License-Identifier: GPL-2.0+ /* * Freescale QUICC Engine USB Host Controller Driver * * Copyright (c) Freescale Semicondutor, Inc. 2006, 2011. * Shlomi Gridish <gridish@freescale.com> * Jerry Huang <Chang-Ming.Huang@freescale.com> * Copyright (c) Logic Product Development, Inc. 2007 * Peter Barada <peterb@logicpd.com> * Copyright (c) MontaVista Software, Inc. 2008. * Anton Vorontsov <avorontsov@ru.mvista.com> */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/spinlock.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include <soc/fsl/qe/qe.h> #include <asm/fsl_gtm.h> #include "fhci.h" static void recycle_frame(struct fhci_usb *usb, struct packet *pkt) { pkt->data = NULL; pkt->len = 0; pkt->status = USB_TD_OK; pkt->info = 0; pkt->priv_data = NULL; cq_put(&usb->ep0->empty_frame_Q, pkt); } /* confirm submitted packet */ void fhci_transaction_confirm(struct fhci_usb *usb, struct packet *pkt) { struct td *td; struct packet *td_pkt; struct ed *ed; u32 trans_len; bool td_done = false; td = fhci_remove_td_from_frame(usb->actual_frame); td_pkt = td->pkt; trans_len = pkt->len; td->status = pkt->status; if (td->type == FHCI_TA_IN && td_pkt->info & PKT_DUMMY_PACKET) { if ((td->data + td->actual_len) && trans_len) memcpy(td->data + td->actual_len, pkt->data, trans_len); cq_put(&usb->ep0->dummy_packets_Q, pkt->data); } recycle_frame(usb, pkt); ed = td->ed; if (ed->mode == FHCI_TF_ISO) { if (ed->td_list.next->next != &ed->td_list) { struct td *td_next = list_entry(ed->td_list.next->next, struct td, node); td_next->start_frame = usb->actual_frame->frame_num; } td->actual_len = trans_len; td_done = true; } else if ((td->status & USB_TD_ERROR) && !(td->status & USB_TD_TX_ER_NAK)) { /* * There was an error on the transaction (but not NAK). * If it is fatal error (data underrun, stall, bad pid or 3 * errors exceeded), mark this TD as done. */ if ((td->status & USB_TD_RX_DATA_UNDERUN) || (td->status & USB_TD_TX_ER_STALL) || (td->status & USB_TD_RX_ER_PID) || (++td->error_cnt >= 3)) { ed->state = FHCI_ED_HALTED; td_done = true; if (td->status & USB_TD_RX_DATA_UNDERUN) { fhci_dbg(usb->fhci, "td err fu\n"); td->toggle = !td->toggle; td->actual_len += trans_len; } else { fhci_dbg(usb->fhci, "td err f!u\n"); } } else { fhci_dbg(usb->fhci, "td err !f\n"); /* it is not a fatal error -retry this transaction */ td->nak_cnt = 0; td->error_cnt++; td->status = USB_TD_OK; } } else if (td->status & USB_TD_TX_ER_NAK) { /* there was a NAK response */ fhci_vdbg(usb->fhci, "td nack\n"); td->nak_cnt++; td->error_cnt = 0; td->status = USB_TD_OK; } else { /* there was no error on transaction */ td->error_cnt = 0; td->nak_cnt = 0; td->toggle = !td->toggle; td->actual_len += trans_len; if (td->len == td->actual_len) td_done = true; } if (td_done) fhci_move_td_from_ed_to_done_list(usb, ed); } /* * Flush all transmitted packets from BDs * This routine is called when disabling the USB port to flush all * transmissions that are already scheduled in the BDs */ void fhci_flush_all_transmissions(struct fhci_usb *usb) { u8 mode; struct td *td; mode = in_8(&usb->fhci->regs->usb_usmod); clrbits8(&usb->fhci->regs->usb_usmod, USB_MODE_EN); fhci_flush_bds(usb); while ((td = fhci_peek_td_from_frame(usb->actual_frame)) != NULL) { struct packet *pkt = td->pkt; pkt->status = USB_TD_TX_ER_TIMEOUT; fhci_transaction_confirm(usb, pkt); } usb->actual_frame->frame_status = FRAME_END_TRANSMISSION; /* reset the event register */ out_be16(&usb->fhci->regs->usb_usber, 0xffff); /* enable the USB controller */ out_8(&usb->fhci->regs->usb_usmod, mode | USB_MODE_EN); } /* * This function forms the packet and transmit the packet. This function * will handle all endpoint type:ISO,interrupt,control and bulk */ static int add_packet(struct fhci_usb *usb, struct ed *ed, struct td *td) { u32 fw_transaction_time, len = 0; struct packet *pkt; u8 *data = NULL; /* calcalate data address,len and toggle and then add the transaction */ if (td->toggle == USB_TD_TOGGLE_CARRY) td->toggle = ed->toggle_carry; switch (ed->mode) { case FHCI_TF_ISO: len = td->len; if (td->type != FHCI_TA_IN) data = td->data; break; case FHCI_TF_CTRL: case FHCI_TF_BULK: len = min(td->len - td->actual_len, ed->max_pkt_size); if (!((td->type == FHCI_TA_IN) && ((len + td->actual_len) == td->len))) data = td->data + td->actual_len; break; case FHCI_TF_INTR: len = min(td->len, ed->max_pkt_size); if (!((td->type == FHCI_TA_IN) && ((td->len + CRC_SIZE) >= ed->max_pkt_size))) data = td->data; break; default: break; } if (usb->port_status == FHCI_PORT_FULL) fw_transaction_time = (((len + PROTOCOL_OVERHEAD) * 11) >> 4); else fw_transaction_time = ((len + PROTOCOL_OVERHEAD) * 6); /* check if there's enough space in this frame to submit this TD */ if (usb->actual_frame->total_bytes + len + PROTOCOL_OVERHEAD >= usb->max_bytes_per_frame) { fhci_vdbg(usb->fhci, "not enough space in this frame: " "%d %d %d\n", usb->actual_frame->total_bytes, len, usb->max_bytes_per_frame); return -1; } /* check if there's enough time in this frame to submit this TD */ if (usb->actual_frame->frame_status != FRAME_IS_PREPARED && (usb->actual_frame->frame_status & FRAME_END_TRANSMISSION || (fw_transaction_time + usb->sw_transaction_time >= 1000 - fhci_get_sof_timer_count(usb)))) { fhci_dbg(usb->fhci, "not enough time in this frame\n"); return -1; } /* update frame object fields before transmitting */ pkt = cq_get(&usb->ep0->empty_frame_Q); if (!pkt) { fhci_dbg(usb->fhci, "there is no empty frame\n"); return -1; } td->pkt = pkt; pkt->info = 0; if (data == NULL) { data = cq_get(&usb->ep0->dummy_packets_Q); BUG_ON(!data); pkt->info = PKT_DUMMY_PACKET; } pkt->data = data; pkt->len = len; pkt->status = USB_TD_OK; /* update TD status field before transmitting */ td->status = USB_TD_INPROGRESS; /* update actual frame time object with the actual transmission */ usb->actual_frame->total_bytes += (len + PROTOCOL_OVERHEAD); fhci_add_td_to_frame(usb->actual_frame, td); if (usb->port_status != FHCI_PORT_FULL && usb->port_status != FHCI_PORT_LOW) { pkt->status = USB_TD_TX_ER_TIMEOUT; pkt->len = 0; fhci_transaction_confirm(usb, pkt); } else if (fhci_host_transaction(usb, pkt, td->type, ed->dev_addr, ed->ep_addr, ed->mode, ed->speed, td->toggle)) { /* remove TD from actual frame */ list_del_init(&td->frame_lh); td->status = USB_TD_OK; if (pkt->info & PKT_DUMMY_PACKET) cq_put(&usb->ep0->dummy_packets_Q, pkt->data); recycle_frame(usb, pkt); usb->actual_frame->total_bytes -= (len + PROTOCOL_OVERHEAD); fhci_err(usb->fhci, "host transaction failed\n"); return -1; } return len; } static void move_head_to_tail(struct list_head *list) { struct list_head *node = list->next; if (!list_empty(list)) { list_move_tail(node, list); } } /* * This function goes through the endpoint list and schedules the * transactions within this list */ static int scan_ed_list(struct fhci_usb *usb, struct list_head *list, enum fhci_tf_mode list_type) { static const int frame_part[4] = { [FHCI_TF_CTRL] = MAX_BYTES_PER_FRAME, [FHCI_TF_ISO] = (MAX_BYTES_PER_FRAME * MAX_PERIODIC_FRAME_USAGE) / 100, [FHCI_TF_BULK] = MAX_BYTES_PER_FRAME, [FHCI_TF_INTR] = (MAX_BYTES_PER_FRAME * MAX_PERIODIC_FRAME_USAGE) / 100 }; struct ed *ed; struct td *td; int ans = 1; u32 save_transaction_time = usb->sw_transaction_time; list_for_each_entry(ed, list, node) { td = ed->td_head; if (!td || td->status == USB_TD_INPROGRESS) continue; if (ed->state != FHCI_ED_OPER) { if (ed->state == FHCI_ED_URB_DEL) { td->status = USB_TD_OK; fhci_move_td_from_ed_to_done_list(usb, ed); ed->state = FHCI_ED_SKIP; } continue; } /* * if it isn't interrupt pipe or it is not iso pipe and the * interval time passed */ if ((list_type == FHCI_TF_INTR || list_type == FHCI_TF_ISO) && (((usb->actual_frame->frame_num - td->start_frame) & 0x7ff) < td->interval)) continue; if (add_packet(usb, ed, td) < 0) continue; /* update time stamps in the TD */ td->start_frame = usb->actual_frame->frame_num; usb->sw_transaction_time += save_transaction_time; if (usb->actual_frame->total_bytes >= usb->max_bytes_per_frame) { usb->actual_frame->frame_status = FRAME_DATA_END_TRANSMISSION; fhci_push_dummy_bd(usb->ep0); ans = 0; break; } if (usb->actual_frame->total_bytes >= frame_part[list_type]) break; } /* be fair to each ED(move list head around) */ move_head_to_tail(list); usb->sw_transaction_time = save_transaction_time; return ans; } static u32 rotate_frames(struct fhci_usb *usb) { struct fhci_hcd *fhci = usb->fhci; if (!list_empty(&usb->actual_frame->tds_list)) { if ((((in_be16(&fhci->pram->frame_num) & 0x07ff) - usb->actual_frame->frame_num) & 0x7ff) > 5) fhci_flush_actual_frame(usb); else return -EINVAL; } usb->actual_frame->frame_status = FRAME_IS_PREPARED; usb->actual_frame->frame_num = in_be16(&fhci->pram->frame_num) & 0x7ff; usb->actual_frame->total_bytes = 0; return 0; } /* * This function schedule the USB transaction and will process the * endpoint in the following order: iso, interrupt, control and bulk. */ void fhci_schedule_transactions(struct fhci_usb *usb) { int left = 1; if (usb->actual_frame->frame_status & FRAME_END_TRANSMISSION) if (rotate_frames(usb) != 0) return; if (usb->actual_frame->frame_status & FRAME_END_TRANSMISSION) return; if (usb->actual_frame->total_bytes == 0) { /* * schedule the next available ISO transfer *or next stage of the ISO transfer */ scan_ed_list(usb, &usb->hc_list->iso_list, FHCI_TF_ISO); /* * schedule the next available interrupt transfer or * the next stage of the interrupt transfer */ scan_ed_list(usb, &usb->hc_list->intr_list, FHCI_TF_INTR); /* * schedule the next available control transfer * or the next stage of the control transfer */ left = scan_ed_list(usb, &usb->hc_list->ctrl_list, FHCI_TF_CTRL); } /* * schedule the next available bulk transfer or the next stage of the * bulk transfer */ if (left > 0) scan_ed_list(usb, &usb->hc_list->bulk_list, FHCI_TF_BULK); } /* Handles SOF interrupt */ static void sof_interrupt(struct fhci_hcd *fhci) { struct fhci_usb *usb = fhci->usb_lld; if ((usb->port_status == FHCI_PORT_DISABLED) && (usb->vroot_hub->port.wPortStatus & USB_PORT_STAT_CONNECTION) && !(usb->vroot_hub->port.wPortChange & USB_PORT_STAT_C_CONNECTION)) { if (usb->vroot_hub->port.wPortStatus & USB_PORT_STAT_LOW_SPEED) usb->port_status = FHCI_PORT_LOW; else usb->port_status = FHCI_PORT_FULL; /* Disable IDLE */ usb->saved_msk &= ~USB_E_IDLE_MASK; out_be16(&usb->fhci->regs->usb_usbmr, usb->saved_msk); } gtm_set_exact_timer16(fhci->timer, usb->max_frame_usage, false); fhci_host_transmit_actual_frame(usb); usb->actual_frame->frame_status = FRAME_IS_TRANSMITTED; fhci_schedule_transactions(usb); } /* Handles device disconnected interrupt on port */ void fhci_device_disconnected_interrupt(struct fhci_hcd *fhci) { struct fhci_usb *usb = fhci->usb_lld; fhci_dbg(fhci, "-> %s\n", __func__); fhci_usb_disable_interrupt(usb); clrbits8(&usb->fhci->regs->usb_usmod, USB_MODE_LSS); usb->port_status = FHCI_PORT_DISABLED; fhci_stop_sof_timer(fhci); /* Enable IDLE since we want to know if something comes along */ usb->saved_msk |= USB_E_IDLE_MASK; out_be16(&usb->fhci->regs->usb_usbmr, usb->saved_msk); usb->vroot_hub->port.wPortStatus &= ~USB_PORT_STAT_CONNECTION; usb->vroot_hub->port.wPortChange |= USB_PORT_STAT_C_CONNECTION; usb->max_bytes_per_frame = 0; fhci_usb_enable_interrupt(usb); fhci_dbg(fhci, "<- %s\n", __func__); } /* detect a new device connected on the USB port */ void fhci_device_connected_interrupt(struct fhci_hcd *fhci) { struct fhci_usb *usb = fhci->usb_lld; int state; int ret; fhci_dbg(fhci, "-> %s\n", __func__); fhci_usb_disable_interrupt(usb); state = fhci_ioports_check_bus_state(fhci); /* low-speed device was connected to the USB port */ if (state == 1) { ret = qe_usb_clock_set(fhci->lowspeed_clk, USB_CLOCK >> 3); if (ret) { fhci_warn(fhci, "Low-Speed device is not supported, " "try use BRGx\n"); goto out; } usb->port_status = FHCI_PORT_LOW; setbits8(&usb->fhci->regs->usb_usmod, USB_MODE_LSS); usb->vroot_hub->port.wPortStatus |= (USB_PORT_STAT_LOW_SPEED | USB_PORT_STAT_CONNECTION); usb->vroot_hub->port.wPortChange |= USB_PORT_STAT_C_CONNECTION; usb->max_bytes_per_frame = (MAX_BYTES_PER_FRAME >> 3) - 7; fhci_port_enable(usb); } else if (state == 2) { ret = qe_usb_clock_set(fhci->fullspeed_clk, USB_CLOCK); if (ret) { fhci_warn(fhci, "Full-Speed device is not supported, " "try use CLKx\n"); goto out; } usb->port_status = FHCI_PORT_FULL; clrbits8(&usb->fhci->regs->usb_usmod, USB_MODE_LSS); usb->vroot_hub->port.wPortStatus &= ~USB_PORT_STAT_LOW_SPEED; usb->vroot_hub->port.wPortStatus |= USB_PORT_STAT_CONNECTION; usb->vroot_hub->port.wPortChange |= USB_PORT_STAT_C_CONNECTION; usb->max_bytes_per_frame = (MAX_BYTES_PER_FRAME - 15); fhci_port_enable(usb); } out: fhci_usb_enable_interrupt(usb); fhci_dbg(fhci, "<- %s\n", __func__); } irqreturn_t fhci_frame_limit_timer_irq(int irq, void *_hcd) { struct usb_hcd *hcd = _hcd; struct fhci_hcd *fhci = hcd_to_fhci(hcd); struct fhci_usb *usb = fhci->usb_lld; spin_lock(&fhci->lock); gtm_set_exact_timer16(fhci->timer, 1000, false); if (usb->actual_frame->frame_status == FRAME_IS_TRANSMITTED) { usb->actual_frame->frame_status = FRAME_TIMER_END_TRANSMISSION; fhci_push_dummy_bd(usb->ep0); } fhci_schedule_transactions(usb); spin_unlock(&fhci->lock); return IRQ_HANDLED; } /* Cancel transmission on the USB endpoint */ static void abort_transmission(struct fhci_usb *usb) { fhci_dbg(usb->fhci, "-> %s\n", __func__); /* issue stop Tx command */ qe_issue_cmd(QE_USB_STOP_TX, QE_CR_SUBBLOCK_USB, EP_ZERO, 0); /* flush Tx FIFOs */ out_8(&usb->fhci->regs->usb_uscom, USB_CMD_FLUSH_FIFO | EP_ZERO); udelay(1000); /* reset Tx BDs */ fhci_flush_bds(usb); /* issue restart Tx command */ qe_issue_cmd(QE_USB_RESTART_TX, QE_CR_SUBBLOCK_USB, EP_ZERO, 0); fhci_dbg(usb->fhci, "<- %s\n", __func__); } irqreturn_t fhci_irq(struct usb_hcd *hcd) { struct fhci_hcd *fhci = hcd_to_fhci(hcd); struct fhci_usb *usb; u16 usb_er = 0; unsigned long flags; spin_lock_irqsave(&fhci->lock, flags); usb = fhci->usb_lld; usb_er |= in_be16(&usb->fhci->regs->usb_usber) & in_be16(&usb->fhci->regs->usb_usbmr); /* clear event bits for next time */ out_be16(&usb->fhci->regs->usb_usber, usb_er); fhci_dbg_isr(fhci, usb_er); if (usb_er & USB_E_RESET_MASK) { if ((usb->port_status == FHCI_PORT_FULL) || (usb->port_status == FHCI_PORT_LOW)) { fhci_device_disconnected_interrupt(fhci); usb_er &= ~USB_E_IDLE_MASK; } else if (usb->port_status == FHCI_PORT_WAITING) { usb->port_status = FHCI_PORT_DISCONNECTING; /* Turn on IDLE since we want to disconnect */ usb->saved_msk |= USB_E_IDLE_MASK; out_be16(&usb->fhci->regs->usb_usber, usb->saved_msk); } else if (usb->port_status == FHCI_PORT_DISABLED) { if (fhci_ioports_check_bus_state(fhci) == 1) fhci_device_connected_interrupt(fhci); } usb_er &= ~USB_E_RESET_MASK; } if (usb_er & USB_E_MSF_MASK) { abort_transmission(fhci->usb_lld); usb_er &= ~USB_E_MSF_MASK; } if (usb_er & (USB_E_SOF_MASK | USB_E_SFT_MASK)) { sof_interrupt(fhci); usb_er &= ~(USB_E_SOF_MASK | USB_E_SFT_MASK); } if (usb_er & USB_E_TXB_MASK) { fhci_tx_conf_interrupt(fhci->usb_lld); usb_er &= ~USB_E_TXB_MASK; } if (usb_er & USB_E_TXE1_MASK) { fhci_tx_conf_interrupt(fhci->usb_lld); usb_er &= ~USB_E_TXE1_MASK; } if (usb_er & USB_E_IDLE_MASK) { if (usb->port_status == FHCI_PORT_DISABLED) { usb_er &= ~USB_E_RESET_MASK; fhci_device_connected_interrupt(fhci); } else if (usb->port_status == FHCI_PORT_DISCONNECTING) { /* XXX usb->port_status = FHCI_PORT_WAITING; */ /* Disable IDLE */ usb->saved_msk &= ~USB_E_IDLE_MASK; out_be16(&usb->fhci->regs->usb_usbmr, usb->saved_msk); } else { fhci_dbg_isr(fhci, -1); } usb_er &= ~USB_E_IDLE_MASK; } spin_unlock_irqrestore(&fhci->lock, flags); return IRQ_HANDLED; } /* * Process normal completions(error or success) and clean the schedule. * * This is the main path for handing urbs back to drivers. The only other patth * is process_del_list(),which unlinks URBs by scanning EDs,instead of scanning * the (re-reversed) done list as this does. */ static void process_done_list(unsigned long data) { struct urb *urb; struct ed *ed; struct td *td; struct urb_priv *urb_priv; struct fhci_hcd *fhci = (struct fhci_hcd *)data; disable_irq(fhci->timer->irq); disable_irq(fhci_to_hcd(fhci)->irq); spin_lock(&fhci->lock); td = fhci_remove_td_from_done_list(fhci->hc_list); while (td != NULL) { urb = td->urb; urb_priv = urb->hcpriv; ed = td->ed; /* update URB's length and status from TD */ fhci_done_td(urb, td); urb_priv->tds_cnt++; /* * if all this urb's TDs are done, call complete() * Interrupt transfers are the onley special case: * they are reissued,until "deleted" by usb_unlink_urb * (real work done in a SOF intr, by process_del_list) */ if (urb_priv->tds_cnt == urb_priv->num_of_tds) { fhci_urb_complete_free(fhci, urb); } else if (urb_priv->state == URB_DEL && ed->state == FHCI_ED_SKIP) { fhci_del_ed_list(fhci, ed); ed->state = FHCI_ED_OPER; } else if (ed->state == FHCI_ED_HALTED) { urb_priv->state = URB_DEL; ed->state = FHCI_ED_URB_DEL; fhci_del_ed_list(fhci, ed); ed->state = FHCI_ED_OPER; } td = fhci_remove_td_from_done_list(fhci->hc_list); } spin_unlock(&fhci->lock); enable_irq(fhci->timer->irq); enable_irq(fhci_to_hcd(fhci)->irq); } DECLARE_TASKLET_OLD(fhci_tasklet, process_done_list); /* transfer complted callback */ u32 fhci_transfer_confirm_callback(struct fhci_hcd *fhci) { if (!fhci->process_done_task->state) tasklet_schedule(fhci->process_done_task); return 0; } /* * adds urb to the endpoint descriptor list * arguments: * fhci data structure for the Low level host controller * ep USB Host endpoint data structure * urb USB request block data structure */ void fhci_queue_urb(struct fhci_hcd *fhci, struct urb *urb) { struct ed *ed = urb->ep->hcpriv; struct urb_priv *urb_priv = urb->hcpriv; u32 data_len = urb->transfer_buffer_length; int urb_state = 0; int toggle = 0; u8 *data; u16 cnt = 0; if (ed == NULL) { ed = fhci_get_empty_ed(fhci); ed->dev_addr = usb_pipedevice(urb->pipe); ed->ep_addr = usb_pipeendpoint(urb->pipe); switch (usb_pipetype(urb->pipe)) { case PIPE_CONTROL: ed->mode = FHCI_TF_CTRL; break; case PIPE_BULK: ed->mode = FHCI_TF_BULK; break; case PIPE_INTERRUPT: ed->mode = FHCI_TF_INTR; break; case PIPE_ISOCHRONOUS: ed->mode = FHCI_TF_ISO; break; default: break; } ed->speed = (urb->dev->speed == USB_SPEED_LOW) ? FHCI_LOW_SPEED : FHCI_FULL_SPEED; ed->max_pkt_size = usb_endpoint_maxp(&urb->ep->desc); urb->ep->hcpriv = ed; fhci_dbg(fhci, "new ep speed=%d max_pkt_size=%d\n", ed->speed, ed->max_pkt_size); } /* for ISO transfer calculate start frame index */ if (ed->mode == FHCI_TF_ISO) { /* Ignore the possibility of underruns */ urb->start_frame = ed->td_head ? ed->next_iso : get_frame_num(fhci); ed->next_iso = (urb->start_frame + urb->interval * urb->number_of_packets) & 0x07ff; } /* * OHCI handles the DATA toggle itself,we just use the USB * toggle bits */ if (usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe))) toggle = USB_TD_TOGGLE_CARRY; else { toggle = USB_TD_TOGGLE_DATA0; usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe), 1); } urb_priv->tds_cnt = 0; urb_priv->ed = ed; if (data_len > 0) data = urb->transfer_buffer; else data = NULL; switch (ed->mode) { case FHCI_TF_BULK: if (urb->transfer_flags & URB_ZERO_PACKET && urb->transfer_buffer_length > 0 && ((urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)) == 0)) urb_state = US_BULK0; while (data_len > 4096) { fhci_td_fill(fhci, urb, urb_priv, ed, cnt, usb_pipeout(urb->pipe) ? FHCI_TA_OUT : FHCI_TA_IN, cnt ? USB_TD_TOGGLE_CARRY : toggle, data, 4096, 0, 0, true); data += 4096; data_len -= 4096; cnt++; } fhci_td_fill(fhci, urb, urb_priv, ed, cnt, usb_pipeout(urb->pipe) ? FHCI_TA_OUT : FHCI_TA_IN, cnt ? USB_TD_TOGGLE_CARRY : toggle, data, data_len, 0, 0, true); cnt++; if (urb->transfer_flags & URB_ZERO_PACKET && cnt < urb_priv->num_of_tds) { fhci_td_fill(fhci, urb, urb_priv, ed, cnt, usb_pipeout(urb->pipe) ? FHCI_TA_OUT : FHCI_TA_IN, USB_TD_TOGGLE_CARRY, NULL, 0, 0, 0, true); cnt++; } break; case FHCI_TF_INTR: urb->start_frame = get_frame_num(fhci) + 1; fhci_td_fill(fhci, urb, urb_priv, ed, cnt++, usb_pipeout(urb->pipe) ? FHCI_TA_OUT : FHCI_TA_IN, USB_TD_TOGGLE_DATA0, data, data_len, urb->interval, urb->start_frame, true); break; case FHCI_TF_CTRL: ed->dev_addr = usb_pipedevice(urb->pipe); ed->max_pkt_size = usb_endpoint_maxp(&urb->ep->desc); /* setup stage */ fhci_td_fill(fhci, urb, urb_priv, ed, cnt++, FHCI_TA_SETUP, USB_TD_TOGGLE_DATA0, urb->setup_packet, 8, 0, 0, true); /* data stage */ if (data_len > 0) { fhci_td_fill(fhci, urb, urb_priv, ed, cnt++, usb_pipeout(urb->pipe) ? FHCI_TA_OUT : FHCI_TA_IN, USB_TD_TOGGLE_DATA1, data, data_len, 0, 0, true); } /* status stage */ if (data_len > 0) fhci_td_fill(fhci, urb, urb_priv, ed, cnt++, (usb_pipeout(urb->pipe) ? FHCI_TA_IN : FHCI_TA_OUT), USB_TD_TOGGLE_DATA1, data, 0, 0, 0, true); else fhci_td_fill(fhci, urb, urb_priv, ed, cnt++, FHCI_TA_IN, USB_TD_TOGGLE_DATA1, data, 0, 0, 0, true); urb_state = US_CTRL_SETUP; break; case FHCI_TF_ISO: for (cnt = 0; cnt < urb->number_of_packets; cnt++) { u16 frame = urb->start_frame; /* * FIXME scheduling should handle frame counter * roll-around ... exotic case (and OHCI has * a 2^16 iso range, vs other HCs max of 2^10) */ frame += cnt * urb->interval; frame &= 0x07ff; fhci_td_fill(fhci, urb, urb_priv, ed, cnt, usb_pipeout(urb->pipe) ? FHCI_TA_OUT : FHCI_TA_IN, USB_TD_TOGGLE_DATA0, data + urb->iso_frame_desc[cnt].offset, urb->iso_frame_desc[cnt].length, urb->interval, frame, true); } break; default: break; } /* * set the state of URB * control pipe:3 states -- setup,data,status * interrupt and bulk pipe:1 state -- data */ urb->pipe &= ~0x1f; urb->pipe |= urb_state & 0x1f; urb_priv->state = URB_INPROGRESS; if (!ed->td_head) { ed->state = FHCI_ED_OPER; switch (ed->mode) { case FHCI_TF_CTRL: list_add(&ed->node, &fhci->hc_list->ctrl_list); break; case FHCI_TF_BULK: list_add(&ed->node, &fhci->hc_list->bulk_list); break; case FHCI_TF_INTR: list_add(&ed->node, &fhci->hc_list->intr_list); break; case FHCI_TF_ISO: list_add(&ed->node, &fhci->hc_list->iso_list); break; default: break; } } fhci_add_tds_to_ed(ed, urb_priv->tds, urb_priv->num_of_tds); fhci->active_urbs++; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1