Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pete Zaitcev | 6033 | 94.02% | 16 | 24.24% |
Alan Stern | 212 | 3.30% | 5 | 7.58% |
Linus Torvalds | 23 | 0.36% | 5 | 7.58% |
Linus Torvalds (pre-git) | 22 | 0.34% | 8 | 12.12% |
Ivan Orlov | 19 | 0.30% | 1 | 1.52% |
Greg Kroah-Hartman | 14 | 0.22% | 5 | 7.58% |
Tadeusz Struk | 13 | 0.20% | 1 | 1.52% |
Tina Ruchandani | 11 | 0.17% | 1 | 1.52% |
David Brownell | 10 | 0.16% | 3 | 4.55% |
Arjan van de Ven | 9 | 0.14% | 1 | 1.52% |
Arnd Bergmann | 7 | 0.11% | 3 | 4.55% |
Suren Baghdasaryan | 6 | 0.09% | 1 | 1.52% |
Gui-Dong Han | 6 | 0.09% | 1 | 1.52% |
Kees Cook | 5 | 0.08% | 1 | 1.52% |
Kevin Cernekee | 4 | 0.06% | 1 | 1.52% |
Steven Robertson | 3 | 0.05% | 1 | 1.52% |
Paul Gortmaker | 3 | 0.05% | 1 | 1.52% |
Konstantin Khlebnikov | 3 | 0.05% | 1 | 1.52% |
Ingo Molnar | 3 | 0.05% | 1 | 1.52% |
Al Viro | 2 | 0.03% | 1 | 1.52% |
Dave Jiang | 2 | 0.03% | 1 | 1.52% |
Nicholas Piggin | 1 | 0.02% | 1 | 1.52% |
Souptick Joarder | 1 | 0.02% | 1 | 1.52% |
Matthew Wilcox | 1 | 0.02% | 1 | 1.52% |
Adrian Bunk | 1 | 0.02% | 1 | 1.52% |
Alexey Dobriyan | 1 | 0.02% | 1 | 1.52% |
Jan Engelhardt | 1 | 0.02% | 1 | 1.52% |
Johannes Stezenbach | 1 | 0.02% | 1 | 1.52% |
Total | 6417 | 66 |
// SPDX-License-Identifier: GPL-2.0 /* * The USB Monitor, inspired by Dave Harding's USBMon. * * This is a binary format reader. * * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it) * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com) */ #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/types.h> #include <linux/fs.h> #include <linux/cdev.h> #include <linux/export.h> #include <linux/usb.h> #include <linux/poll.h> #include <linux/compat.h> #include <linux/mm.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/time64.h> #include <linux/uaccess.h> #include "usb_mon.h" /* * Defined by USB 2.0 clause 9.3, table 9.2. */ #define SETUP_LEN 8 /* ioctl macros */ #define MON_IOC_MAGIC 0x92 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1) /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */ #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats) #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4) #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5) #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get) #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch) #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8) /* #9 was MON_IOCT_SETAPI */ #define MON_IOCX_GETX _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get) #ifdef CONFIG_COMPAT #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32) #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32) #define MON_IOCX_GETX32 _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32) #endif /* * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc). * But it's all right. Just use a simple way to make sure the chunk is never * smaller than a page. * * N.B. An application does not know our chunk size. * * Woops, get_zeroed_page() returns a single page. I guess we're stuck with * page-sized chunks for the time being. */ #define CHUNK_SIZE PAGE_SIZE #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1)) /* * The magic limit was calculated so that it allows the monitoring * application to pick data once in two ticks. This way, another application, * which presumably drives the bus, gets to hog CPU, yet we collect our data. * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an * enormous overhead built into the bus protocol, so we need about 1000 KB. * * This is still too much for most cases, where we just snoop a few * descriptor fetches for enumeration. So, the default is a "reasonable" * amount for systems with HZ=250 and incomplete bus saturation. * * XXX What about multi-megabyte URBs which take minutes to transfer? */ #define BUFF_MAX CHUNK_ALIGN(1200*1024) #define BUFF_DFL CHUNK_ALIGN(300*1024) #define BUFF_MIN CHUNK_ALIGN(8*1024) /* * The per-event API header (2 per URB). * * This structure is seen in userland as defined by the documentation. */ struct mon_bin_hdr { u64 id; /* URB ID - from submission to callback */ unsigned char type; /* Same as in text API; extensible. */ unsigned char xfer_type; /* ISO, Intr, Control, Bulk */ unsigned char epnum; /* Endpoint number and transfer direction */ unsigned char devnum; /* Device address */ unsigned short busnum; /* Bus number */ char flag_setup; char flag_data; s64 ts_sec; /* ktime_get_real_ts64 */ s32 ts_usec; /* ktime_get_real_ts64 */ int status; unsigned int len_urb; /* Length of data (submitted or actual) */ unsigned int len_cap; /* Delivered length */ union { unsigned char setup[SETUP_LEN]; /* Only for Control S-type */ struct iso_rec { int error_count; int numdesc; } iso; } s; int interval; int start_frame; unsigned int xfer_flags; unsigned int ndesc; /* Actual number of ISO descriptors */ }; /* * ISO vector, packed into the head of data stream. * This has to take 16 bytes to make sure that the end of buffer * wrap is not happening in the middle of a descriptor. */ struct mon_bin_isodesc { int iso_status; unsigned int iso_off; unsigned int iso_len; u32 _pad; }; /* per file statistic */ struct mon_bin_stats { u32 queued; u32 dropped; }; struct mon_bin_get { struct mon_bin_hdr __user *hdr; /* Can be 48 bytes or 64. */ void __user *data; size_t alloc; /* Length of data (can be zero) */ }; struct mon_bin_mfetch { u32 __user *offvec; /* Vector of events fetched */ u32 nfetch; /* Number of events to fetch (out: fetched) */ u32 nflush; /* Number of events to flush */ }; #ifdef CONFIG_COMPAT struct mon_bin_get32 { u32 hdr32; u32 data32; u32 alloc32; }; struct mon_bin_mfetch32 { u32 offvec32; u32 nfetch32; u32 nflush32; }; #endif /* Having these two values same prevents wrapping of the mon_bin_hdr */ #define PKT_ALIGN 64 #define PKT_SIZE 64 #define PKT_SZ_API0 48 /* API 0 (2.6.20) size */ #define PKT_SZ_API1 64 /* API 1 size: extra fields */ #define ISODESC_MAX 128 /* Same number as usbfs allows, 2048 bytes. */ /* max number of USB bus supported */ #define MON_BIN_MAX_MINOR 128 /* * The buffer: map of used pages. */ struct mon_pgmap { struct page *pg; unsigned char *ptr; /* XXX just use page_to_virt everywhere? */ }; /* * This gets associated with an open file struct. */ struct mon_reader_bin { /* The buffer: one per open. */ spinlock_t b_lock; /* Protect b_cnt, b_in */ unsigned int b_size; /* Current size of the buffer - bytes */ unsigned int b_cnt; /* Bytes used */ unsigned int b_in, b_out; /* Offsets into buffer - bytes */ unsigned int b_read; /* Amount of read data in curr. pkt. */ struct mon_pgmap *b_vec; /* The map array */ wait_queue_head_t b_wait; /* Wait for data here */ struct mutex fetch_lock; /* Protect b_read, b_out */ int mmap_active; /* A list of these is needed for "bus 0". Some time later. */ struct mon_reader r; /* Stats */ unsigned int cnt_lost; }; static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp, unsigned int offset) { return (struct mon_bin_hdr *) (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); } #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0) static unsigned char xfer_to_pipe[4] = { PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT }; static const struct class mon_bin_class = { .name = "usbmon", }; static dev_t mon_bin_dev0; static struct cdev mon_bin_cdev; static void mon_buff_area_fill(const struct mon_reader_bin *rp, unsigned int offset, unsigned int size); static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp); static int mon_alloc_buff(struct mon_pgmap *map, int npages); static void mon_free_buff(struct mon_pgmap *map, int npages); /* * This is a "chunked memcpy". It does not manipulate any counters. */ static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this, unsigned int off, const unsigned char *from, unsigned int length) { unsigned int step_len; unsigned char *buf; unsigned int in_page; while (length) { /* * Determine step_len. */ step_len = length; in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); if (in_page < step_len) step_len = in_page; /* * Copy data and advance pointers. */ buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; memcpy(buf, from, step_len); if ((off += step_len) >= this->b_size) off = 0; from += step_len; length -= step_len; } return off; } /* * This is a little worse than the above because it's "chunked copy_to_user". * The return value is an error code, not an offset. */ static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off, char __user *to, int length) { unsigned int step_len; unsigned char *buf; unsigned int in_page; while (length) { /* * Determine step_len. */ step_len = length; in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1)); if (in_page < step_len) step_len = in_page; /* * Copy data and advance pointers. */ buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE; if (copy_to_user(to, buf, step_len)) return -EINVAL; if ((off += step_len) >= this->b_size) off = 0; to += step_len; length -= step_len; } return 0; } /* * Allocate an (aligned) area in the buffer. * This is called under b_lock. * Returns ~0 on failure. */ static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp, unsigned int size) { unsigned int offset; size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); if (rp->b_cnt + size > rp->b_size) return ~0; offset = rp->b_in; rp->b_cnt += size; if ((rp->b_in += size) >= rp->b_size) rp->b_in -= rp->b_size; return offset; } /* * This is the same thing as mon_buff_area_alloc, only it does not allow * buffers to wrap. This is needed by applications which pass references * into mmap-ed buffers up their stacks (libpcap can do that). * * Currently, we always have the header stuck with the data, although * it is not strictly speaking necessary. * * When a buffer would wrap, we place a filler packet to mark the space. */ static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp, unsigned int size) { unsigned int offset; unsigned int fill_size; size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); if (rp->b_cnt + size > rp->b_size) return ~0; if (rp->b_in + size > rp->b_size) { /* * This would wrap. Find if we still have space after * skipping to the end of the buffer. If we do, place * a filler packet and allocate a new packet. */ fill_size = rp->b_size - rp->b_in; if (rp->b_cnt + size + fill_size > rp->b_size) return ~0; mon_buff_area_fill(rp, rp->b_in, fill_size); offset = 0; rp->b_in = size; rp->b_cnt += size + fill_size; } else if (rp->b_in + size == rp->b_size) { offset = rp->b_in; rp->b_in = 0; rp->b_cnt += size; } else { offset = rp->b_in; rp->b_in += size; rp->b_cnt += size; } return offset; } /* * Return a few (kilo-)bytes to the head of the buffer. * This is used if a data fetch fails. */ static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size) { /* size &= ~(PKT_ALIGN-1); -- we're called with aligned size */ rp->b_cnt -= size; if (rp->b_in < size) rp->b_in += rp->b_size; rp->b_in -= size; } /* * This has to be called under both b_lock and fetch_lock, because * it accesses both b_cnt and b_out. */ static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size) { size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); rp->b_cnt -= size; if ((rp->b_out += size) >= rp->b_size) rp->b_out -= rp->b_size; } static void mon_buff_area_fill(const struct mon_reader_bin *rp, unsigned int offset, unsigned int size) { struct mon_bin_hdr *ep; ep = MON_OFF2HDR(rp, offset); memset(ep, 0, PKT_SIZE); ep->type = '@'; ep->len_cap = size - PKT_SIZE; } static inline char mon_bin_get_setup(unsigned char *setupb, const struct urb *urb, char ev_type) { if (urb->setup_packet == NULL) return 'Z'; memcpy(setupb, urb->setup_packet, SETUP_LEN); return 0; } static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp, unsigned int offset, struct urb *urb, unsigned int length, char *flag) { int i; struct scatterlist *sg; unsigned int this_len; *flag = 0; if (urb->num_sgs == 0) { if (urb->transfer_buffer == NULL) { *flag = 'Z'; return length; } mon_copy_to_buff(rp, offset, urb->transfer_buffer, length); length = 0; } else { /* If IOMMU coalescing occurred, we cannot trust sg_page */ if (urb->transfer_flags & URB_DMA_SG_COMBINED) { *flag = 'D'; return length; } /* Copy up to the first non-addressable segment */ for_each_sg(urb->sg, sg, urb->num_sgs, i) { if (length == 0 || PageHighMem(sg_page(sg))) break; this_len = min_t(unsigned int, sg->length, length); offset = mon_copy_to_buff(rp, offset, sg_virt(sg), this_len); length -= this_len; } if (i == 0) *flag = 'D'; } return length; } /* * This is the look-ahead pass in case of 'C Zi', when actual_length cannot * be used to determine the length of the whole contiguous buffer. */ static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp, struct urb *urb, unsigned int ndesc) { struct usb_iso_packet_descriptor *fp; unsigned int length; length = 0; fp = urb->iso_frame_desc; while (ndesc-- != 0) { if (fp->actual_length != 0) { if (fp->offset + fp->actual_length > length) length = fp->offset + fp->actual_length; } fp++; } return length; } static void mon_bin_get_isodesc(const struct mon_reader_bin *rp, unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc) { struct mon_bin_isodesc *dp; struct usb_iso_packet_descriptor *fp; fp = urb->iso_frame_desc; while (ndesc-- != 0) { dp = (struct mon_bin_isodesc *) (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE); dp->iso_status = fp->status; dp->iso_off = fp->offset; dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length; dp->_pad = 0; if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size) offset = 0; fp++; } } static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb, char ev_type, int status) { const struct usb_endpoint_descriptor *epd = &urb->ep->desc; struct timespec64 ts; unsigned long flags; unsigned int urb_length; unsigned int offset; unsigned int length; unsigned int delta; unsigned int ndesc, lendesc; unsigned char dir; struct mon_bin_hdr *ep; char data_tag = 0; ktime_get_real_ts64(&ts); spin_lock_irqsave(&rp->b_lock, flags); /* * Find the maximum allowable length, then allocate space. */ urb_length = (ev_type == 'S') ? urb->transfer_buffer_length : urb->actual_length; length = urb_length; if (usb_endpoint_xfer_isoc(epd)) { if (urb->number_of_packets < 0) { ndesc = 0; } else if (urb->number_of_packets >= ISODESC_MAX) { ndesc = ISODESC_MAX; } else { ndesc = urb->number_of_packets; } if (ev_type == 'C' && usb_urb_dir_in(urb)) length = mon_bin_collate_isodesc(rp, urb, ndesc); } else { ndesc = 0; } lendesc = ndesc*sizeof(struct mon_bin_isodesc); /* not an issue unless there's a subtle bug in a HCD somewhere */ if (length >= urb->transfer_buffer_length) length = urb->transfer_buffer_length; if (length >= rp->b_size/5) length = rp->b_size/5; if (usb_urb_dir_in(urb)) { if (ev_type == 'S') { length = 0; data_tag = '<'; } /* Cannot rely on endpoint number in case of control ep.0 */ dir = USB_DIR_IN; } else { if (ev_type == 'C') { length = 0; data_tag = '>'; } dir = 0; } if (rp->mmap_active) { offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE + lendesc); } else { offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc); } if (offset == ~0) { rp->cnt_lost++; spin_unlock_irqrestore(&rp->b_lock, flags); return; } ep = MON_OFF2HDR(rp, offset); if ((offset += PKT_SIZE) >= rp->b_size) offset = 0; /* * Fill the allocated area. */ memset(ep, 0, PKT_SIZE); ep->type = ev_type; ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)]; ep->epnum = dir | usb_endpoint_num(epd); ep->devnum = urb->dev->devnum; ep->busnum = urb->dev->bus->busnum; ep->id = (unsigned long) urb; ep->ts_sec = ts.tv_sec; ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; ep->status = status; ep->len_urb = urb_length; ep->len_cap = length + lendesc; ep->xfer_flags = urb->transfer_flags; if (usb_endpoint_xfer_int(epd)) { ep->interval = urb->interval; } else if (usb_endpoint_xfer_isoc(epd)) { ep->interval = urb->interval; ep->start_frame = urb->start_frame; ep->s.iso.error_count = urb->error_count; ep->s.iso.numdesc = urb->number_of_packets; } if (usb_endpoint_xfer_control(epd) && ev_type == 'S') { ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type); } else { ep->flag_setup = '-'; } if (ndesc != 0) { ep->ndesc = ndesc; mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc); if ((offset += lendesc) >= rp->b_size) offset -= rp->b_size; } if (length != 0) { length = mon_bin_get_data(rp, offset, urb, length, &ep->flag_data); if (length > 0) { delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); ep->len_cap -= length; delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1); mon_buff_area_shrink(rp, delta); } } else { ep->flag_data = data_tag; } spin_unlock_irqrestore(&rp->b_lock, flags); wake_up(&rp->b_wait); } static void mon_bin_submit(void *data, struct urb *urb) { struct mon_reader_bin *rp = data; mon_bin_event(rp, urb, 'S', -EINPROGRESS); } static void mon_bin_complete(void *data, struct urb *urb, int status) { struct mon_reader_bin *rp = data; mon_bin_event(rp, urb, 'C', status); } static void mon_bin_error(void *data, struct urb *urb, int error) { struct mon_reader_bin *rp = data; struct timespec64 ts; unsigned long flags; unsigned int offset; struct mon_bin_hdr *ep; ktime_get_real_ts64(&ts); spin_lock_irqsave(&rp->b_lock, flags); offset = mon_buff_area_alloc(rp, PKT_SIZE); if (offset == ~0) { /* Not incrementing cnt_lost. Just because. */ spin_unlock_irqrestore(&rp->b_lock, flags); return; } ep = MON_OFF2HDR(rp, offset); memset(ep, 0, PKT_SIZE); ep->type = 'E'; ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)]; ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0; ep->epnum |= usb_endpoint_num(&urb->ep->desc); ep->devnum = urb->dev->devnum; ep->busnum = urb->dev->bus->busnum; ep->id = (unsigned long) urb; ep->ts_sec = ts.tv_sec; ep->ts_usec = ts.tv_nsec / NSEC_PER_USEC; ep->status = error; ep->flag_setup = '-'; ep->flag_data = 'E'; spin_unlock_irqrestore(&rp->b_lock, flags); wake_up(&rp->b_wait); } static int mon_bin_open(struct inode *inode, struct file *file) { struct mon_bus *mbus; struct mon_reader_bin *rp; size_t size; int rc; mutex_lock(&mon_lock); mbus = mon_bus_lookup(iminor(inode)); if (mbus == NULL) { mutex_unlock(&mon_lock); return -ENODEV; } if (mbus != &mon_bus0 && mbus->u_bus == NULL) { printk(KERN_ERR TAG ": consistency error on open\n"); mutex_unlock(&mon_lock); return -ENODEV; } rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL); if (rp == NULL) { rc = -ENOMEM; goto err_alloc; } spin_lock_init(&rp->b_lock); init_waitqueue_head(&rp->b_wait); mutex_init(&rp->fetch_lock); rp->b_size = BUFF_DFL; size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE); if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) { rc = -ENOMEM; goto err_allocvec; } if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0) goto err_allocbuff; rp->r.m_bus = mbus; rp->r.r_data = rp; rp->r.rnf_submit = mon_bin_submit; rp->r.rnf_error = mon_bin_error; rp->r.rnf_complete = mon_bin_complete; mon_reader_add(mbus, &rp->r); file->private_data = rp; mutex_unlock(&mon_lock); return 0; err_allocbuff: kfree(rp->b_vec); err_allocvec: kfree(rp); err_alloc: mutex_unlock(&mon_lock); return rc; } /* * Extract an event from buffer and copy it to user space. * Wait if there is no event ready. * Returns zero or error. */ static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp, struct mon_bin_hdr __user *hdr, unsigned int hdrbytes, void __user *data, unsigned int nbytes) { unsigned long flags; struct mon_bin_hdr *ep; size_t step_len; unsigned int offset; int rc; mutex_lock(&rp->fetch_lock); if ((rc = mon_bin_wait_event(file, rp)) < 0) { mutex_unlock(&rp->fetch_lock); return rc; } ep = MON_OFF2HDR(rp, rp->b_out); if (copy_to_user(hdr, ep, hdrbytes)) { mutex_unlock(&rp->fetch_lock); return -EFAULT; } step_len = min(ep->len_cap, nbytes); if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0; if (copy_from_buf(rp, offset, data, step_len)) { mutex_unlock(&rp->fetch_lock); return -EFAULT; } spin_lock_irqsave(&rp->b_lock, flags); mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); spin_unlock_irqrestore(&rp->b_lock, flags); rp->b_read = 0; mutex_unlock(&rp->fetch_lock); return 0; } static int mon_bin_release(struct inode *inode, struct file *file) { struct mon_reader_bin *rp = file->private_data; struct mon_bus* mbus = rp->r.m_bus; mutex_lock(&mon_lock); if (mbus->nreaders <= 0) { printk(KERN_ERR TAG ": consistency error on close\n"); mutex_unlock(&mon_lock); return 0; } mon_reader_del(mbus, &rp->r); mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); kfree(rp->b_vec); kfree(rp); mutex_unlock(&mon_lock); return 0; } static ssize_t mon_bin_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct mon_reader_bin *rp = file->private_data; unsigned int hdrbytes = PKT_SZ_API0; unsigned long flags; struct mon_bin_hdr *ep; unsigned int offset; size_t step_len; char *ptr; ssize_t done = 0; int rc; mutex_lock(&rp->fetch_lock); if ((rc = mon_bin_wait_event(file, rp)) < 0) { mutex_unlock(&rp->fetch_lock); return rc; } ep = MON_OFF2HDR(rp, rp->b_out); if (rp->b_read < hdrbytes) { step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read)); ptr = ((char *)ep) + rp->b_read; if (step_len && copy_to_user(buf, ptr, step_len)) { mutex_unlock(&rp->fetch_lock); return -EFAULT; } nbytes -= step_len; buf += step_len; rp->b_read += step_len; done += step_len; } if (rp->b_read >= hdrbytes) { step_len = ep->len_cap; step_len -= rp->b_read - hdrbytes; if (step_len > nbytes) step_len = nbytes; offset = rp->b_out + PKT_SIZE; offset += rp->b_read - hdrbytes; if (offset >= rp->b_size) offset -= rp->b_size; if (copy_from_buf(rp, offset, buf, step_len)) { mutex_unlock(&rp->fetch_lock); return -EFAULT; } nbytes -= step_len; buf += step_len; rp->b_read += step_len; done += step_len; } /* * Check if whole packet was read, and if so, jump to the next one. */ if (rp->b_read >= hdrbytes + ep->len_cap) { spin_lock_irqsave(&rp->b_lock, flags); mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); spin_unlock_irqrestore(&rp->b_lock, flags); rp->b_read = 0; } mutex_unlock(&rp->fetch_lock); return done; } /* * Remove at most nevents from chunked buffer. * Returns the number of removed events. */ static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents) { unsigned long flags; struct mon_bin_hdr *ep; int i; mutex_lock(&rp->fetch_lock); spin_lock_irqsave(&rp->b_lock, flags); for (i = 0; i < nevents; ++i) { if (MON_RING_EMPTY(rp)) break; ep = MON_OFF2HDR(rp, rp->b_out); mon_buff_area_free(rp, PKT_SIZE + ep->len_cap); } spin_unlock_irqrestore(&rp->b_lock, flags); rp->b_read = 0; mutex_unlock(&rp->fetch_lock); return i; } /* * Fetch at most max event offsets into the buffer and put them into vec. * The events are usually freed later with mon_bin_flush. * Return the effective number of events fetched. */ static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp, u32 __user *vec, unsigned int max) { unsigned int cur_out; unsigned int bytes, avail; unsigned int size; unsigned int nevents; struct mon_bin_hdr *ep; unsigned long flags; int rc; mutex_lock(&rp->fetch_lock); if ((rc = mon_bin_wait_event(file, rp)) < 0) { mutex_unlock(&rp->fetch_lock); return rc; } spin_lock_irqsave(&rp->b_lock, flags); avail = rp->b_cnt; spin_unlock_irqrestore(&rp->b_lock, flags); cur_out = rp->b_out; nevents = 0; bytes = 0; while (bytes < avail) { if (nevents >= max) break; ep = MON_OFF2HDR(rp, cur_out); if (put_user(cur_out, &vec[nevents])) { mutex_unlock(&rp->fetch_lock); return -EFAULT; } nevents++; size = ep->len_cap + PKT_SIZE; size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); if ((cur_out += size) >= rp->b_size) cur_out -= rp->b_size; bytes += size; } mutex_unlock(&rp->fetch_lock); return nevents; } /* * Count events. This is almost the same as the above mon_bin_fetch, * only we do not store offsets into user vector, and we have no limit. */ static int mon_bin_queued(struct mon_reader_bin *rp) { unsigned int cur_out; unsigned int bytes, avail; unsigned int size; unsigned int nevents; struct mon_bin_hdr *ep; unsigned long flags; mutex_lock(&rp->fetch_lock); spin_lock_irqsave(&rp->b_lock, flags); avail = rp->b_cnt; spin_unlock_irqrestore(&rp->b_lock, flags); cur_out = rp->b_out; nevents = 0; bytes = 0; while (bytes < avail) { ep = MON_OFF2HDR(rp, cur_out); nevents++; size = ep->len_cap + PKT_SIZE; size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1); if ((cur_out += size) >= rp->b_size) cur_out -= rp->b_size; bytes += size; } mutex_unlock(&rp->fetch_lock); return nevents; } /* */ static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct mon_reader_bin *rp = file->private_data; // struct mon_bus* mbus = rp->r.m_bus; int ret = 0; struct mon_bin_hdr *ep; unsigned long flags; switch (cmd) { case MON_IOCQ_URB_LEN: /* * N.B. This only returns the size of data, without the header. */ spin_lock_irqsave(&rp->b_lock, flags); if (!MON_RING_EMPTY(rp)) { ep = MON_OFF2HDR(rp, rp->b_out); ret = ep->len_cap; } spin_unlock_irqrestore(&rp->b_lock, flags); break; case MON_IOCQ_RING_SIZE: mutex_lock(&rp->fetch_lock); ret = rp->b_size; mutex_unlock(&rp->fetch_lock); break; case MON_IOCT_RING_SIZE: /* * Changing the buffer size will flush it's contents; the new * buffer is allocated before releasing the old one to be sure * the device will stay functional also in case of memory * pressure. */ { int size; struct mon_pgmap *vec; if (arg < BUFF_MIN || arg > BUFF_MAX) return -EINVAL; size = CHUNK_ALIGN(arg); vec = kcalloc(size / CHUNK_SIZE, sizeof(struct mon_pgmap), GFP_KERNEL); if (vec == NULL) { ret = -ENOMEM; break; } ret = mon_alloc_buff(vec, size/CHUNK_SIZE); if (ret < 0) { kfree(vec); break; } mutex_lock(&rp->fetch_lock); spin_lock_irqsave(&rp->b_lock, flags); if (rp->mmap_active) { mon_free_buff(vec, size/CHUNK_SIZE); kfree(vec); ret = -EBUSY; } else { mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE); kfree(rp->b_vec); rp->b_vec = vec; rp->b_size = size; rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0; rp->cnt_lost = 0; } spin_unlock_irqrestore(&rp->b_lock, flags); mutex_unlock(&rp->fetch_lock); } break; case MON_IOCH_MFLUSH: ret = mon_bin_flush(rp, arg); break; case MON_IOCX_GET: case MON_IOCX_GETX: { struct mon_bin_get getb; if (copy_from_user(&getb, (void __user *)arg, sizeof(struct mon_bin_get))) return -EFAULT; if (getb.alloc > 0x10000000) /* Want to cast to u32 */ return -EINVAL; ret = mon_bin_get_event(file, rp, getb.hdr, (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1, getb.data, (unsigned int)getb.alloc); } break; case MON_IOCX_MFETCH: { struct mon_bin_mfetch mfetch; struct mon_bin_mfetch __user *uptr; uptr = (struct mon_bin_mfetch __user *)arg; if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) return -EFAULT; if (mfetch.nflush) { ret = mon_bin_flush(rp, mfetch.nflush); if (ret < 0) return ret; if (put_user(ret, &uptr->nflush)) return -EFAULT; } ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch); if (ret < 0) return ret; if (put_user(ret, &uptr->nfetch)) return -EFAULT; ret = 0; } break; case MON_IOCG_STATS: { struct mon_bin_stats __user *sp; unsigned int nevents; unsigned int ndropped; spin_lock_irqsave(&rp->b_lock, flags); ndropped = rp->cnt_lost; rp->cnt_lost = 0; spin_unlock_irqrestore(&rp->b_lock, flags); nevents = mon_bin_queued(rp); sp = (struct mon_bin_stats __user *)arg; if (put_user(ndropped, &sp->dropped)) return -EFAULT; if (put_user(nevents, &sp->queued)) return -EFAULT; } break; default: return -ENOTTY; } return ret; } #ifdef CONFIG_COMPAT static long mon_bin_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct mon_reader_bin *rp = file->private_data; int ret; switch (cmd) { case MON_IOCX_GET32: case MON_IOCX_GETX32: { struct mon_bin_get32 getb; if (copy_from_user(&getb, (void __user *)arg, sizeof(struct mon_bin_get32))) return -EFAULT; ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32), (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1, compat_ptr(getb.data32), getb.alloc32); if (ret < 0) return ret; } return 0; case MON_IOCX_MFETCH32: { struct mon_bin_mfetch32 mfetch; struct mon_bin_mfetch32 __user *uptr; uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg); if (copy_from_user(&mfetch, uptr, sizeof(mfetch))) return -EFAULT; if (mfetch.nflush32) { ret = mon_bin_flush(rp, mfetch.nflush32); if (ret < 0) return ret; if (put_user(ret, &uptr->nflush32)) return -EFAULT; } ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32), mfetch.nfetch32); if (ret < 0) return ret; if (put_user(ret, &uptr->nfetch32)) return -EFAULT; } return 0; case MON_IOCG_STATS: return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); case MON_IOCQ_URB_LEN: case MON_IOCQ_RING_SIZE: case MON_IOCT_RING_SIZE: case MON_IOCH_MFLUSH: return mon_bin_ioctl(file, cmd, arg); default: ; } return -ENOTTY; } #endif /* CONFIG_COMPAT */ static __poll_t mon_bin_poll(struct file *file, struct poll_table_struct *wait) { struct mon_reader_bin *rp = file->private_data; __poll_t mask = 0; unsigned long flags; if (file->f_mode & FMODE_READ) poll_wait(file, &rp->b_wait, wait); spin_lock_irqsave(&rp->b_lock, flags); if (!MON_RING_EMPTY(rp)) mask |= EPOLLIN | EPOLLRDNORM; /* readable */ spin_unlock_irqrestore(&rp->b_lock, flags); return mask; } /* * open and close: just keep track of how many times the device is * mapped, to use the proper memory allocation function. */ static void mon_bin_vma_open(struct vm_area_struct *vma) { struct mon_reader_bin *rp = vma->vm_private_data; unsigned long flags; spin_lock_irqsave(&rp->b_lock, flags); rp->mmap_active++; spin_unlock_irqrestore(&rp->b_lock, flags); } static void mon_bin_vma_close(struct vm_area_struct *vma) { unsigned long flags; struct mon_reader_bin *rp = vma->vm_private_data; spin_lock_irqsave(&rp->b_lock, flags); rp->mmap_active--; spin_unlock_irqrestore(&rp->b_lock, flags); } /* * Map ring pages to user space. */ static vm_fault_t mon_bin_vma_fault(struct vm_fault *vmf) { struct mon_reader_bin *rp = vmf->vma->vm_private_data; unsigned long offset, chunk_idx; struct page *pageptr; unsigned long flags; spin_lock_irqsave(&rp->b_lock, flags); offset = vmf->pgoff << PAGE_SHIFT; if (offset >= rp->b_size) { spin_unlock_irqrestore(&rp->b_lock, flags); return VM_FAULT_SIGBUS; } chunk_idx = offset / CHUNK_SIZE; pageptr = rp->b_vec[chunk_idx].pg; get_page(pageptr); vmf->page = pageptr; spin_unlock_irqrestore(&rp->b_lock, flags); return 0; } static const struct vm_operations_struct mon_bin_vm_ops = { .open = mon_bin_vma_open, .close = mon_bin_vma_close, .fault = mon_bin_vma_fault, }; static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma) { /* don't do anything here: "fault" will set up page table entries */ vma->vm_ops = &mon_bin_vm_ops; if (vma->vm_flags & VM_WRITE) return -EPERM; vm_flags_mod(vma, VM_DONTEXPAND | VM_DONTDUMP, VM_MAYWRITE); vma->vm_private_data = filp->private_data; mon_bin_vma_open(vma); return 0; } static const struct file_operations mon_fops_binary = { .owner = THIS_MODULE, .open = mon_bin_open, .llseek = no_llseek, .read = mon_bin_read, /* .write = mon_text_write, */ .poll = mon_bin_poll, .unlocked_ioctl = mon_bin_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl = mon_bin_compat_ioctl, #endif .release = mon_bin_release, .mmap = mon_bin_mmap, }; static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp) { DECLARE_WAITQUEUE(waita, current); unsigned long flags; add_wait_queue(&rp->b_wait, &waita); set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&rp->b_lock, flags); while (MON_RING_EMPTY(rp)) { spin_unlock_irqrestore(&rp->b_lock, flags); if (file->f_flags & O_NONBLOCK) { set_current_state(TASK_RUNNING); remove_wait_queue(&rp->b_wait, &waita); return -EWOULDBLOCK; /* Same as EAGAIN in Linux */ } schedule(); if (signal_pending(current)) { remove_wait_queue(&rp->b_wait, &waita); return -EINTR; } set_current_state(TASK_INTERRUPTIBLE); spin_lock_irqsave(&rp->b_lock, flags); } spin_unlock_irqrestore(&rp->b_lock, flags); set_current_state(TASK_RUNNING); remove_wait_queue(&rp->b_wait, &waita); return 0; } static int mon_alloc_buff(struct mon_pgmap *map, int npages) { int n; unsigned long vaddr; for (n = 0; n < npages; n++) { vaddr = get_zeroed_page(GFP_KERNEL); if (vaddr == 0) { while (n-- != 0) free_page((unsigned long) map[n].ptr); return -ENOMEM; } map[n].ptr = (unsigned char *) vaddr; map[n].pg = virt_to_page((void *) vaddr); } return 0; } static void mon_free_buff(struct mon_pgmap *map, int npages) { int n; for (n = 0; n < npages; n++) free_page((unsigned long) map[n].ptr); } int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus) { struct device *dev; unsigned minor = ubus? ubus->busnum: 0; if (minor >= MON_BIN_MAX_MINOR) return 0; dev = device_create(&mon_bin_class, ubus ? ubus->controller : NULL, MKDEV(MAJOR(mon_bin_dev0), minor), NULL, "usbmon%d", minor); if (IS_ERR(dev)) return 0; mbus->classdev = dev; return 1; } void mon_bin_del(struct mon_bus *mbus) { device_destroy(&mon_bin_class, mbus->classdev->devt); } int __init mon_bin_init(void) { int rc; rc = class_register(&mon_bin_class); if (rc) goto err_class; rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon"); if (rc < 0) goto err_dev; cdev_init(&mon_bin_cdev, &mon_fops_binary); mon_bin_cdev.owner = THIS_MODULE; rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR); if (rc < 0) goto err_add; return 0; err_add: unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); err_dev: class_unregister(&mon_bin_class); err_class: return rc; } void mon_bin_exit(void) { cdev_del(&mon_bin_cdev); unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR); class_unregister(&mon_bin_class); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1