Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nicholas Bellinger | 5059 | 41.99% | 27 | 19.85% |
Michael Christie | 2511 | 20.84% | 30 | 22.06% |
Asias He | 2386 | 19.80% | 21 | 15.44% |
Bijan Mottahedeh | 1453 | 12.06% | 4 | 2.94% |
Michael S. Tsirkin | 199 | 1.65% | 11 | 8.09% |
Jason (Hui) Wang | 124 | 1.03% | 6 | 4.41% |
Christoph Hellwig | 102 | 0.85% | 4 | 2.94% |
Al Viro | 86 | 0.71% | 5 | 3.68% |
Eugenio Pérez | 28 | 0.23% | 1 | 0.74% |
Byungchul Park | 20 | 0.17% | 2 | 1.47% |
Venkatesh Srinivas | 16 | 0.13% | 1 | 0.74% |
Bart Van Assche | 10 | 0.08% | 2 | 1.47% |
SF Markus Elfring | 8 | 0.07% | 1 | 0.74% |
Zhang Changzhong | 6 | 0.05% | 1 | 0.74% |
Sudhakar Panneerselvam | 5 | 0.04% | 1 | 0.74% |
Dan Carpenter | 4 | 0.03% | 1 | 0.74% |
Ming Lei | 4 | 0.03% | 2 | 1.47% |
David S. Miller | 3 | 0.02% | 1 | 0.74% |
Jens Axboe | 3 | 0.02% | 1 | 0.74% |
Bo Liu | 3 | 0.02% | 1 | 0.74% |
wangyan | 2 | 0.02% | 1 | 0.74% |
Kees Cook | 2 | 0.02% | 1 | 0.74% |
caihuoqing | 2 | 0.02% | 1 | 0.74% |
David Disseldorp | 2 | 0.02% | 1 | 0.74% |
Greg Kroah-Hartman | 2 | 0.02% | 1 | 0.74% |
Dongli Zhang | 1 | 0.01% | 1 | 0.74% |
Geert Uytterhoeven | 1 | 0.01% | 1 | 0.74% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.74% |
Mark Rutland | 1 | 0.01% | 1 | 0.74% |
Jörn Engel | 1 | 0.01% | 1 | 0.74% |
Greg Edwards | 1 | 0.01% | 1 | 0.74% |
Bhumika Goyal | 1 | 0.01% | 1 | 0.74% |
Greg Kurz | 1 | 0.01% | 1 | 0.74% |
Total | 12048 | 136 |
// SPDX-License-Identifier: GPL-2.0+ /******************************************************************************* * Vhost kernel TCM fabric driver for virtio SCSI initiators * * (C) Copyright 2010-2013 Datera, Inc. * (C) Copyright 2010-2012 IBM Corp. * * Authors: Nicholas A. Bellinger <nab@daterainc.com> * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> ****************************************************************************/ #include <linux/module.h> #include <linux/moduleparam.h> #include <generated/utsrelease.h> #include <linux/utsname.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/kthread.h> #include <linux/types.h> #include <linux/string.h> #include <linux/configfs.h> #include <linux/ctype.h> #include <linux/compat.h> #include <linux/eventfd.h> #include <linux/fs.h> #include <linux/vmalloc.h> #include <linux/miscdevice.h> #include <linux/blk_types.h> #include <linux/bio.h> #include <asm/unaligned.h> #include <scsi/scsi_common.h> #include <scsi/scsi_proto.h> #include <target/target_core_base.h> #include <target/target_core_fabric.h> #include <linux/vhost.h> #include <linux/virtio_scsi.h> #include <linux/llist.h> #include <linux/bitmap.h> #include "vhost.h" #define VHOST_SCSI_VERSION "v0.1" #define VHOST_SCSI_NAMELEN 256 #define VHOST_SCSI_MAX_CDB_SIZE 32 #define VHOST_SCSI_PREALLOC_SGLS 2048 #define VHOST_SCSI_PREALLOC_UPAGES 2048 #define VHOST_SCSI_PREALLOC_PROT_SGLS 2048 /* Max number of requests before requeueing the job. * Using this limit prevents one virtqueue from starving others with * request. */ #define VHOST_SCSI_WEIGHT 256 struct vhost_scsi_inflight { /* Wait for the flush operation to finish */ struct completion comp; /* Refcount for the inflight reqs */ struct kref kref; }; struct vhost_scsi_cmd { /* Descriptor from vhost_get_vq_desc() for virt_queue segment */ int tvc_vq_desc; /* virtio-scsi initiator task attribute */ int tvc_task_attr; /* virtio-scsi response incoming iovecs */ int tvc_in_iovs; /* virtio-scsi initiator data direction */ enum dma_data_direction tvc_data_direction; /* Expected data transfer length from virtio-scsi header */ u32 tvc_exp_data_len; /* The Tag from include/linux/virtio_scsi.h:struct virtio_scsi_cmd_req */ u64 tvc_tag; /* The number of scatterlists associated with this cmd */ u32 tvc_sgl_count; u32 tvc_prot_sgl_count; /* Saved unpacked SCSI LUN for vhost_scsi_target_queue_cmd() */ u32 tvc_lun; u32 copied_iov:1; const void *saved_iter_addr; struct iov_iter saved_iter; /* Pointer to the SGL formatted memory from virtio-scsi */ struct scatterlist *tvc_sgl; struct scatterlist *tvc_prot_sgl; struct page **tvc_upages; /* Pointer to response header iovec */ struct iovec *tvc_resp_iov; /* Pointer to vhost_scsi for our device */ struct vhost_scsi *tvc_vhost; /* Pointer to vhost_virtqueue for the cmd */ struct vhost_virtqueue *tvc_vq; /* Pointer to vhost nexus memory */ struct vhost_scsi_nexus *tvc_nexus; /* The TCM I/O descriptor that is accessed via container_of() */ struct se_cmd tvc_se_cmd; /* Copy of the incoming SCSI command descriptor block (CDB) */ unsigned char tvc_cdb[VHOST_SCSI_MAX_CDB_SIZE]; /* Sense buffer that will be mapped into outgoing status */ unsigned char tvc_sense_buf[TRANSPORT_SENSE_BUFFER]; /* Completed commands list, serviced from vhost worker thread */ struct llist_node tvc_completion_list; /* Used to track inflight cmd */ struct vhost_scsi_inflight *inflight; }; struct vhost_scsi_nexus { /* Pointer to TCM session for I_T Nexus */ struct se_session *tvn_se_sess; }; struct vhost_scsi_tpg { /* Vhost port target portal group tag for TCM */ u16 tport_tpgt; /* Used to track number of TPG Port/Lun Links wrt to explict I_T Nexus shutdown */ int tv_tpg_port_count; /* Used for vhost_scsi device reference to tpg_nexus, protected by tv_tpg_mutex */ int tv_tpg_vhost_count; /* Used for enabling T10-PI with legacy devices */ int tv_fabric_prot_type; /* list for vhost_scsi_list */ struct list_head tv_tpg_list; /* Used to protect access for tpg_nexus */ struct mutex tv_tpg_mutex; /* Pointer to the TCM VHost I_T Nexus for this TPG endpoint */ struct vhost_scsi_nexus *tpg_nexus; /* Pointer back to vhost_scsi_tport */ struct vhost_scsi_tport *tport; /* Returned by vhost_scsi_make_tpg() */ struct se_portal_group se_tpg; /* Pointer back to vhost_scsi, protected by tv_tpg_mutex */ struct vhost_scsi *vhost_scsi; }; struct vhost_scsi_tport { /* SCSI protocol the tport is providing */ u8 tport_proto_id; /* Binary World Wide unique Port Name for Vhost Target port */ u64 tport_wwpn; /* ASCII formatted WWPN for Vhost Target port */ char tport_name[VHOST_SCSI_NAMELEN]; /* Returned by vhost_scsi_make_tport() */ struct se_wwn tport_wwn; }; struct vhost_scsi_evt { /* event to be sent to guest */ struct virtio_scsi_event event; /* event list, serviced from vhost worker thread */ struct llist_node list; }; enum { VHOST_SCSI_VQ_CTL = 0, VHOST_SCSI_VQ_EVT = 1, VHOST_SCSI_VQ_IO = 2, }; /* Note: can't set VIRTIO_F_VERSION_1 yet, since that implies ANY_LAYOUT. */ enum { VHOST_SCSI_FEATURES = VHOST_FEATURES | (1ULL << VIRTIO_SCSI_F_HOTPLUG) | (1ULL << VIRTIO_SCSI_F_T10_PI) }; #define VHOST_SCSI_MAX_TARGET 256 #define VHOST_SCSI_MAX_IO_VQ 1024 #define VHOST_SCSI_MAX_EVENT 128 static unsigned vhost_scsi_max_io_vqs = 128; module_param_named(max_io_vqs, vhost_scsi_max_io_vqs, uint, 0644); MODULE_PARM_DESC(max_io_vqs, "Set the max number of IO virtqueues a vhost scsi device can support. The default is 128. The max is 1024."); struct vhost_scsi_virtqueue { struct vhost_virtqueue vq; struct vhost_scsi *vs; /* * Reference counting for inflight reqs, used for flush operation. At * each time, one reference tracks new commands submitted, while we * wait for another one to reach 0. */ struct vhost_scsi_inflight inflights[2]; /* * Indicate current inflight in use, protected by vq->mutex. * Writers must also take dev mutex and flush under it. */ int inflight_idx; struct vhost_scsi_cmd *scsi_cmds; struct sbitmap scsi_tags; int max_cmds; struct vhost_work completion_work; struct llist_head completion_list; }; struct vhost_scsi { /* Protected by vhost_scsi->dev.mutex */ struct vhost_scsi_tpg **vs_tpg; char vs_vhost_wwpn[TRANSPORT_IQN_LEN]; struct vhost_dev dev; struct vhost_scsi_virtqueue *vqs; struct vhost_scsi_inflight **old_inflight; struct vhost_work vs_event_work; /* evt injection work item */ struct llist_head vs_event_list; /* evt injection queue */ bool vs_events_missed; /* any missed events, protected by vq->mutex */ int vs_events_nr; /* num of pending events, protected by vq->mutex */ }; struct vhost_scsi_tmf { struct vhost_work vwork; struct work_struct flush_work; struct vhost_scsi *vhost; struct vhost_scsi_virtqueue *svq; struct se_cmd se_cmd; u8 scsi_resp; struct vhost_scsi_inflight *inflight; struct iovec resp_iov; int in_iovs; int vq_desc; }; /* * Context for processing request and control queue operations. */ struct vhost_scsi_ctx { int head; unsigned int out, in; size_t req_size, rsp_size; size_t out_size, in_size; u8 *target, *lunp; void *req; struct iov_iter out_iter; }; /* * Global mutex to protect vhost_scsi TPG list for vhost IOCTLs and LIO * configfs management operations. */ static DEFINE_MUTEX(vhost_scsi_mutex); static LIST_HEAD(vhost_scsi_list); static void vhost_scsi_done_inflight(struct kref *kref) { struct vhost_scsi_inflight *inflight; inflight = container_of(kref, struct vhost_scsi_inflight, kref); complete(&inflight->comp); } static void vhost_scsi_init_inflight(struct vhost_scsi *vs, struct vhost_scsi_inflight *old_inflight[]) { struct vhost_scsi_inflight *new_inflight; struct vhost_virtqueue *vq; int idx, i; for (i = 0; i < vs->dev.nvqs; i++) { vq = &vs->vqs[i].vq; mutex_lock(&vq->mutex); /* store old infight */ idx = vs->vqs[i].inflight_idx; if (old_inflight) old_inflight[i] = &vs->vqs[i].inflights[idx]; /* setup new infight */ vs->vqs[i].inflight_idx = idx ^ 1; new_inflight = &vs->vqs[i].inflights[idx ^ 1]; kref_init(&new_inflight->kref); init_completion(&new_inflight->comp); mutex_unlock(&vq->mutex); } } static struct vhost_scsi_inflight * vhost_scsi_get_inflight(struct vhost_virtqueue *vq) { struct vhost_scsi_inflight *inflight; struct vhost_scsi_virtqueue *svq; svq = container_of(vq, struct vhost_scsi_virtqueue, vq); inflight = &svq->inflights[svq->inflight_idx]; kref_get(&inflight->kref); return inflight; } static void vhost_scsi_put_inflight(struct vhost_scsi_inflight *inflight) { kref_put(&inflight->kref, vhost_scsi_done_inflight); } static int vhost_scsi_check_true(struct se_portal_group *se_tpg) { return 1; } static char *vhost_scsi_get_fabric_wwn(struct se_portal_group *se_tpg) { struct vhost_scsi_tpg *tpg = container_of(se_tpg, struct vhost_scsi_tpg, se_tpg); struct vhost_scsi_tport *tport = tpg->tport; return &tport->tport_name[0]; } static u16 vhost_scsi_get_tpgt(struct se_portal_group *se_tpg) { struct vhost_scsi_tpg *tpg = container_of(se_tpg, struct vhost_scsi_tpg, se_tpg); return tpg->tport_tpgt; } static int vhost_scsi_check_prot_fabric_only(struct se_portal_group *se_tpg) { struct vhost_scsi_tpg *tpg = container_of(se_tpg, struct vhost_scsi_tpg, se_tpg); return tpg->tv_fabric_prot_type; } static void vhost_scsi_release_cmd_res(struct se_cmd *se_cmd) { struct vhost_scsi_cmd *tv_cmd = container_of(se_cmd, struct vhost_scsi_cmd, tvc_se_cmd); struct vhost_scsi_virtqueue *svq = container_of(tv_cmd->tvc_vq, struct vhost_scsi_virtqueue, vq); struct vhost_scsi_inflight *inflight = tv_cmd->inflight; int i; if (tv_cmd->tvc_sgl_count) { for (i = 0; i < tv_cmd->tvc_sgl_count; i++) { if (tv_cmd->copied_iov) __free_page(sg_page(&tv_cmd->tvc_sgl[i])); else put_page(sg_page(&tv_cmd->tvc_sgl[i])); } kfree(tv_cmd->saved_iter_addr); } if (tv_cmd->tvc_prot_sgl_count) { for (i = 0; i < tv_cmd->tvc_prot_sgl_count; i++) put_page(sg_page(&tv_cmd->tvc_prot_sgl[i])); } sbitmap_clear_bit(&svq->scsi_tags, se_cmd->map_tag); vhost_scsi_put_inflight(inflight); } static void vhost_scsi_release_tmf_res(struct vhost_scsi_tmf *tmf) { struct vhost_scsi_inflight *inflight = tmf->inflight; kfree(tmf); vhost_scsi_put_inflight(inflight); } static void vhost_scsi_drop_cmds(struct vhost_scsi_virtqueue *svq) { struct vhost_scsi_cmd *cmd, *t; struct llist_node *llnode; llnode = llist_del_all(&svq->completion_list); llist_for_each_entry_safe(cmd, t, llnode, tvc_completion_list) vhost_scsi_release_cmd_res(&cmd->tvc_se_cmd); } static void vhost_scsi_release_cmd(struct se_cmd *se_cmd) { if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB) { struct vhost_scsi_tmf *tmf = container_of(se_cmd, struct vhost_scsi_tmf, se_cmd); schedule_work(&tmf->flush_work); } else { struct vhost_scsi_cmd *cmd = container_of(se_cmd, struct vhost_scsi_cmd, tvc_se_cmd); struct vhost_scsi_virtqueue *svq = container_of(cmd->tvc_vq, struct vhost_scsi_virtqueue, vq); llist_add(&cmd->tvc_completion_list, &svq->completion_list); if (!vhost_vq_work_queue(&svq->vq, &svq->completion_work)) vhost_scsi_drop_cmds(svq); } } static int vhost_scsi_write_pending(struct se_cmd *se_cmd) { /* Go ahead and process the write immediately */ target_execute_cmd(se_cmd); return 0; } static int vhost_scsi_queue_data_in(struct se_cmd *se_cmd) { transport_generic_free_cmd(se_cmd, 0); return 0; } static int vhost_scsi_queue_status(struct se_cmd *se_cmd) { transport_generic_free_cmd(se_cmd, 0); return 0; } static void vhost_scsi_queue_tm_rsp(struct se_cmd *se_cmd) { struct vhost_scsi_tmf *tmf = container_of(se_cmd, struct vhost_scsi_tmf, se_cmd); tmf->scsi_resp = se_cmd->se_tmr_req->response; transport_generic_free_cmd(&tmf->se_cmd, 0); } static void vhost_scsi_aborted_task(struct se_cmd *se_cmd) { return; } static void vhost_scsi_free_evt(struct vhost_scsi *vs, struct vhost_scsi_evt *evt) { vs->vs_events_nr--; kfree(evt); } static struct vhost_scsi_evt * vhost_scsi_allocate_evt(struct vhost_scsi *vs, u32 event, u32 reason) { struct vhost_virtqueue *vq = &vs->vqs[VHOST_SCSI_VQ_EVT].vq; struct vhost_scsi_evt *evt; if (vs->vs_events_nr > VHOST_SCSI_MAX_EVENT) { vs->vs_events_missed = true; return NULL; } evt = kzalloc(sizeof(*evt), GFP_KERNEL); if (!evt) { vq_err(vq, "Failed to allocate vhost_scsi_evt\n"); vs->vs_events_missed = true; return NULL; } evt->event.event = cpu_to_vhost32(vq, event); evt->event.reason = cpu_to_vhost32(vq, reason); vs->vs_events_nr++; return evt; } static int vhost_scsi_check_stop_free(struct se_cmd *se_cmd) { return target_put_sess_cmd(se_cmd); } static void vhost_scsi_do_evt_work(struct vhost_scsi *vs, struct vhost_scsi_evt *evt) { struct vhost_virtqueue *vq = &vs->vqs[VHOST_SCSI_VQ_EVT].vq; struct virtio_scsi_event *event = &evt->event; struct virtio_scsi_event __user *eventp; unsigned out, in; int head, ret; if (!vhost_vq_get_backend(vq)) { vs->vs_events_missed = true; return; } again: vhost_disable_notify(&vs->dev, vq); head = vhost_get_vq_desc(vq, vq->iov, ARRAY_SIZE(vq->iov), &out, &in, NULL, NULL); if (head < 0) { vs->vs_events_missed = true; return; } if (head == vq->num) { if (vhost_enable_notify(&vs->dev, vq)) goto again; vs->vs_events_missed = true; return; } if ((vq->iov[out].iov_len != sizeof(struct virtio_scsi_event))) { vq_err(vq, "Expecting virtio_scsi_event, got %zu bytes\n", vq->iov[out].iov_len); vs->vs_events_missed = true; return; } if (vs->vs_events_missed) { event->event |= cpu_to_vhost32(vq, VIRTIO_SCSI_T_EVENTS_MISSED); vs->vs_events_missed = false; } eventp = vq->iov[out].iov_base; ret = __copy_to_user(eventp, event, sizeof(*event)); if (!ret) vhost_add_used_and_signal(&vs->dev, vq, head, 0); else vq_err(vq, "Faulted on vhost_scsi_send_event\n"); } static void vhost_scsi_complete_events(struct vhost_scsi *vs, bool drop) { struct vhost_virtqueue *vq = &vs->vqs[VHOST_SCSI_VQ_EVT].vq; struct vhost_scsi_evt *evt, *t; struct llist_node *llnode; mutex_lock(&vq->mutex); llnode = llist_del_all(&vs->vs_event_list); llist_for_each_entry_safe(evt, t, llnode, list) { if (!drop) vhost_scsi_do_evt_work(vs, evt); vhost_scsi_free_evt(vs, evt); } mutex_unlock(&vq->mutex); } static void vhost_scsi_evt_work(struct vhost_work *work) { struct vhost_scsi *vs = container_of(work, struct vhost_scsi, vs_event_work); vhost_scsi_complete_events(vs, false); } static int vhost_scsi_copy_sgl_to_iov(struct vhost_scsi_cmd *cmd) { struct iov_iter *iter = &cmd->saved_iter; struct scatterlist *sg = cmd->tvc_sgl; struct page *page; size_t len; int i; for (i = 0; i < cmd->tvc_sgl_count; i++) { page = sg_page(&sg[i]); len = sg[i].length; if (copy_page_to_iter(page, 0, len, iter) != len) { pr_err("Could not copy data while handling misaligned cmd. Error %zu\n", len); return -1; } } return 0; } /* Fill in status and signal that we are done processing this command * * This is scheduled in the vhost work queue so we are called with the owner * process mm and can access the vring. */ static void vhost_scsi_complete_cmd_work(struct vhost_work *work) { struct vhost_scsi_virtqueue *svq = container_of(work, struct vhost_scsi_virtqueue, completion_work); struct virtio_scsi_cmd_resp v_rsp; struct vhost_scsi_cmd *cmd, *t; struct llist_node *llnode; struct se_cmd *se_cmd; struct iov_iter iov_iter; bool signal = false; int ret; llnode = llist_del_all(&svq->completion_list); llist_for_each_entry_safe(cmd, t, llnode, tvc_completion_list) { se_cmd = &cmd->tvc_se_cmd; pr_debug("%s tv_cmd %p resid %u status %#02x\n", __func__, cmd, se_cmd->residual_count, se_cmd->scsi_status); memset(&v_rsp, 0, sizeof(v_rsp)); if (cmd->saved_iter_addr && vhost_scsi_copy_sgl_to_iov(cmd)) { v_rsp.response = VIRTIO_SCSI_S_BAD_TARGET; } else { v_rsp.resid = cpu_to_vhost32(cmd->tvc_vq, se_cmd->residual_count); /* TODO is status_qualifier field needed? */ v_rsp.status = se_cmd->scsi_status; v_rsp.sense_len = cpu_to_vhost32(cmd->tvc_vq, se_cmd->scsi_sense_length); memcpy(v_rsp.sense, cmd->tvc_sense_buf, se_cmd->scsi_sense_length); } iov_iter_init(&iov_iter, ITER_DEST, cmd->tvc_resp_iov, cmd->tvc_in_iovs, sizeof(v_rsp)); ret = copy_to_iter(&v_rsp, sizeof(v_rsp), &iov_iter); if (likely(ret == sizeof(v_rsp))) { signal = true; vhost_add_used(cmd->tvc_vq, cmd->tvc_vq_desc, 0); } else pr_err("Faulted on virtio_scsi_cmd_resp\n"); vhost_scsi_release_cmd_res(se_cmd); } if (signal) vhost_signal(&svq->vs->dev, &svq->vq); } static struct vhost_scsi_cmd * vhost_scsi_get_cmd(struct vhost_virtqueue *vq, struct vhost_scsi_tpg *tpg, unsigned char *cdb, u64 scsi_tag, u16 lun, u8 task_attr, u32 exp_data_len, int data_direction) { struct vhost_scsi_virtqueue *svq = container_of(vq, struct vhost_scsi_virtqueue, vq); struct vhost_scsi_cmd *cmd; struct vhost_scsi_nexus *tv_nexus; struct scatterlist *sg, *prot_sg; struct iovec *tvc_resp_iov; struct page **pages; int tag; tv_nexus = tpg->tpg_nexus; if (!tv_nexus) { pr_err("Unable to locate active struct vhost_scsi_nexus\n"); return ERR_PTR(-EIO); } tag = sbitmap_get(&svq->scsi_tags); if (tag < 0) { pr_err("Unable to obtain tag for vhost_scsi_cmd\n"); return ERR_PTR(-ENOMEM); } cmd = &svq->scsi_cmds[tag]; sg = cmd->tvc_sgl; prot_sg = cmd->tvc_prot_sgl; pages = cmd->tvc_upages; tvc_resp_iov = cmd->tvc_resp_iov; memset(cmd, 0, sizeof(*cmd)); cmd->tvc_sgl = sg; cmd->tvc_prot_sgl = prot_sg; cmd->tvc_upages = pages; cmd->tvc_se_cmd.map_tag = tag; cmd->tvc_tag = scsi_tag; cmd->tvc_lun = lun; cmd->tvc_task_attr = task_attr; cmd->tvc_exp_data_len = exp_data_len; cmd->tvc_data_direction = data_direction; cmd->tvc_nexus = tv_nexus; cmd->inflight = vhost_scsi_get_inflight(vq); cmd->tvc_resp_iov = tvc_resp_iov; memcpy(cmd->tvc_cdb, cdb, VHOST_SCSI_MAX_CDB_SIZE); return cmd; } /* * Map a user memory range into a scatterlist * * Returns the number of scatterlist entries used or -errno on error. */ static int vhost_scsi_map_to_sgl(struct vhost_scsi_cmd *cmd, struct iov_iter *iter, struct scatterlist *sgl, bool is_prot) { struct page **pages = cmd->tvc_upages; struct scatterlist *sg = sgl; ssize_t bytes, mapped_bytes; size_t offset, mapped_offset; unsigned int npages = 0; bytes = iov_iter_get_pages2(iter, pages, LONG_MAX, VHOST_SCSI_PREALLOC_UPAGES, &offset); /* No pages were pinned */ if (bytes <= 0) return bytes < 0 ? bytes : -EFAULT; mapped_bytes = bytes; mapped_offset = offset; while (bytes) { unsigned n = min_t(unsigned, PAGE_SIZE - offset, bytes); /* * The block layer requires bios/requests to be a multiple of * 512 bytes, but Windows can send us vecs that are misaligned. * This can result in bios and later requests with misaligned * sizes if we have to break up a cmd/scatterlist into multiple * bios. * * We currently only break up a command into multiple bios if * we hit the vec/seg limit, so check if our sgl_count is * greater than the max and if a vec in the cmd has a * misaligned offset/size. */ if (!is_prot && (offset & (SECTOR_SIZE - 1) || n & (SECTOR_SIZE - 1)) && cmd->tvc_sgl_count > BIO_MAX_VECS) { WARN_ONCE(true, "vhost-scsi detected misaligned IO. Performance may be degraded."); goto revert_iter_get_pages; } sg_set_page(sg++, pages[npages++], n, offset); bytes -= n; offset = 0; } return npages; revert_iter_get_pages: iov_iter_revert(iter, mapped_bytes); npages = 0; while (mapped_bytes) { unsigned int n = min_t(unsigned int, PAGE_SIZE - mapped_offset, mapped_bytes); put_page(pages[npages++]); mapped_bytes -= n; mapped_offset = 0; } return -EINVAL; } static int vhost_scsi_calc_sgls(struct iov_iter *iter, size_t bytes, int max_sgls) { int sgl_count = 0; if (!iter || !iter_iov(iter)) { pr_err("%s: iter->iov is NULL, but expected bytes: %zu" " present\n", __func__, bytes); return -EINVAL; } sgl_count = iov_iter_npages(iter, 0xffff); if (sgl_count > max_sgls) { pr_err("%s: requested sgl_count: %d exceeds pre-allocated" " max_sgls: %d\n", __func__, sgl_count, max_sgls); return -EINVAL; } return sgl_count; } static int vhost_scsi_copy_iov_to_sgl(struct vhost_scsi_cmd *cmd, struct iov_iter *iter, struct scatterlist *sg, int sg_count) { size_t len = iov_iter_count(iter); unsigned int nbytes = 0; struct page *page; int i; if (cmd->tvc_data_direction == DMA_FROM_DEVICE) { cmd->saved_iter_addr = dup_iter(&cmd->saved_iter, iter, GFP_KERNEL); if (!cmd->saved_iter_addr) return -ENOMEM; } for (i = 0; i < sg_count; i++) { page = alloc_page(GFP_KERNEL); if (!page) { i--; goto err; } nbytes = min_t(unsigned int, PAGE_SIZE, len); sg_set_page(&sg[i], page, nbytes, 0); if (cmd->tvc_data_direction == DMA_TO_DEVICE && copy_page_from_iter(page, 0, nbytes, iter) != nbytes) goto err; len -= nbytes; } cmd->copied_iov = 1; return 0; err: pr_err("Could not read %u bytes while handling misaligned cmd\n", nbytes); for (; i >= 0; i--) __free_page(sg_page(&sg[i])); kfree(cmd->saved_iter_addr); return -ENOMEM; } static int vhost_scsi_map_iov_to_sgl(struct vhost_scsi_cmd *cmd, struct iov_iter *iter, struct scatterlist *sg, int sg_count, bool is_prot) { struct scatterlist *p = sg; size_t revert_bytes; int ret; while (iov_iter_count(iter)) { ret = vhost_scsi_map_to_sgl(cmd, iter, sg, is_prot); if (ret < 0) { revert_bytes = 0; while (p < sg) { struct page *page = sg_page(p); if (page) { put_page(page); revert_bytes += p->length; } p++; } iov_iter_revert(iter, revert_bytes); return ret; } sg += ret; } return 0; } static int vhost_scsi_mapal(struct vhost_scsi_cmd *cmd, size_t prot_bytes, struct iov_iter *prot_iter, size_t data_bytes, struct iov_iter *data_iter) { int sgl_count, ret; if (prot_bytes) { sgl_count = vhost_scsi_calc_sgls(prot_iter, prot_bytes, VHOST_SCSI_PREALLOC_PROT_SGLS); if (sgl_count < 0) return sgl_count; sg_init_table(cmd->tvc_prot_sgl, sgl_count); cmd->tvc_prot_sgl_count = sgl_count; pr_debug("%s prot_sg %p prot_sgl_count %u\n", __func__, cmd->tvc_prot_sgl, cmd->tvc_prot_sgl_count); ret = vhost_scsi_map_iov_to_sgl(cmd, prot_iter, cmd->tvc_prot_sgl, cmd->tvc_prot_sgl_count, true); if (ret < 0) { cmd->tvc_prot_sgl_count = 0; return ret; } } sgl_count = vhost_scsi_calc_sgls(data_iter, data_bytes, VHOST_SCSI_PREALLOC_SGLS); if (sgl_count < 0) return sgl_count; sg_init_table(cmd->tvc_sgl, sgl_count); cmd->tvc_sgl_count = sgl_count; pr_debug("%s data_sg %p data_sgl_count %u\n", __func__, cmd->tvc_sgl, cmd->tvc_sgl_count); ret = vhost_scsi_map_iov_to_sgl(cmd, data_iter, cmd->tvc_sgl, cmd->tvc_sgl_count, false); if (ret == -EINVAL) { sg_init_table(cmd->tvc_sgl, cmd->tvc_sgl_count); ret = vhost_scsi_copy_iov_to_sgl(cmd, data_iter, cmd->tvc_sgl, cmd->tvc_sgl_count); } if (ret < 0) { cmd->tvc_sgl_count = 0; return ret; } return 0; } static int vhost_scsi_to_tcm_attr(int attr) { switch (attr) { case VIRTIO_SCSI_S_SIMPLE: return TCM_SIMPLE_TAG; case VIRTIO_SCSI_S_ORDERED: return TCM_ORDERED_TAG; case VIRTIO_SCSI_S_HEAD: return TCM_HEAD_TAG; case VIRTIO_SCSI_S_ACA: return TCM_ACA_TAG; default: break; } return TCM_SIMPLE_TAG; } static void vhost_scsi_target_queue_cmd(struct vhost_scsi_cmd *cmd) { struct se_cmd *se_cmd = &cmd->tvc_se_cmd; struct vhost_scsi_nexus *tv_nexus; struct scatterlist *sg_ptr, *sg_prot_ptr = NULL; /* FIXME: BIDI operation */ if (cmd->tvc_sgl_count) { sg_ptr = cmd->tvc_sgl; if (cmd->tvc_prot_sgl_count) sg_prot_ptr = cmd->tvc_prot_sgl; else se_cmd->prot_pto = true; } else { sg_ptr = NULL; } tv_nexus = cmd->tvc_nexus; se_cmd->tag = 0; target_init_cmd(se_cmd, tv_nexus->tvn_se_sess, &cmd->tvc_sense_buf[0], cmd->tvc_lun, cmd->tvc_exp_data_len, vhost_scsi_to_tcm_attr(cmd->tvc_task_attr), cmd->tvc_data_direction, TARGET_SCF_ACK_KREF); if (target_submit_prep(se_cmd, cmd->tvc_cdb, sg_ptr, cmd->tvc_sgl_count, NULL, 0, sg_prot_ptr, cmd->tvc_prot_sgl_count, GFP_KERNEL)) return; target_submit(se_cmd); } static void vhost_scsi_send_bad_target(struct vhost_scsi *vs, struct vhost_virtqueue *vq, int head, unsigned out) { struct virtio_scsi_cmd_resp __user *resp; struct virtio_scsi_cmd_resp rsp; int ret; memset(&rsp, 0, sizeof(rsp)); rsp.response = VIRTIO_SCSI_S_BAD_TARGET; resp = vq->iov[out].iov_base; ret = __copy_to_user(resp, &rsp, sizeof(rsp)); if (!ret) vhost_add_used_and_signal(&vs->dev, vq, head, 0); else pr_err("Faulted on virtio_scsi_cmd_resp\n"); } static int vhost_scsi_get_desc(struct vhost_scsi *vs, struct vhost_virtqueue *vq, struct vhost_scsi_ctx *vc) { int ret = -ENXIO; vc->head = vhost_get_vq_desc(vq, vq->iov, ARRAY_SIZE(vq->iov), &vc->out, &vc->in, NULL, NULL); pr_debug("vhost_get_vq_desc: head: %d, out: %u in: %u\n", vc->head, vc->out, vc->in); /* On error, stop handling until the next kick. */ if (unlikely(vc->head < 0)) goto done; /* Nothing new? Wait for eventfd to tell us they refilled. */ if (vc->head == vq->num) { if (unlikely(vhost_enable_notify(&vs->dev, vq))) { vhost_disable_notify(&vs->dev, vq); ret = -EAGAIN; } goto done; } /* * Get the size of request and response buffers. * FIXME: Not correct for BIDI operation */ vc->out_size = iov_length(vq->iov, vc->out); vc->in_size = iov_length(&vq->iov[vc->out], vc->in); /* * Copy over the virtio-scsi request header, which for a * ANY_LAYOUT enabled guest may span multiple iovecs, or a * single iovec may contain both the header + outgoing * WRITE payloads. * * copy_from_iter() will advance out_iter, so that it will * point at the start of the outgoing WRITE payload, if * DMA_TO_DEVICE is set. */ iov_iter_init(&vc->out_iter, ITER_SOURCE, vq->iov, vc->out, vc->out_size); ret = 0; done: return ret; } static int vhost_scsi_chk_size(struct vhost_virtqueue *vq, struct vhost_scsi_ctx *vc) { if (unlikely(vc->in_size < vc->rsp_size)) { vq_err(vq, "Response buf too small, need min %zu bytes got %zu", vc->rsp_size, vc->in_size); return -EINVAL; } else if (unlikely(vc->out_size < vc->req_size)) { vq_err(vq, "Request buf too small, need min %zu bytes got %zu", vc->req_size, vc->out_size); return -EIO; } return 0; } static int vhost_scsi_get_req(struct vhost_virtqueue *vq, struct vhost_scsi_ctx *vc, struct vhost_scsi_tpg **tpgp) { int ret = -EIO; if (unlikely(!copy_from_iter_full(vc->req, vc->req_size, &vc->out_iter))) { vq_err(vq, "Faulted on copy_from_iter_full\n"); } else if (unlikely(*vc->lunp != 1)) { /* virtio-scsi spec requires byte 0 of the lun to be 1 */ vq_err(vq, "Illegal virtio-scsi lun: %u\n", *vc->lunp); } else { struct vhost_scsi_tpg **vs_tpg, *tpg; vs_tpg = vhost_vq_get_backend(vq); /* validated at handler entry */ tpg = READ_ONCE(vs_tpg[*vc->target]); if (unlikely(!tpg)) { vq_err(vq, "Target 0x%x does not exist\n", *vc->target); } else { if (tpgp) *tpgp = tpg; ret = 0; } } return ret; } static u16 vhost_buf_to_lun(u8 *lun_buf) { return ((lun_buf[2] << 8) | lun_buf[3]) & 0x3FFF; } static void vhost_scsi_handle_vq(struct vhost_scsi *vs, struct vhost_virtqueue *vq) { struct vhost_scsi_tpg **vs_tpg, *tpg; struct virtio_scsi_cmd_req v_req; struct virtio_scsi_cmd_req_pi v_req_pi; struct vhost_scsi_ctx vc; struct vhost_scsi_cmd *cmd; struct iov_iter in_iter, prot_iter, data_iter; u64 tag; u32 exp_data_len, data_direction; int ret, prot_bytes, i, c = 0; u16 lun; u8 task_attr; bool t10_pi = vhost_has_feature(vq, VIRTIO_SCSI_F_T10_PI); void *cdb; mutex_lock(&vq->mutex); /* * We can handle the vq only after the endpoint is setup by calling the * VHOST_SCSI_SET_ENDPOINT ioctl. */ vs_tpg = vhost_vq_get_backend(vq); if (!vs_tpg) goto out; memset(&vc, 0, sizeof(vc)); vc.rsp_size = sizeof(struct virtio_scsi_cmd_resp); vhost_disable_notify(&vs->dev, vq); do { ret = vhost_scsi_get_desc(vs, vq, &vc); if (ret) goto err; /* * Setup pointers and values based upon different virtio-scsi * request header if T10_PI is enabled in KVM guest. */ if (t10_pi) { vc.req = &v_req_pi; vc.req_size = sizeof(v_req_pi); vc.lunp = &v_req_pi.lun[0]; vc.target = &v_req_pi.lun[1]; } else { vc.req = &v_req; vc.req_size = sizeof(v_req); vc.lunp = &v_req.lun[0]; vc.target = &v_req.lun[1]; } /* * Validate the size of request and response buffers. * Check for a sane response buffer so we can report * early errors back to the guest. */ ret = vhost_scsi_chk_size(vq, &vc); if (ret) goto err; ret = vhost_scsi_get_req(vq, &vc, &tpg); if (ret) goto err; ret = -EIO; /* bad target on any error from here on */ /* * Determine data_direction by calculating the total outgoing * iovec sizes + incoming iovec sizes vs. virtio-scsi request + * response headers respectively. * * For DMA_TO_DEVICE this is out_iter, which is already pointing * to the right place. * * For DMA_FROM_DEVICE, the iovec will be just past the end * of the virtio-scsi response header in either the same * or immediately following iovec. * * Any associated T10_PI bytes for the outgoing / incoming * payloads are included in calculation of exp_data_len here. */ prot_bytes = 0; if (vc.out_size > vc.req_size) { data_direction = DMA_TO_DEVICE; exp_data_len = vc.out_size - vc.req_size; data_iter = vc.out_iter; } else if (vc.in_size > vc.rsp_size) { data_direction = DMA_FROM_DEVICE; exp_data_len = vc.in_size - vc.rsp_size; iov_iter_init(&in_iter, ITER_DEST, &vq->iov[vc.out], vc.in, vc.rsp_size + exp_data_len); iov_iter_advance(&in_iter, vc.rsp_size); data_iter = in_iter; } else { data_direction = DMA_NONE; exp_data_len = 0; } /* * If T10_PI header + payload is present, setup prot_iter values * and recalculate data_iter for vhost_scsi_mapal() mapping to * host scatterlists via get_user_pages_fast(). */ if (t10_pi) { if (v_req_pi.pi_bytesout) { if (data_direction != DMA_TO_DEVICE) { vq_err(vq, "Received non zero pi_bytesout," " but wrong data_direction\n"); goto err; } prot_bytes = vhost32_to_cpu(vq, v_req_pi.pi_bytesout); } else if (v_req_pi.pi_bytesin) { if (data_direction != DMA_FROM_DEVICE) { vq_err(vq, "Received non zero pi_bytesin," " but wrong data_direction\n"); goto err; } prot_bytes = vhost32_to_cpu(vq, v_req_pi.pi_bytesin); } /* * Set prot_iter to data_iter and truncate it to * prot_bytes, and advance data_iter past any * preceding prot_bytes that may be present. * * Also fix up the exp_data_len to reflect only the * actual data payload length. */ if (prot_bytes) { exp_data_len -= prot_bytes; prot_iter = data_iter; iov_iter_truncate(&prot_iter, prot_bytes); iov_iter_advance(&data_iter, prot_bytes); } tag = vhost64_to_cpu(vq, v_req_pi.tag); task_attr = v_req_pi.task_attr; cdb = &v_req_pi.cdb[0]; lun = vhost_buf_to_lun(v_req_pi.lun); } else { tag = vhost64_to_cpu(vq, v_req.tag); task_attr = v_req.task_attr; cdb = &v_req.cdb[0]; lun = vhost_buf_to_lun(v_req.lun); } /* * Check that the received CDB size does not exceeded our * hardcoded max for vhost-scsi, then get a pre-allocated * cmd descriptor for the new virtio-scsi tag. * * TODO what if cdb was too small for varlen cdb header? */ if (unlikely(scsi_command_size(cdb) > VHOST_SCSI_MAX_CDB_SIZE)) { vq_err(vq, "Received SCSI CDB with command_size: %d that" " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n", scsi_command_size(cdb), VHOST_SCSI_MAX_CDB_SIZE); goto err; } cmd = vhost_scsi_get_cmd(vq, tpg, cdb, tag, lun, task_attr, exp_data_len + prot_bytes, data_direction); if (IS_ERR(cmd)) { vq_err(vq, "vhost_scsi_get_cmd failed %ld\n", PTR_ERR(cmd)); goto err; } cmd->tvc_vhost = vs; cmd->tvc_vq = vq; for (i = 0; i < vc.in ; i++) cmd->tvc_resp_iov[i] = vq->iov[vc.out + i]; cmd->tvc_in_iovs = vc.in; pr_debug("vhost_scsi got command opcode: %#02x, lun: %d\n", cmd->tvc_cdb[0], cmd->tvc_lun); pr_debug("cmd: %p exp_data_len: %d, prot_bytes: %d data_direction:" " %d\n", cmd, exp_data_len, prot_bytes, data_direction); if (data_direction != DMA_NONE) { if (unlikely(vhost_scsi_mapal(cmd, prot_bytes, &prot_iter, exp_data_len, &data_iter))) { vq_err(vq, "Failed to map iov to sgl\n"); vhost_scsi_release_cmd_res(&cmd->tvc_se_cmd); goto err; } } /* * Save the descriptor from vhost_get_vq_desc() to be used to * complete the virtio-scsi request in TCM callback context via * vhost_scsi_queue_data_in() and vhost_scsi_queue_status() */ cmd->tvc_vq_desc = vc.head; vhost_scsi_target_queue_cmd(cmd); ret = 0; err: /* * ENXIO: No more requests, or read error, wait for next kick * EINVAL: Invalid response buffer, drop the request * EIO: Respond with bad target * EAGAIN: Pending request */ if (ret == -ENXIO) break; else if (ret == -EIO) vhost_scsi_send_bad_target(vs, vq, vc.head, vc.out); } while (likely(!vhost_exceeds_weight(vq, ++c, 0))); out: mutex_unlock(&vq->mutex); } static void vhost_scsi_send_tmf_resp(struct vhost_scsi *vs, struct vhost_virtqueue *vq, int in_iovs, int vq_desc, struct iovec *resp_iov, int tmf_resp_code) { struct virtio_scsi_ctrl_tmf_resp rsp; struct iov_iter iov_iter; int ret; pr_debug("%s\n", __func__); memset(&rsp, 0, sizeof(rsp)); rsp.response = tmf_resp_code; iov_iter_init(&iov_iter, ITER_DEST, resp_iov, in_iovs, sizeof(rsp)); ret = copy_to_iter(&rsp, sizeof(rsp), &iov_iter); if (likely(ret == sizeof(rsp))) vhost_add_used_and_signal(&vs->dev, vq, vq_desc, 0); else pr_err("Faulted on virtio_scsi_ctrl_tmf_resp\n"); } static void vhost_scsi_tmf_resp_work(struct vhost_work *work) { struct vhost_scsi_tmf *tmf = container_of(work, struct vhost_scsi_tmf, vwork); int resp_code; if (tmf->scsi_resp == TMR_FUNCTION_COMPLETE) resp_code = VIRTIO_SCSI_S_FUNCTION_SUCCEEDED; else resp_code = VIRTIO_SCSI_S_FUNCTION_REJECTED; vhost_scsi_send_tmf_resp(tmf->vhost, &tmf->svq->vq, tmf->in_iovs, tmf->vq_desc, &tmf->resp_iov, resp_code); vhost_scsi_release_tmf_res(tmf); } static void vhost_scsi_tmf_flush_work(struct work_struct *work) { struct vhost_scsi_tmf *tmf = container_of(work, struct vhost_scsi_tmf, flush_work); struct vhost_virtqueue *vq = &tmf->svq->vq; /* * Make sure we have sent responses for other commands before we * send our response. */ vhost_dev_flush(vq->dev); if (!vhost_vq_work_queue(vq, &tmf->vwork)) vhost_scsi_release_tmf_res(tmf); } static void vhost_scsi_handle_tmf(struct vhost_scsi *vs, struct vhost_scsi_tpg *tpg, struct vhost_virtqueue *vq, struct virtio_scsi_ctrl_tmf_req *vtmf, struct vhost_scsi_ctx *vc) { struct vhost_scsi_virtqueue *svq = container_of(vq, struct vhost_scsi_virtqueue, vq); struct vhost_scsi_tmf *tmf; if (vhost32_to_cpu(vq, vtmf->subtype) != VIRTIO_SCSI_T_TMF_LOGICAL_UNIT_RESET) goto send_reject; if (!tpg->tpg_nexus || !tpg->tpg_nexus->tvn_se_sess) { pr_err("Unable to locate active struct vhost_scsi_nexus for LUN RESET.\n"); goto send_reject; } tmf = kzalloc(sizeof(*tmf), GFP_KERNEL); if (!tmf) goto send_reject; INIT_WORK(&tmf->flush_work, vhost_scsi_tmf_flush_work); vhost_work_init(&tmf->vwork, vhost_scsi_tmf_resp_work); tmf->vhost = vs; tmf->svq = svq; tmf->resp_iov = vq->iov[vc->out]; tmf->vq_desc = vc->head; tmf->in_iovs = vc->in; tmf->inflight = vhost_scsi_get_inflight(vq); if (target_submit_tmr(&tmf->se_cmd, tpg->tpg_nexus->tvn_se_sess, NULL, vhost_buf_to_lun(vtmf->lun), NULL, TMR_LUN_RESET, GFP_KERNEL, 0, TARGET_SCF_ACK_KREF) < 0) { vhost_scsi_release_tmf_res(tmf); goto send_reject; } return; send_reject: vhost_scsi_send_tmf_resp(vs, vq, vc->in, vc->head, &vq->iov[vc->out], VIRTIO_SCSI_S_FUNCTION_REJECTED); } static void vhost_scsi_send_an_resp(struct vhost_scsi *vs, struct vhost_virtqueue *vq, struct vhost_scsi_ctx *vc) { struct virtio_scsi_ctrl_an_resp rsp; struct iov_iter iov_iter; int ret; pr_debug("%s\n", __func__); memset(&rsp, 0, sizeof(rsp)); /* event_actual = 0 */ rsp.response = VIRTIO_SCSI_S_OK; iov_iter_init(&iov_iter, ITER_DEST, &vq->iov[vc->out], vc->in, sizeof(rsp)); ret = copy_to_iter(&rsp, sizeof(rsp), &iov_iter); if (likely(ret == sizeof(rsp))) vhost_add_used_and_signal(&vs->dev, vq, vc->head, 0); else pr_err("Faulted on virtio_scsi_ctrl_an_resp\n"); } static void vhost_scsi_ctl_handle_vq(struct vhost_scsi *vs, struct vhost_virtqueue *vq) { struct vhost_scsi_tpg *tpg; union { __virtio32 type; struct virtio_scsi_ctrl_an_req an; struct virtio_scsi_ctrl_tmf_req tmf; } v_req; struct vhost_scsi_ctx vc; size_t typ_size; int ret, c = 0; mutex_lock(&vq->mutex); /* * We can handle the vq only after the endpoint is setup by calling the * VHOST_SCSI_SET_ENDPOINT ioctl. */ if (!vhost_vq_get_backend(vq)) goto out; memset(&vc, 0, sizeof(vc)); vhost_disable_notify(&vs->dev, vq); do { ret = vhost_scsi_get_desc(vs, vq, &vc); if (ret) goto err; /* * Get the request type first in order to setup * other parameters dependent on the type. */ vc.req = &v_req.type; typ_size = sizeof(v_req.type); if (unlikely(!copy_from_iter_full(vc.req, typ_size, &vc.out_iter))) { vq_err(vq, "Faulted on copy_from_iter tmf type\n"); /* * The size of the response buffer depends on the * request type and must be validated against it. * Since the request type is not known, don't send * a response. */ continue; } switch (vhost32_to_cpu(vq, v_req.type)) { case VIRTIO_SCSI_T_TMF: vc.req = &v_req.tmf; vc.req_size = sizeof(struct virtio_scsi_ctrl_tmf_req); vc.rsp_size = sizeof(struct virtio_scsi_ctrl_tmf_resp); vc.lunp = &v_req.tmf.lun[0]; vc.target = &v_req.tmf.lun[1]; break; case VIRTIO_SCSI_T_AN_QUERY: case VIRTIO_SCSI_T_AN_SUBSCRIBE: vc.req = &v_req.an; vc.req_size = sizeof(struct virtio_scsi_ctrl_an_req); vc.rsp_size = sizeof(struct virtio_scsi_ctrl_an_resp); vc.lunp = &v_req.an.lun[0]; vc.target = NULL; break; default: vq_err(vq, "Unknown control request %d", v_req.type); continue; } /* * Validate the size of request and response buffers. * Check for a sane response buffer so we can report * early errors back to the guest. */ ret = vhost_scsi_chk_size(vq, &vc); if (ret) goto err; /* * Get the rest of the request now that its size is known. */ vc.req += typ_size; vc.req_size -= typ_size; ret = vhost_scsi_get_req(vq, &vc, &tpg); if (ret) goto err; if (v_req.type == VIRTIO_SCSI_T_TMF) vhost_scsi_handle_tmf(vs, tpg, vq, &v_req.tmf, &vc); else vhost_scsi_send_an_resp(vs, vq, &vc); err: /* * ENXIO: No more requests, or read error, wait for next kick * EINVAL: Invalid response buffer, drop the request * EIO: Respond with bad target * EAGAIN: Pending request */ if (ret == -ENXIO) break; else if (ret == -EIO) vhost_scsi_send_bad_target(vs, vq, vc.head, vc.out); } while (likely(!vhost_exceeds_weight(vq, ++c, 0))); out: mutex_unlock(&vq->mutex); } static void vhost_scsi_ctl_handle_kick(struct vhost_work *work) { struct vhost_virtqueue *vq = container_of(work, struct vhost_virtqueue, poll.work); struct vhost_scsi *vs = container_of(vq->dev, struct vhost_scsi, dev); pr_debug("%s: The handling func for control queue.\n", __func__); vhost_scsi_ctl_handle_vq(vs, vq); } static void vhost_scsi_send_evt(struct vhost_scsi *vs, struct vhost_virtqueue *vq, struct vhost_scsi_tpg *tpg, struct se_lun *lun, u32 event, u32 reason) { struct vhost_scsi_evt *evt; evt = vhost_scsi_allocate_evt(vs, event, reason); if (!evt) return; if (tpg && lun) { /* TODO: share lun setup code with virtio-scsi.ko */ /* * Note: evt->event is zeroed when we allocate it and * lun[4-7] need to be zero according to virtio-scsi spec. */ evt->event.lun[0] = 0x01; evt->event.lun[1] = tpg->tport_tpgt; if (lun->unpacked_lun >= 256) evt->event.lun[2] = lun->unpacked_lun >> 8 | 0x40 ; evt->event.lun[3] = lun->unpacked_lun & 0xFF; } llist_add(&evt->list, &vs->vs_event_list); if (!vhost_vq_work_queue(vq, &vs->vs_event_work)) vhost_scsi_complete_events(vs, true); } static void vhost_scsi_evt_handle_kick(struct vhost_work *work) { struct vhost_virtqueue *vq = container_of(work, struct vhost_virtqueue, poll.work); struct vhost_scsi *vs = container_of(vq->dev, struct vhost_scsi, dev); mutex_lock(&vq->mutex); if (!vhost_vq_get_backend(vq)) goto out; if (vs->vs_events_missed) vhost_scsi_send_evt(vs, vq, NULL, NULL, VIRTIO_SCSI_T_NO_EVENT, 0); out: mutex_unlock(&vq->mutex); } static void vhost_scsi_handle_kick(struct vhost_work *work) { struct vhost_virtqueue *vq = container_of(work, struct vhost_virtqueue, poll.work); struct vhost_scsi *vs = container_of(vq->dev, struct vhost_scsi, dev); vhost_scsi_handle_vq(vs, vq); } /* Callers must hold dev mutex */ static void vhost_scsi_flush(struct vhost_scsi *vs) { int i; /* Init new inflight and remember the old inflight */ vhost_scsi_init_inflight(vs, vs->old_inflight); /* * The inflight->kref was initialized to 1. We decrement it here to * indicate the start of the flush operation so that it will reach 0 * when all the reqs are finished. */ for (i = 0; i < vs->dev.nvqs; i++) kref_put(&vs->old_inflight[i]->kref, vhost_scsi_done_inflight); /* Flush both the vhost poll and vhost work */ vhost_dev_flush(&vs->dev); /* Wait for all reqs issued before the flush to be finished */ for (i = 0; i < vs->dev.nvqs; i++) wait_for_completion(&vs->old_inflight[i]->comp); } static void vhost_scsi_destroy_vq_cmds(struct vhost_virtqueue *vq) { struct vhost_scsi_virtqueue *svq = container_of(vq, struct vhost_scsi_virtqueue, vq); struct vhost_scsi_cmd *tv_cmd; unsigned int i; if (!svq->scsi_cmds) return; for (i = 0; i < svq->max_cmds; i++) { tv_cmd = &svq->scsi_cmds[i]; kfree(tv_cmd->tvc_sgl); kfree(tv_cmd->tvc_prot_sgl); kfree(tv_cmd->tvc_upages); kfree(tv_cmd->tvc_resp_iov); } sbitmap_free(&svq->scsi_tags); kfree(svq->scsi_cmds); svq->scsi_cmds = NULL; } static int vhost_scsi_setup_vq_cmds(struct vhost_virtqueue *vq, int max_cmds) { struct vhost_scsi_virtqueue *svq = container_of(vq, struct vhost_scsi_virtqueue, vq); struct vhost_scsi_cmd *tv_cmd; unsigned int i; if (svq->scsi_cmds) return 0; if (sbitmap_init_node(&svq->scsi_tags, max_cmds, -1, GFP_KERNEL, NUMA_NO_NODE, false, true)) return -ENOMEM; svq->max_cmds = max_cmds; svq->scsi_cmds = kcalloc(max_cmds, sizeof(*tv_cmd), GFP_KERNEL); if (!svq->scsi_cmds) { sbitmap_free(&svq->scsi_tags); return -ENOMEM; } for (i = 0; i < max_cmds; i++) { tv_cmd = &svq->scsi_cmds[i]; tv_cmd->tvc_sgl = kcalloc(VHOST_SCSI_PREALLOC_SGLS, sizeof(struct scatterlist), GFP_KERNEL); if (!tv_cmd->tvc_sgl) { pr_err("Unable to allocate tv_cmd->tvc_sgl\n"); goto out; } tv_cmd->tvc_upages = kcalloc(VHOST_SCSI_PREALLOC_UPAGES, sizeof(struct page *), GFP_KERNEL); if (!tv_cmd->tvc_upages) { pr_err("Unable to allocate tv_cmd->tvc_upages\n"); goto out; } tv_cmd->tvc_resp_iov = kcalloc(UIO_MAXIOV, sizeof(struct iovec), GFP_KERNEL); if (!tv_cmd->tvc_resp_iov) { pr_err("Unable to allocate tv_cmd->tvc_resp_iov\n"); goto out; } tv_cmd->tvc_prot_sgl = kcalloc(VHOST_SCSI_PREALLOC_PROT_SGLS, sizeof(struct scatterlist), GFP_KERNEL); if (!tv_cmd->tvc_prot_sgl) { pr_err("Unable to allocate tv_cmd->tvc_prot_sgl\n"); goto out; } } return 0; out: vhost_scsi_destroy_vq_cmds(vq); return -ENOMEM; } /* * Called from vhost_scsi_ioctl() context to walk the list of available * vhost_scsi_tpg with an active struct vhost_scsi_nexus * * The lock nesting rule is: * vs->dev.mutex -> vhost_scsi_mutex -> tpg->tv_tpg_mutex -> vq->mutex */ static int vhost_scsi_set_endpoint(struct vhost_scsi *vs, struct vhost_scsi_target *t) { struct se_portal_group *se_tpg; struct vhost_scsi_tport *tv_tport; struct vhost_scsi_tpg *tpg; struct vhost_scsi_tpg **vs_tpg; struct vhost_virtqueue *vq; int index, ret, i, len; bool match = false; mutex_lock(&vs->dev.mutex); /* Verify that ring has been setup correctly. */ for (index = 0; index < vs->dev.nvqs; ++index) { /* Verify that ring has been setup correctly. */ if (!vhost_vq_access_ok(&vs->vqs[index].vq)) { ret = -EFAULT; goto out; } } len = sizeof(vs_tpg[0]) * VHOST_SCSI_MAX_TARGET; vs_tpg = kzalloc(len, GFP_KERNEL); if (!vs_tpg) { ret = -ENOMEM; goto out; } if (vs->vs_tpg) memcpy(vs_tpg, vs->vs_tpg, len); mutex_lock(&vhost_scsi_mutex); list_for_each_entry(tpg, &vhost_scsi_list, tv_tpg_list) { mutex_lock(&tpg->tv_tpg_mutex); if (!tpg->tpg_nexus) { mutex_unlock(&tpg->tv_tpg_mutex); continue; } if (tpg->tv_tpg_vhost_count != 0) { mutex_unlock(&tpg->tv_tpg_mutex); continue; } tv_tport = tpg->tport; if (!strcmp(tv_tport->tport_name, t->vhost_wwpn)) { if (vs->vs_tpg && vs->vs_tpg[tpg->tport_tpgt]) { mutex_unlock(&tpg->tv_tpg_mutex); mutex_unlock(&vhost_scsi_mutex); ret = -EEXIST; goto undepend; } /* * In order to ensure individual vhost-scsi configfs * groups cannot be removed while in use by vhost ioctl, * go ahead and take an explicit se_tpg->tpg_group.cg_item * dependency now. */ se_tpg = &tpg->se_tpg; ret = target_depend_item(&se_tpg->tpg_group.cg_item); if (ret) { pr_warn("target_depend_item() failed: %d\n", ret); mutex_unlock(&tpg->tv_tpg_mutex); mutex_unlock(&vhost_scsi_mutex); goto undepend; } tpg->tv_tpg_vhost_count++; tpg->vhost_scsi = vs; vs_tpg[tpg->tport_tpgt] = tpg; match = true; } mutex_unlock(&tpg->tv_tpg_mutex); } mutex_unlock(&vhost_scsi_mutex); if (match) { memcpy(vs->vs_vhost_wwpn, t->vhost_wwpn, sizeof(vs->vs_vhost_wwpn)); for (i = VHOST_SCSI_VQ_IO; i < vs->dev.nvqs; i++) { vq = &vs->vqs[i].vq; if (!vhost_vq_is_setup(vq)) continue; ret = vhost_scsi_setup_vq_cmds(vq, vq->num); if (ret) goto destroy_vq_cmds; } for (i = 0; i < vs->dev.nvqs; i++) { vq = &vs->vqs[i].vq; mutex_lock(&vq->mutex); vhost_vq_set_backend(vq, vs_tpg); vhost_vq_init_access(vq); mutex_unlock(&vq->mutex); } ret = 0; } else { ret = -EEXIST; } /* * Act as synchronize_rcu to make sure access to * old vs->vs_tpg is finished. */ vhost_scsi_flush(vs); kfree(vs->vs_tpg); vs->vs_tpg = vs_tpg; goto out; destroy_vq_cmds: for (i--; i >= VHOST_SCSI_VQ_IO; i--) { if (!vhost_vq_get_backend(&vs->vqs[i].vq)) vhost_scsi_destroy_vq_cmds(&vs->vqs[i].vq); } undepend: for (i = 0; i < VHOST_SCSI_MAX_TARGET; i++) { tpg = vs_tpg[i]; if (tpg) { mutex_lock(&tpg->tv_tpg_mutex); tpg->vhost_scsi = NULL; tpg->tv_tpg_vhost_count--; mutex_unlock(&tpg->tv_tpg_mutex); target_undepend_item(&tpg->se_tpg.tpg_group.cg_item); } } kfree(vs_tpg); out: mutex_unlock(&vs->dev.mutex); return ret; } static int vhost_scsi_clear_endpoint(struct vhost_scsi *vs, struct vhost_scsi_target *t) { struct se_portal_group *se_tpg; struct vhost_scsi_tport *tv_tport; struct vhost_scsi_tpg *tpg; struct vhost_virtqueue *vq; bool match = false; int index, ret, i; u8 target; mutex_lock(&vs->dev.mutex); /* Verify that ring has been setup correctly. */ for (index = 0; index < vs->dev.nvqs; ++index) { if (!vhost_vq_access_ok(&vs->vqs[index].vq)) { ret = -EFAULT; goto err_dev; } } if (!vs->vs_tpg) { ret = 0; goto err_dev; } for (i = 0; i < VHOST_SCSI_MAX_TARGET; i++) { target = i; tpg = vs->vs_tpg[target]; if (!tpg) continue; tv_tport = tpg->tport; if (!tv_tport) { ret = -ENODEV; goto err_dev; } if (strcmp(tv_tport->tport_name, t->vhost_wwpn)) { pr_warn("tv_tport->tport_name: %s, tpg->tport_tpgt: %hu" " does not match t->vhost_wwpn: %s, t->vhost_tpgt: %hu\n", tv_tport->tport_name, tpg->tport_tpgt, t->vhost_wwpn, t->vhost_tpgt); ret = -EINVAL; goto err_dev; } match = true; } if (!match) goto free_vs_tpg; /* Prevent new cmds from starting and accessing the tpgs/sessions */ for (i = 0; i < vs->dev.nvqs; i++) { vq = &vs->vqs[i].vq; mutex_lock(&vq->mutex); vhost_vq_set_backend(vq, NULL); mutex_unlock(&vq->mutex); } /* Make sure cmds are not running before tearing them down. */ vhost_scsi_flush(vs); for (i = 0; i < vs->dev.nvqs; i++) { vq = &vs->vqs[i].vq; vhost_scsi_destroy_vq_cmds(vq); } /* * We can now release our hold on the tpg and sessions and userspace * can free them after this point. */ for (i = 0; i < VHOST_SCSI_MAX_TARGET; i++) { target = i; tpg = vs->vs_tpg[target]; if (!tpg) continue; mutex_lock(&tpg->tv_tpg_mutex); tpg->tv_tpg_vhost_count--; tpg->vhost_scsi = NULL; vs->vs_tpg[target] = NULL; mutex_unlock(&tpg->tv_tpg_mutex); se_tpg = &tpg->se_tpg; target_undepend_item(&se_tpg->tpg_group.cg_item); } free_vs_tpg: /* * Act as synchronize_rcu to make sure access to * old vs->vs_tpg is finished. */ vhost_scsi_flush(vs); kfree(vs->vs_tpg); vs->vs_tpg = NULL; WARN_ON(vs->vs_events_nr); mutex_unlock(&vs->dev.mutex); return 0; err_dev: mutex_unlock(&vs->dev.mutex); return ret; } static int vhost_scsi_set_features(struct vhost_scsi *vs, u64 features) { struct vhost_virtqueue *vq; int i; if (features & ~VHOST_SCSI_FEATURES) return -EOPNOTSUPP; mutex_lock(&vs->dev.mutex); if ((features & (1 << VHOST_F_LOG_ALL)) && !vhost_log_access_ok(&vs->dev)) { mutex_unlock(&vs->dev.mutex); return -EFAULT; } for (i = 0; i < vs->dev.nvqs; i++) { vq = &vs->vqs[i].vq; mutex_lock(&vq->mutex); vq->acked_features = features; mutex_unlock(&vq->mutex); } mutex_unlock(&vs->dev.mutex); return 0; } static int vhost_scsi_open(struct inode *inode, struct file *f) { struct vhost_scsi_virtqueue *svq; struct vhost_scsi *vs; struct vhost_virtqueue **vqs; int r = -ENOMEM, i, nvqs = vhost_scsi_max_io_vqs; vs = kvzalloc(sizeof(*vs), GFP_KERNEL); if (!vs) goto err_vs; if (nvqs > VHOST_SCSI_MAX_IO_VQ) { pr_err("Invalid max_io_vqs of %d. Using %d.\n", nvqs, VHOST_SCSI_MAX_IO_VQ); nvqs = VHOST_SCSI_MAX_IO_VQ; } else if (nvqs == 0) { pr_err("Invalid max_io_vqs of %d. Using 1.\n", nvqs); nvqs = 1; } nvqs += VHOST_SCSI_VQ_IO; vs->old_inflight = kmalloc_array(nvqs, sizeof(*vs->old_inflight), GFP_KERNEL | __GFP_ZERO); if (!vs->old_inflight) goto err_inflight; vs->vqs = kmalloc_array(nvqs, sizeof(*vs->vqs), GFP_KERNEL | __GFP_ZERO); if (!vs->vqs) goto err_vqs; vqs = kmalloc_array(nvqs, sizeof(*vqs), GFP_KERNEL); if (!vqs) goto err_local_vqs; vhost_work_init(&vs->vs_event_work, vhost_scsi_evt_work); vs->vs_events_nr = 0; vs->vs_events_missed = false; vqs[VHOST_SCSI_VQ_CTL] = &vs->vqs[VHOST_SCSI_VQ_CTL].vq; vqs[VHOST_SCSI_VQ_EVT] = &vs->vqs[VHOST_SCSI_VQ_EVT].vq; vs->vqs[VHOST_SCSI_VQ_CTL].vq.handle_kick = vhost_scsi_ctl_handle_kick; vs->vqs[VHOST_SCSI_VQ_EVT].vq.handle_kick = vhost_scsi_evt_handle_kick; for (i = VHOST_SCSI_VQ_IO; i < nvqs; i++) { svq = &vs->vqs[i]; vqs[i] = &svq->vq; svq->vs = vs; init_llist_head(&svq->completion_list); vhost_work_init(&svq->completion_work, vhost_scsi_complete_cmd_work); svq->vq.handle_kick = vhost_scsi_handle_kick; } vhost_dev_init(&vs->dev, vqs, nvqs, UIO_MAXIOV, VHOST_SCSI_WEIGHT, 0, true, NULL); vhost_scsi_init_inflight(vs, NULL); f->private_data = vs; return 0; err_local_vqs: kfree(vs->vqs); err_vqs: kfree(vs->old_inflight); err_inflight: kvfree(vs); err_vs: return r; } static int vhost_scsi_release(struct inode *inode, struct file *f) { struct vhost_scsi *vs = f->private_data; struct vhost_scsi_target t; mutex_lock(&vs->dev.mutex); memcpy(t.vhost_wwpn, vs->vs_vhost_wwpn, sizeof(t.vhost_wwpn)); mutex_unlock(&vs->dev.mutex); vhost_scsi_clear_endpoint(vs, &t); vhost_dev_stop(&vs->dev); vhost_dev_cleanup(&vs->dev); kfree(vs->dev.vqs); kfree(vs->vqs); kfree(vs->old_inflight); kvfree(vs); return 0; } static long vhost_scsi_ioctl(struct file *f, unsigned int ioctl, unsigned long arg) { struct vhost_scsi *vs = f->private_data; struct vhost_scsi_target backend; void __user *argp = (void __user *)arg; u64 __user *featurep = argp; u32 __user *eventsp = argp; u32 events_missed; u64 features; int r, abi_version = VHOST_SCSI_ABI_VERSION; struct vhost_virtqueue *vq = &vs->vqs[VHOST_SCSI_VQ_EVT].vq; switch (ioctl) { case VHOST_SCSI_SET_ENDPOINT: if (copy_from_user(&backend, argp, sizeof backend)) return -EFAULT; if (backend.reserved != 0) return -EOPNOTSUPP; return vhost_scsi_set_endpoint(vs, &backend); case VHOST_SCSI_CLEAR_ENDPOINT: if (copy_from_user(&backend, argp, sizeof backend)) return -EFAULT; if (backend.reserved != 0) return -EOPNOTSUPP; return vhost_scsi_clear_endpoint(vs, &backend); case VHOST_SCSI_GET_ABI_VERSION: if (copy_to_user(argp, &abi_version, sizeof abi_version)) return -EFAULT; return 0; case VHOST_SCSI_SET_EVENTS_MISSED: if (get_user(events_missed, eventsp)) return -EFAULT; mutex_lock(&vq->mutex); vs->vs_events_missed = events_missed; mutex_unlock(&vq->mutex); return 0; case VHOST_SCSI_GET_EVENTS_MISSED: mutex_lock(&vq->mutex); events_missed = vs->vs_events_missed; mutex_unlock(&vq->mutex); if (put_user(events_missed, eventsp)) return -EFAULT; return 0; case VHOST_GET_FEATURES: features = VHOST_SCSI_FEATURES; if (copy_to_user(featurep, &features, sizeof features)) return -EFAULT; return 0; case VHOST_SET_FEATURES: if (copy_from_user(&features, featurep, sizeof features)) return -EFAULT; return vhost_scsi_set_features(vs, features); case VHOST_NEW_WORKER: case VHOST_FREE_WORKER: case VHOST_ATTACH_VRING_WORKER: case VHOST_GET_VRING_WORKER: mutex_lock(&vs->dev.mutex); r = vhost_worker_ioctl(&vs->dev, ioctl, argp); mutex_unlock(&vs->dev.mutex); return r; default: mutex_lock(&vs->dev.mutex); r = vhost_dev_ioctl(&vs->dev, ioctl, argp); /* TODO: flush backend after dev ioctl. */ if (r == -ENOIOCTLCMD) r = vhost_vring_ioctl(&vs->dev, ioctl, argp); mutex_unlock(&vs->dev.mutex); return r; } } static const struct file_operations vhost_scsi_fops = { .owner = THIS_MODULE, .release = vhost_scsi_release, .unlocked_ioctl = vhost_scsi_ioctl, .compat_ioctl = compat_ptr_ioctl, .open = vhost_scsi_open, .llseek = noop_llseek, }; static struct miscdevice vhost_scsi_misc = { MISC_DYNAMIC_MINOR, "vhost-scsi", &vhost_scsi_fops, }; static int __init vhost_scsi_register(void) { return misc_register(&vhost_scsi_misc); } static void vhost_scsi_deregister(void) { misc_deregister(&vhost_scsi_misc); } static char *vhost_scsi_dump_proto_id(struct vhost_scsi_tport *tport) { switch (tport->tport_proto_id) { case SCSI_PROTOCOL_SAS: return "SAS"; case SCSI_PROTOCOL_FCP: return "FCP"; case SCSI_PROTOCOL_ISCSI: return "iSCSI"; default: break; } return "Unknown"; } static void vhost_scsi_do_plug(struct vhost_scsi_tpg *tpg, struct se_lun *lun, bool plug) { struct vhost_scsi *vs = tpg->vhost_scsi; struct vhost_virtqueue *vq; u32 reason; if (!vs) return; if (plug) reason = VIRTIO_SCSI_EVT_RESET_RESCAN; else reason = VIRTIO_SCSI_EVT_RESET_REMOVED; vq = &vs->vqs[VHOST_SCSI_VQ_EVT].vq; mutex_lock(&vq->mutex); /* * We can't queue events if the backend has been cleared, because * we could end up queueing an event after the flush. */ if (!vhost_vq_get_backend(vq)) goto unlock; if (vhost_has_feature(vq, VIRTIO_SCSI_F_HOTPLUG)) vhost_scsi_send_evt(vs, vq, tpg, lun, VIRTIO_SCSI_T_TRANSPORT_RESET, reason); unlock: mutex_unlock(&vq->mutex); } static void vhost_scsi_hotplug(struct vhost_scsi_tpg *tpg, struct se_lun *lun) { vhost_scsi_do_plug(tpg, lun, true); } static void vhost_scsi_hotunplug(struct vhost_scsi_tpg *tpg, struct se_lun *lun) { vhost_scsi_do_plug(tpg, lun, false); } static int vhost_scsi_port_link(struct se_portal_group *se_tpg, struct se_lun *lun) { struct vhost_scsi_tpg *tpg = container_of(se_tpg, struct vhost_scsi_tpg, se_tpg); mutex_lock(&tpg->tv_tpg_mutex); tpg->tv_tpg_port_count++; vhost_scsi_hotplug(tpg, lun); mutex_unlock(&tpg->tv_tpg_mutex); return 0; } static void vhost_scsi_port_unlink(struct se_portal_group *se_tpg, struct se_lun *lun) { struct vhost_scsi_tpg *tpg = container_of(se_tpg, struct vhost_scsi_tpg, se_tpg); mutex_lock(&tpg->tv_tpg_mutex); tpg->tv_tpg_port_count--; vhost_scsi_hotunplug(tpg, lun); mutex_unlock(&tpg->tv_tpg_mutex); } static ssize_t vhost_scsi_tpg_attrib_fabric_prot_type_store( struct config_item *item, const char *page, size_t count) { struct se_portal_group *se_tpg = attrib_to_tpg(item); struct vhost_scsi_tpg *tpg = container_of(se_tpg, struct vhost_scsi_tpg, se_tpg); unsigned long val; int ret = kstrtoul(page, 0, &val); if (ret) { pr_err("kstrtoul() returned %d for fabric_prot_type\n", ret); return ret; } if (val != 0 && val != 1 && val != 3) { pr_err("Invalid vhost_scsi fabric_prot_type: %lu\n", val); return -EINVAL; } tpg->tv_fabric_prot_type = val; return count; } static ssize_t vhost_scsi_tpg_attrib_fabric_prot_type_show( struct config_item *item, char *page) { struct se_portal_group *se_tpg = attrib_to_tpg(item); struct vhost_scsi_tpg *tpg = container_of(se_tpg, struct vhost_scsi_tpg, se_tpg); return sysfs_emit(page, "%d\n", tpg->tv_fabric_prot_type); } CONFIGFS_ATTR(vhost_scsi_tpg_attrib_, fabric_prot_type); static struct configfs_attribute *vhost_scsi_tpg_attrib_attrs[] = { &vhost_scsi_tpg_attrib_attr_fabric_prot_type, NULL, }; static int vhost_scsi_make_nexus(struct vhost_scsi_tpg *tpg, const char *name) { struct vhost_scsi_nexus *tv_nexus; mutex_lock(&tpg->tv_tpg_mutex); if (tpg->tpg_nexus) { mutex_unlock(&tpg->tv_tpg_mutex); pr_debug("tpg->tpg_nexus already exists\n"); return -EEXIST; } tv_nexus = kzalloc(sizeof(*tv_nexus), GFP_KERNEL); if (!tv_nexus) { mutex_unlock(&tpg->tv_tpg_mutex); pr_err("Unable to allocate struct vhost_scsi_nexus\n"); return -ENOMEM; } /* * Since we are running in 'demo mode' this call with generate a * struct se_node_acl for the vhost_scsi struct se_portal_group with * the SCSI Initiator port name of the passed configfs group 'name'. */ tv_nexus->tvn_se_sess = target_setup_session(&tpg->se_tpg, 0, 0, TARGET_PROT_DIN_PASS | TARGET_PROT_DOUT_PASS, (unsigned char *)name, tv_nexus, NULL); if (IS_ERR(tv_nexus->tvn_se_sess)) { mutex_unlock(&tpg->tv_tpg_mutex); kfree(tv_nexus); return -ENOMEM; } tpg->tpg_nexus = tv_nexus; mutex_unlock(&tpg->tv_tpg_mutex); return 0; } static int vhost_scsi_drop_nexus(struct vhost_scsi_tpg *tpg) { struct se_session *se_sess; struct vhost_scsi_nexus *tv_nexus; mutex_lock(&tpg->tv_tpg_mutex); tv_nexus = tpg->tpg_nexus; if (!tv_nexus) { mutex_unlock(&tpg->tv_tpg_mutex); return -ENODEV; } se_sess = tv_nexus->tvn_se_sess; if (!se_sess) { mutex_unlock(&tpg->tv_tpg_mutex); return -ENODEV; } if (tpg->tv_tpg_port_count != 0) { mutex_unlock(&tpg->tv_tpg_mutex); pr_err("Unable to remove TCM_vhost I_T Nexus with" " active TPG port count: %d\n", tpg->tv_tpg_port_count); return -EBUSY; } if (tpg->tv_tpg_vhost_count != 0) { mutex_unlock(&tpg->tv_tpg_mutex); pr_err("Unable to remove TCM_vhost I_T Nexus with" " active TPG vhost count: %d\n", tpg->tv_tpg_vhost_count); return -EBUSY; } pr_debug("TCM_vhost_ConfigFS: Removing I_T Nexus to emulated" " %s Initiator Port: %s\n", vhost_scsi_dump_proto_id(tpg->tport), tv_nexus->tvn_se_sess->se_node_acl->initiatorname); /* * Release the SCSI I_T Nexus to the emulated vhost Target Port */ target_remove_session(se_sess); tpg->tpg_nexus = NULL; mutex_unlock(&tpg->tv_tpg_mutex); kfree(tv_nexus); return 0; } static ssize_t vhost_scsi_tpg_nexus_show(struct config_item *item, char *page) { struct se_portal_group *se_tpg = to_tpg(item); struct vhost_scsi_tpg *tpg = container_of(se_tpg, struct vhost_scsi_tpg, se_tpg); struct vhost_scsi_nexus *tv_nexus; ssize_t ret; mutex_lock(&tpg->tv_tpg_mutex); tv_nexus = tpg->tpg_nexus; if (!tv_nexus) { mutex_unlock(&tpg->tv_tpg_mutex); return -ENODEV; } ret = sysfs_emit(page, "%s\n", tv_nexus->tvn_se_sess->se_node_acl->initiatorname); mutex_unlock(&tpg->tv_tpg_mutex); return ret; } static ssize_t vhost_scsi_tpg_nexus_store(struct config_item *item, const char *page, size_t count) { struct se_portal_group *se_tpg = to_tpg(item); struct vhost_scsi_tpg *tpg = container_of(se_tpg, struct vhost_scsi_tpg, se_tpg); struct vhost_scsi_tport *tport_wwn = tpg->tport; unsigned char i_port[VHOST_SCSI_NAMELEN], *ptr, *port_ptr; int ret; /* * Shutdown the active I_T nexus if 'NULL' is passed.. */ if (!strncmp(page, "NULL", 4)) { ret = vhost_scsi_drop_nexus(tpg); return (!ret) ? count : ret; } /* * Otherwise make sure the passed virtual Initiator port WWN matches * the fabric protocol_id set in vhost_scsi_make_tport(), and call * vhost_scsi_make_nexus(). */ if (strlen(page) >= VHOST_SCSI_NAMELEN) { pr_err("Emulated NAA Sas Address: %s, exceeds" " max: %d\n", page, VHOST_SCSI_NAMELEN); return -EINVAL; } snprintf(&i_port[0], VHOST_SCSI_NAMELEN, "%s", page); ptr = strstr(i_port, "naa."); if (ptr) { if (tport_wwn->tport_proto_id != SCSI_PROTOCOL_SAS) { pr_err("Passed SAS Initiator Port %s does not" " match target port protoid: %s\n", i_port, vhost_scsi_dump_proto_id(tport_wwn)); return -EINVAL; } port_ptr = &i_port[0]; goto check_newline; } ptr = strstr(i_port, "fc."); if (ptr) { if (tport_wwn->tport_proto_id != SCSI_PROTOCOL_FCP) { pr_err("Passed FCP Initiator Port %s does not" " match target port protoid: %s\n", i_port, vhost_scsi_dump_proto_id(tport_wwn)); return -EINVAL; } port_ptr = &i_port[3]; /* Skip over "fc." */ goto check_newline; } ptr = strstr(i_port, "iqn."); if (ptr) { if (tport_wwn->tport_proto_id != SCSI_PROTOCOL_ISCSI) { pr_err("Passed iSCSI Initiator Port %s does not" " match target port protoid: %s\n", i_port, vhost_scsi_dump_proto_id(tport_wwn)); return -EINVAL; } port_ptr = &i_port[0]; goto check_newline; } pr_err("Unable to locate prefix for emulated Initiator Port:" " %s\n", i_port); return -EINVAL; /* * Clear any trailing newline for the NAA WWN */ check_newline: if (i_port[strlen(i_port)-1] == '\n') i_port[strlen(i_port)-1] = '\0'; ret = vhost_scsi_make_nexus(tpg, port_ptr); if (ret < 0) return ret; return count; } CONFIGFS_ATTR(vhost_scsi_tpg_, nexus); static struct configfs_attribute *vhost_scsi_tpg_attrs[] = { &vhost_scsi_tpg_attr_nexus, NULL, }; static struct se_portal_group * vhost_scsi_make_tpg(struct se_wwn *wwn, const char *name) { struct vhost_scsi_tport *tport = container_of(wwn, struct vhost_scsi_tport, tport_wwn); struct vhost_scsi_tpg *tpg; u16 tpgt; int ret; if (strstr(name, "tpgt_") != name) return ERR_PTR(-EINVAL); if (kstrtou16(name + 5, 10, &tpgt) || tpgt >= VHOST_SCSI_MAX_TARGET) return ERR_PTR(-EINVAL); tpg = kzalloc(sizeof(*tpg), GFP_KERNEL); if (!tpg) { pr_err("Unable to allocate struct vhost_scsi_tpg"); return ERR_PTR(-ENOMEM); } mutex_init(&tpg->tv_tpg_mutex); INIT_LIST_HEAD(&tpg->tv_tpg_list); tpg->tport = tport; tpg->tport_tpgt = tpgt; ret = core_tpg_register(wwn, &tpg->se_tpg, tport->tport_proto_id); if (ret < 0) { kfree(tpg); return NULL; } mutex_lock(&vhost_scsi_mutex); list_add_tail(&tpg->tv_tpg_list, &vhost_scsi_list); mutex_unlock(&vhost_scsi_mutex); return &tpg->se_tpg; } static void vhost_scsi_drop_tpg(struct se_portal_group *se_tpg) { struct vhost_scsi_tpg *tpg = container_of(se_tpg, struct vhost_scsi_tpg, se_tpg); mutex_lock(&vhost_scsi_mutex); list_del(&tpg->tv_tpg_list); mutex_unlock(&vhost_scsi_mutex); /* * Release the virtual I_T Nexus for this vhost TPG */ vhost_scsi_drop_nexus(tpg); /* * Deregister the se_tpg from TCM.. */ core_tpg_deregister(se_tpg); kfree(tpg); } static struct se_wwn * vhost_scsi_make_tport(struct target_fabric_configfs *tf, struct config_group *group, const char *name) { struct vhost_scsi_tport *tport; char *ptr; u64 wwpn = 0; int off = 0; /* if (vhost_scsi_parse_wwn(name, &wwpn, 1) < 0) return ERR_PTR(-EINVAL); */ tport = kzalloc(sizeof(*tport), GFP_KERNEL); if (!tport) { pr_err("Unable to allocate struct vhost_scsi_tport"); return ERR_PTR(-ENOMEM); } tport->tport_wwpn = wwpn; /* * Determine the emulated Protocol Identifier and Target Port Name * based on the incoming configfs directory name. */ ptr = strstr(name, "naa."); if (ptr) { tport->tport_proto_id = SCSI_PROTOCOL_SAS; goto check_len; } ptr = strstr(name, "fc."); if (ptr) { tport->tport_proto_id = SCSI_PROTOCOL_FCP; off = 3; /* Skip over "fc." */ goto check_len; } ptr = strstr(name, "iqn."); if (ptr) { tport->tport_proto_id = SCSI_PROTOCOL_ISCSI; goto check_len; } pr_err("Unable to locate prefix for emulated Target Port:" " %s\n", name); kfree(tport); return ERR_PTR(-EINVAL); check_len: if (strlen(name) >= VHOST_SCSI_NAMELEN) { pr_err("Emulated %s Address: %s, exceeds" " max: %d\n", name, vhost_scsi_dump_proto_id(tport), VHOST_SCSI_NAMELEN); kfree(tport); return ERR_PTR(-EINVAL); } snprintf(&tport->tport_name[0], VHOST_SCSI_NAMELEN, "%s", &name[off]); pr_debug("TCM_VHost_ConfigFS: Allocated emulated Target" " %s Address: %s\n", vhost_scsi_dump_proto_id(tport), name); return &tport->tport_wwn; } static void vhost_scsi_drop_tport(struct se_wwn *wwn) { struct vhost_scsi_tport *tport = container_of(wwn, struct vhost_scsi_tport, tport_wwn); pr_debug("TCM_VHost_ConfigFS: Deallocating emulated Target" " %s Address: %s\n", vhost_scsi_dump_proto_id(tport), tport->tport_name); kfree(tport); } static ssize_t vhost_scsi_wwn_version_show(struct config_item *item, char *page) { return sysfs_emit(page, "TCM_VHOST fabric module %s on %s/%s" "on "UTS_RELEASE"\n", VHOST_SCSI_VERSION, utsname()->sysname, utsname()->machine); } CONFIGFS_ATTR_RO(vhost_scsi_wwn_, version); static struct configfs_attribute *vhost_scsi_wwn_attrs[] = { &vhost_scsi_wwn_attr_version, NULL, }; static const struct target_core_fabric_ops vhost_scsi_ops = { .module = THIS_MODULE, .fabric_name = "vhost", .max_data_sg_nents = VHOST_SCSI_PREALLOC_SGLS, .tpg_get_wwn = vhost_scsi_get_fabric_wwn, .tpg_get_tag = vhost_scsi_get_tpgt, .tpg_check_demo_mode = vhost_scsi_check_true, .tpg_check_demo_mode_cache = vhost_scsi_check_true, .tpg_check_prot_fabric_only = vhost_scsi_check_prot_fabric_only, .release_cmd = vhost_scsi_release_cmd, .check_stop_free = vhost_scsi_check_stop_free, .sess_get_initiator_sid = NULL, .write_pending = vhost_scsi_write_pending, .queue_data_in = vhost_scsi_queue_data_in, .queue_status = vhost_scsi_queue_status, .queue_tm_rsp = vhost_scsi_queue_tm_rsp, .aborted_task = vhost_scsi_aborted_task, /* * Setup callers for generic logic in target_core_fabric_configfs.c */ .fabric_make_wwn = vhost_scsi_make_tport, .fabric_drop_wwn = vhost_scsi_drop_tport, .fabric_make_tpg = vhost_scsi_make_tpg, .fabric_drop_tpg = vhost_scsi_drop_tpg, .fabric_post_link = vhost_scsi_port_link, .fabric_pre_unlink = vhost_scsi_port_unlink, .tfc_wwn_attrs = vhost_scsi_wwn_attrs, .tfc_tpg_base_attrs = vhost_scsi_tpg_attrs, .tfc_tpg_attrib_attrs = vhost_scsi_tpg_attrib_attrs, .default_submit_type = TARGET_QUEUE_SUBMIT, .direct_submit_supp = 1, }; static int __init vhost_scsi_init(void) { int ret = -ENOMEM; pr_debug("TCM_VHOST fabric module %s on %s/%s" " on "UTS_RELEASE"\n", VHOST_SCSI_VERSION, utsname()->sysname, utsname()->machine); ret = vhost_scsi_register(); if (ret < 0) goto out; ret = target_register_template(&vhost_scsi_ops); if (ret < 0) goto out_vhost_scsi_deregister; return 0; out_vhost_scsi_deregister: vhost_scsi_deregister(); out: return ret; }; static void vhost_scsi_exit(void) { target_unregister_template(&vhost_scsi_ops); vhost_scsi_deregister(); }; MODULE_DESCRIPTION("VHOST_SCSI series fabric driver"); MODULE_ALIAS("tcm_vhost"); MODULE_LICENSE("GPL"); module_init(vhost_scsi_init); module_exit(vhost_scsi_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1