Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sudhakar Rajashekhara | 2926 | 40.67% | 3 | 3.57% |
Prakash Manjunathappa | 1623 | 22.56% | 19 | 22.62% |
Martin Ambrose | 707 | 9.83% | 1 | 1.19% |
Darren Etheridge | 702 | 9.76% | 11 | 13.10% |
Chaithrika U S | 367 | 5.10% | 5 | 5.95% |
Afzal Mohammed | 333 | 4.63% | 10 | 11.90% |
Bartosz Golaszewski | 192 | 2.67% | 4 | 4.76% |
Anatolij Gustschin | 146 | 2.03% | 1 | 1.19% |
Jon Ringle | 49 | 0.68% | 1 | 1.19% |
Aditya Nellutla | 21 | 0.29% | 1 | 1.19% |
Manish Badarkhe | 19 | 0.26% | 1 | 1.19% |
Uwe Kleine-König | 16 | 0.22% | 2 | 2.38% |
Caglar Akyuz | 14 | 0.19% | 1 | 1.19% |
Dongliang Mu | 10 | 0.14% | 1 | 1.19% |
Yegor Yefremov | 9 | 0.13% | 1 | 1.19% |
Jingoo Han | 8 | 0.11% | 1 | 1.19% |
Laurent Pinchart | 6 | 0.08% | 1 | 1.19% |
Christoph Hellwig | 6 | 0.08% | 1 | 1.19% |
Axel Lin | 5 | 0.07% | 1 | 1.19% |
Arnd Bergmann | 4 | 0.06% | 2 | 2.38% |
Torben Hohn | 4 | 0.06% | 1 | 1.19% |
Florian Tobias Schandinat | 3 | 0.04% | 1 | 1.19% |
Pantelis Antoniou | 3 | 0.04% | 1 | 1.19% |
Julia Lawall | 2 | 0.03% | 1 | 1.19% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.19% |
Evgeny Novikov | 2 | 0.03% | 1 | 1.19% |
caihuoqing | 2 | 0.03% | 1 | 1.19% |
Thomas Zimmermann | 2 | 0.03% | 1 | 1.19% |
Sushaanth Srirangapathi | 2 | 0.03% | 1 | 1.19% |
Hanjun Guo | 2 | 0.03% | 1 | 1.19% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 1.19% |
Lucas De Marchi | 1 | 0.01% | 1 | 1.19% |
Linus Torvalds | 1 | 0.01% | 1 | 1.19% |
Jani Nikula | 1 | 0.01% | 1 | 1.19% |
Sachin Kamat | 1 | 0.01% | 1 | 1.19% |
Ian Abbott | 1 | 0.01% | 1 | 1.19% |
Total | 7194 | 84 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2008-2009 MontaVista Software Inc. * Copyright (C) 2008-2009 Texas Instruments Inc * * Based on the LCD driver for TI Avalanche processors written by * Ajay Singh and Shalom Hai. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/fb.h> #include <linux/dma-mapping.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/uaccess.h> #include <linux/pm_runtime.h> #include <linux/interrupt.h> #include <linux/wait.h> #include <linux/clk.h> #include <linux/cpufreq.h> #include <linux/console.h> #include <linux/regulator/consumer.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/lcm.h> #include <video/da8xx-fb.h> #include <asm/div64.h> #define DRIVER_NAME "da8xx_lcdc" #define LCD_VERSION_1 1 #define LCD_VERSION_2 2 /* LCD Status Register */ #define LCD_END_OF_FRAME1 BIT(9) #define LCD_END_OF_FRAME0 BIT(8) #define LCD_PL_LOAD_DONE BIT(6) #define LCD_FIFO_UNDERFLOW BIT(5) #define LCD_SYNC_LOST BIT(2) #define LCD_FRAME_DONE BIT(0) /* LCD DMA Control Register */ #define LCD_DMA_BURST_SIZE(x) ((x) << 4) #define LCD_DMA_BURST_1 0x0 #define LCD_DMA_BURST_2 0x1 #define LCD_DMA_BURST_4 0x2 #define LCD_DMA_BURST_8 0x3 #define LCD_DMA_BURST_16 0x4 #define LCD_V1_END_OF_FRAME_INT_ENA BIT(2) #define LCD_V2_END_OF_FRAME0_INT_ENA BIT(8) #define LCD_V2_END_OF_FRAME1_INT_ENA BIT(9) #define LCD_DUAL_FRAME_BUFFER_ENABLE BIT(0) /* LCD Control Register */ #define LCD_CLK_DIVISOR(x) ((x) << 8) #define LCD_RASTER_MODE 0x01 /* LCD Raster Control Register */ #define LCD_PALETTE_LOAD_MODE(x) ((x) << 20) #define PALETTE_AND_DATA 0x00 #define PALETTE_ONLY 0x01 #define DATA_ONLY 0x02 #define LCD_MONO_8BIT_MODE BIT(9) #define LCD_RASTER_ORDER BIT(8) #define LCD_TFT_MODE BIT(7) #define LCD_V1_UNDERFLOW_INT_ENA BIT(6) #define LCD_V2_UNDERFLOW_INT_ENA BIT(5) #define LCD_V1_PL_INT_ENA BIT(4) #define LCD_V2_PL_INT_ENA BIT(6) #define LCD_MONOCHROME_MODE BIT(1) #define LCD_RASTER_ENABLE BIT(0) #define LCD_TFT_ALT_ENABLE BIT(23) #define LCD_STN_565_ENABLE BIT(24) #define LCD_V2_DMA_CLK_EN BIT(2) #define LCD_V2_LIDD_CLK_EN BIT(1) #define LCD_V2_CORE_CLK_EN BIT(0) #define LCD_V2_LPP_B10 26 #define LCD_V2_TFT_24BPP_MODE BIT(25) #define LCD_V2_TFT_24BPP_UNPACK BIT(26) /* LCD Raster Timing 2 Register */ #define LCD_AC_BIAS_TRANSITIONS_PER_INT(x) ((x) << 16) #define LCD_AC_BIAS_FREQUENCY(x) ((x) << 8) #define LCD_SYNC_CTRL BIT(25) #define LCD_SYNC_EDGE BIT(24) #define LCD_INVERT_PIXEL_CLOCK BIT(22) #define LCD_INVERT_LINE_CLOCK BIT(21) #define LCD_INVERT_FRAME_CLOCK BIT(20) /* LCD Block */ #define LCD_PID_REG 0x0 #define LCD_CTRL_REG 0x4 #define LCD_STAT_REG 0x8 #define LCD_RASTER_CTRL_REG 0x28 #define LCD_RASTER_TIMING_0_REG 0x2C #define LCD_RASTER_TIMING_1_REG 0x30 #define LCD_RASTER_TIMING_2_REG 0x34 #define LCD_DMA_CTRL_REG 0x40 #define LCD_DMA_FRM_BUF_BASE_ADDR_0_REG 0x44 #define LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG 0x48 #define LCD_DMA_FRM_BUF_BASE_ADDR_1_REG 0x4C #define LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG 0x50 /* Interrupt Registers available only in Version 2 */ #define LCD_RAW_STAT_REG 0x58 #define LCD_MASKED_STAT_REG 0x5c #define LCD_INT_ENABLE_SET_REG 0x60 #define LCD_INT_ENABLE_CLR_REG 0x64 #define LCD_END_OF_INT_IND_REG 0x68 /* Clock registers available only on Version 2 */ #define LCD_CLK_ENABLE_REG 0x6c #define LCD_CLK_RESET_REG 0x70 #define LCD_CLK_MAIN_RESET BIT(3) #define LCD_NUM_BUFFERS 2 #define PALETTE_SIZE 256 #define CLK_MIN_DIV 2 #define CLK_MAX_DIV 255 static void __iomem *da8xx_fb_reg_base; static unsigned int lcd_revision; static irq_handler_t lcdc_irq_handler; static wait_queue_head_t frame_done_wq; static int frame_done_flag; static unsigned int lcdc_read(unsigned int addr) { return (unsigned int)__raw_readl(da8xx_fb_reg_base + (addr)); } static void lcdc_write(unsigned int val, unsigned int addr) { __raw_writel(val, da8xx_fb_reg_base + (addr)); } struct da8xx_fb_par { struct device *dev; dma_addr_t p_palette_base; unsigned char *v_palette_base; dma_addr_t vram_phys; unsigned long vram_size; void *vram_virt; unsigned int dma_start; unsigned int dma_end; struct clk *lcdc_clk; int irq; unsigned int palette_sz; int blank; wait_queue_head_t vsync_wait; int vsync_flag; int vsync_timeout; spinlock_t lock_for_chan_update; /* * LCDC has 2 ping pong DMA channels, channel 0 * and channel 1. */ unsigned int which_dma_channel_done; #ifdef CONFIG_CPU_FREQ struct notifier_block freq_transition; #endif unsigned int lcdc_clk_rate; struct regulator *lcd_supply; u32 pseudo_palette[16]; struct fb_videomode mode; struct lcd_ctrl_config cfg; }; static struct fb_var_screeninfo da8xx_fb_var; static struct fb_fix_screeninfo da8xx_fb_fix = { .id = "DA8xx FB Drv", .type = FB_TYPE_PACKED_PIXELS, .type_aux = 0, .visual = FB_VISUAL_PSEUDOCOLOR, .xpanstep = 0, .ypanstep = 1, .ywrapstep = 0, .accel = FB_ACCEL_NONE }; static struct fb_videomode known_lcd_panels[] = { /* Sharp LCD035Q3DG01 */ [0] = { .name = "Sharp_LCD035Q3DG01", .xres = 320, .yres = 240, .pixclock = KHZ2PICOS(4607), .left_margin = 6, .right_margin = 8, .upper_margin = 2, .lower_margin = 2, .hsync_len = 0, .vsync_len = 0, .sync = FB_SYNC_CLK_INVERT, }, /* Sharp LK043T1DG01 */ [1] = { .name = "Sharp_LK043T1DG01", .xres = 480, .yres = 272, .pixclock = KHZ2PICOS(7833), .left_margin = 2, .right_margin = 2, .upper_margin = 2, .lower_margin = 2, .hsync_len = 41, .vsync_len = 10, .sync = 0, .flag = 0, }, [2] = { /* Hitachi SP10Q010 */ .name = "SP10Q010", .xres = 320, .yres = 240, .pixclock = KHZ2PICOS(7833), .left_margin = 10, .right_margin = 10, .upper_margin = 10, .lower_margin = 10, .hsync_len = 10, .vsync_len = 10, .sync = 0, .flag = 0, }, [3] = { /* Densitron 84-0023-001T */ .name = "Densitron_84-0023-001T", .xres = 320, .yres = 240, .pixclock = KHZ2PICOS(6400), .left_margin = 0, .right_margin = 0, .upper_margin = 0, .lower_margin = 0, .hsync_len = 30, .vsync_len = 3, .sync = 0, }, }; static bool da8xx_fb_is_raster_enabled(void) { return !!(lcdc_read(LCD_RASTER_CTRL_REG) & LCD_RASTER_ENABLE); } /* Enable the Raster Engine of the LCD Controller */ static void lcd_enable_raster(void) { u32 reg; /* Put LCDC in reset for several cycles */ if (lcd_revision == LCD_VERSION_2) /* Write 1 to reset LCDC */ lcdc_write(LCD_CLK_MAIN_RESET, LCD_CLK_RESET_REG); mdelay(1); /* Bring LCDC out of reset */ if (lcd_revision == LCD_VERSION_2) lcdc_write(0, LCD_CLK_RESET_REG); mdelay(1); /* Above reset sequence doesnot reset register context */ reg = lcdc_read(LCD_RASTER_CTRL_REG); if (!(reg & LCD_RASTER_ENABLE)) lcdc_write(reg | LCD_RASTER_ENABLE, LCD_RASTER_CTRL_REG); } /* Disable the Raster Engine of the LCD Controller */ static void lcd_disable_raster(enum da8xx_frame_complete wait_for_frame_done) { u32 reg; int ret; reg = lcdc_read(LCD_RASTER_CTRL_REG); if (reg & LCD_RASTER_ENABLE) lcdc_write(reg & ~LCD_RASTER_ENABLE, LCD_RASTER_CTRL_REG); else /* return if already disabled */ return; if ((wait_for_frame_done == DA8XX_FRAME_WAIT) && (lcd_revision == LCD_VERSION_2)) { frame_done_flag = 0; ret = wait_event_interruptible_timeout(frame_done_wq, frame_done_flag != 0, msecs_to_jiffies(50)); if (ret == 0) pr_err("LCD Controller timed out\n"); } } static void lcd_blit(int load_mode, struct da8xx_fb_par *par) { u32 start; u32 end; u32 reg_ras; u32 reg_dma; u32 reg_int; /* init reg to clear PLM (loading mode) fields */ reg_ras = lcdc_read(LCD_RASTER_CTRL_REG); reg_ras &= ~(3 << 20); reg_dma = lcdc_read(LCD_DMA_CTRL_REG); if (load_mode == LOAD_DATA) { start = par->dma_start; end = par->dma_end; reg_ras |= LCD_PALETTE_LOAD_MODE(DATA_ONLY); if (lcd_revision == LCD_VERSION_1) { reg_dma |= LCD_V1_END_OF_FRAME_INT_ENA; } else { reg_int = lcdc_read(LCD_INT_ENABLE_SET_REG) | LCD_V2_END_OF_FRAME0_INT_ENA | LCD_V2_END_OF_FRAME1_INT_ENA | LCD_FRAME_DONE | LCD_SYNC_LOST; lcdc_write(reg_int, LCD_INT_ENABLE_SET_REG); } reg_dma |= LCD_DUAL_FRAME_BUFFER_ENABLE; lcdc_write(start, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG); lcdc_write(end, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG); lcdc_write(start, LCD_DMA_FRM_BUF_BASE_ADDR_1_REG); lcdc_write(end, LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG); } else if (load_mode == LOAD_PALETTE) { start = par->p_palette_base; end = start + par->palette_sz - 1; reg_ras |= LCD_PALETTE_LOAD_MODE(PALETTE_ONLY); if (lcd_revision == LCD_VERSION_1) { reg_ras |= LCD_V1_PL_INT_ENA; } else { reg_int = lcdc_read(LCD_INT_ENABLE_SET_REG) | LCD_V2_PL_INT_ENA; lcdc_write(reg_int, LCD_INT_ENABLE_SET_REG); } lcdc_write(start, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG); lcdc_write(end, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG); } lcdc_write(reg_dma, LCD_DMA_CTRL_REG); lcdc_write(reg_ras, LCD_RASTER_CTRL_REG); /* * The Raster enable bit must be set after all other control fields are * set. */ lcd_enable_raster(); } /* Configure the Burst Size and fifo threhold of DMA */ static int lcd_cfg_dma(int burst_size, int fifo_th) { u32 reg; reg = lcdc_read(LCD_DMA_CTRL_REG) & 0x00000001; switch (burst_size) { case 1: reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_1); break; case 2: reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_2); break; case 4: reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_4); break; case 8: reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_8); break; case 16: default: reg |= LCD_DMA_BURST_SIZE(LCD_DMA_BURST_16); break; } reg |= (fifo_th << 8); lcdc_write(reg, LCD_DMA_CTRL_REG); return 0; } static void lcd_cfg_ac_bias(int period, int transitions_per_int) { u32 reg; /* Set the AC Bias Period and Number of Transisitons per Interrupt */ reg = lcdc_read(LCD_RASTER_TIMING_2_REG) & 0xFFF00000; reg |= LCD_AC_BIAS_FREQUENCY(period) | LCD_AC_BIAS_TRANSITIONS_PER_INT(transitions_per_int); lcdc_write(reg, LCD_RASTER_TIMING_2_REG); } static void lcd_cfg_horizontal_sync(int back_porch, int pulse_width, int front_porch) { u32 reg; reg = lcdc_read(LCD_RASTER_TIMING_0_REG) & 0x3ff; reg |= (((back_porch-1) & 0xff) << 24) | (((front_porch-1) & 0xff) << 16) | (((pulse_width-1) & 0x3f) << 10); lcdc_write(reg, LCD_RASTER_TIMING_0_REG); /* * LCDC Version 2 adds some extra bits that increase the allowable * size of the horizontal timing registers. * remember that the registers use 0 to represent 1 so all values * that get set into register need to be decremented by 1 */ if (lcd_revision == LCD_VERSION_2) { /* Mask off the bits we want to change */ reg = lcdc_read(LCD_RASTER_TIMING_2_REG) & ~0x780000ff; reg |= ((front_porch-1) & 0x300) >> 8; reg |= ((back_porch-1) & 0x300) >> 4; reg |= ((pulse_width-1) & 0x3c0) << 21; lcdc_write(reg, LCD_RASTER_TIMING_2_REG); } } static void lcd_cfg_vertical_sync(int back_porch, int pulse_width, int front_porch) { u32 reg; reg = lcdc_read(LCD_RASTER_TIMING_1_REG) & 0x3ff; reg |= ((back_porch & 0xff) << 24) | ((front_porch & 0xff) << 16) | (((pulse_width-1) & 0x3f) << 10); lcdc_write(reg, LCD_RASTER_TIMING_1_REG); } static int lcd_cfg_display(const struct lcd_ctrl_config *cfg, struct fb_videomode *panel) { u32 reg; u32 reg_int; reg = lcdc_read(LCD_RASTER_CTRL_REG) & ~(LCD_TFT_MODE | LCD_MONO_8BIT_MODE | LCD_MONOCHROME_MODE); switch (cfg->panel_shade) { case MONOCHROME: reg |= LCD_MONOCHROME_MODE; if (cfg->mono_8bit_mode) reg |= LCD_MONO_8BIT_MODE; break; case COLOR_ACTIVE: reg |= LCD_TFT_MODE; if (cfg->tft_alt_mode) reg |= LCD_TFT_ALT_ENABLE; break; case COLOR_PASSIVE: /* AC bias applicable only for Pasive panels */ lcd_cfg_ac_bias(cfg->ac_bias, cfg->ac_bias_intrpt); if (cfg->bpp == 12 && cfg->stn_565_mode) reg |= LCD_STN_565_ENABLE; break; default: return -EINVAL; } /* enable additional interrupts here */ if (lcd_revision == LCD_VERSION_1) { reg |= LCD_V1_UNDERFLOW_INT_ENA; } else { reg_int = lcdc_read(LCD_INT_ENABLE_SET_REG) | LCD_V2_UNDERFLOW_INT_ENA; lcdc_write(reg_int, LCD_INT_ENABLE_SET_REG); } lcdc_write(reg, LCD_RASTER_CTRL_REG); reg = lcdc_read(LCD_RASTER_TIMING_2_REG); reg |= LCD_SYNC_CTRL; if (cfg->sync_edge) reg |= LCD_SYNC_EDGE; else reg &= ~LCD_SYNC_EDGE; if ((panel->sync & FB_SYNC_HOR_HIGH_ACT) == 0) reg |= LCD_INVERT_LINE_CLOCK; else reg &= ~LCD_INVERT_LINE_CLOCK; if ((panel->sync & FB_SYNC_VERT_HIGH_ACT) == 0) reg |= LCD_INVERT_FRAME_CLOCK; else reg &= ~LCD_INVERT_FRAME_CLOCK; lcdc_write(reg, LCD_RASTER_TIMING_2_REG); return 0; } static int lcd_cfg_frame_buffer(struct da8xx_fb_par *par, u32 width, u32 height, u32 bpp, u32 raster_order) { u32 reg; if (bpp > 16 && lcd_revision == LCD_VERSION_1) return -EINVAL; /* Set the Panel Width */ /* Pixels per line = (PPL + 1)*16 */ if (lcd_revision == LCD_VERSION_1) { /* * 0x3F in bits 4..9 gives max horizontal resolution = 1024 * pixels. */ width &= 0x3f0; } else { /* * 0x7F in bits 4..10 gives max horizontal resolution = 2048 * pixels. */ width &= 0x7f0; } reg = lcdc_read(LCD_RASTER_TIMING_0_REG); reg &= 0xfffffc00; if (lcd_revision == LCD_VERSION_1) { reg |= ((width >> 4) - 1) << 4; } else { width = (width >> 4) - 1; reg |= ((width & 0x3f) << 4) | ((width & 0x40) >> 3); } lcdc_write(reg, LCD_RASTER_TIMING_0_REG); /* Set the Panel Height */ /* Set bits 9:0 of Lines Per Pixel */ reg = lcdc_read(LCD_RASTER_TIMING_1_REG); reg = ((height - 1) & 0x3ff) | (reg & 0xfffffc00); lcdc_write(reg, LCD_RASTER_TIMING_1_REG); /* Set bit 10 of Lines Per Pixel */ if (lcd_revision == LCD_VERSION_2) { reg = lcdc_read(LCD_RASTER_TIMING_2_REG); reg |= ((height - 1) & 0x400) << 16; lcdc_write(reg, LCD_RASTER_TIMING_2_REG); } /* Set the Raster Order of the Frame Buffer */ reg = lcdc_read(LCD_RASTER_CTRL_REG) & ~(1 << 8); if (raster_order) reg |= LCD_RASTER_ORDER; par->palette_sz = 16 * 2; switch (bpp) { case 1: case 2: case 4: case 16: break; case 24: reg |= LCD_V2_TFT_24BPP_MODE; break; case 32: reg |= LCD_V2_TFT_24BPP_MODE; reg |= LCD_V2_TFT_24BPP_UNPACK; break; case 8: par->palette_sz = 256 * 2; break; default: return -EINVAL; } lcdc_write(reg, LCD_RASTER_CTRL_REG); return 0; } #define CNVT_TOHW(val, width) ((((val) << (width)) + 0x7FFF - (val)) >> 16) static int fb_setcolreg(unsigned regno, unsigned red, unsigned green, unsigned blue, unsigned transp, struct fb_info *info) { struct da8xx_fb_par *par = info->par; unsigned short *palette = (unsigned short *) par->v_palette_base; u_short pal; int update_hw = 0; if (regno > 255) return 1; if (info->fix.visual == FB_VISUAL_DIRECTCOLOR) return 1; if (info->var.bits_per_pixel > 16 && lcd_revision == LCD_VERSION_1) return -EINVAL; switch (info->fix.visual) { case FB_VISUAL_TRUECOLOR: red = CNVT_TOHW(red, info->var.red.length); green = CNVT_TOHW(green, info->var.green.length); blue = CNVT_TOHW(blue, info->var.blue.length); break; case FB_VISUAL_PSEUDOCOLOR: switch (info->var.bits_per_pixel) { case 4: if (regno > 15) return -EINVAL; if (info->var.grayscale) { pal = regno; } else { red >>= 4; green >>= 8; blue >>= 12; pal = red & 0x0f00; pal |= green & 0x00f0; pal |= blue & 0x000f; } if (regno == 0) pal |= 0x2000; palette[regno] = pal; break; case 8: red >>= 4; green >>= 8; blue >>= 12; pal = (red & 0x0f00); pal |= (green & 0x00f0); pal |= (blue & 0x000f); if (palette[regno] != pal) { update_hw = 1; palette[regno] = pal; } break; } break; } /* Truecolor has hardware independent palette */ if (info->fix.visual == FB_VISUAL_TRUECOLOR) { u32 v; if (regno > 15) return -EINVAL; v = (red << info->var.red.offset) | (green << info->var.green.offset) | (blue << info->var.blue.offset); ((u32 *) (info->pseudo_palette))[regno] = v; if (palette[0] != 0x4000) { update_hw = 1; palette[0] = 0x4000; } } /* Update the palette in the h/w as needed. */ if (update_hw) lcd_blit(LOAD_PALETTE, par); return 0; } #undef CNVT_TOHW static void da8xx_fb_lcd_reset(void) { /* DMA has to be disabled */ lcdc_write(0, LCD_DMA_CTRL_REG); lcdc_write(0, LCD_RASTER_CTRL_REG); if (lcd_revision == LCD_VERSION_2) { lcdc_write(0, LCD_INT_ENABLE_SET_REG); /* Write 1 to reset */ lcdc_write(LCD_CLK_MAIN_RESET, LCD_CLK_RESET_REG); lcdc_write(0, LCD_CLK_RESET_REG); } } static int da8xx_fb_config_clk_divider(struct da8xx_fb_par *par, unsigned lcdc_clk_div, unsigned lcdc_clk_rate) { int ret; if (par->lcdc_clk_rate != lcdc_clk_rate) { ret = clk_set_rate(par->lcdc_clk, lcdc_clk_rate); if (ret) { dev_err(par->dev, "unable to set clock rate at %u\n", lcdc_clk_rate); return ret; } par->lcdc_clk_rate = clk_get_rate(par->lcdc_clk); } /* Configure the LCD clock divisor. */ lcdc_write(LCD_CLK_DIVISOR(lcdc_clk_div) | (LCD_RASTER_MODE & 0x1), LCD_CTRL_REG); if (lcd_revision == LCD_VERSION_2) lcdc_write(LCD_V2_DMA_CLK_EN | LCD_V2_LIDD_CLK_EN | LCD_V2_CORE_CLK_EN, LCD_CLK_ENABLE_REG); return 0; } static unsigned int da8xx_fb_calc_clk_divider(struct da8xx_fb_par *par, unsigned pixclock, unsigned *lcdc_clk_rate) { unsigned lcdc_clk_div; pixclock = PICOS2KHZ(pixclock) * 1000; *lcdc_clk_rate = par->lcdc_clk_rate; if (pixclock < (*lcdc_clk_rate / CLK_MAX_DIV)) { *lcdc_clk_rate = clk_round_rate(par->lcdc_clk, pixclock * CLK_MAX_DIV); lcdc_clk_div = CLK_MAX_DIV; } else if (pixclock > (*lcdc_clk_rate / CLK_MIN_DIV)) { *lcdc_clk_rate = clk_round_rate(par->lcdc_clk, pixclock * CLK_MIN_DIV); lcdc_clk_div = CLK_MIN_DIV; } else { lcdc_clk_div = *lcdc_clk_rate / pixclock; } return lcdc_clk_div; } static int da8xx_fb_calc_config_clk_divider(struct da8xx_fb_par *par, struct fb_videomode *mode) { unsigned lcdc_clk_rate; unsigned lcdc_clk_div = da8xx_fb_calc_clk_divider(par, mode->pixclock, &lcdc_clk_rate); return da8xx_fb_config_clk_divider(par, lcdc_clk_div, lcdc_clk_rate); } static unsigned da8xx_fb_round_clk(struct da8xx_fb_par *par, unsigned pixclock) { unsigned lcdc_clk_div, lcdc_clk_rate; lcdc_clk_div = da8xx_fb_calc_clk_divider(par, pixclock, &lcdc_clk_rate); return KHZ2PICOS(lcdc_clk_rate / (1000 * lcdc_clk_div)); } static int lcd_init(struct da8xx_fb_par *par, const struct lcd_ctrl_config *cfg, struct fb_videomode *panel) { u32 bpp; int ret = 0; ret = da8xx_fb_calc_config_clk_divider(par, panel); if (ret) { dev_err(par->dev, "unable to configure clock\n"); return ret; } if (panel->sync & FB_SYNC_CLK_INVERT) lcdc_write((lcdc_read(LCD_RASTER_TIMING_2_REG) | LCD_INVERT_PIXEL_CLOCK), LCD_RASTER_TIMING_2_REG); else lcdc_write((lcdc_read(LCD_RASTER_TIMING_2_REG) & ~LCD_INVERT_PIXEL_CLOCK), LCD_RASTER_TIMING_2_REG); /* Configure the DMA burst size and fifo threshold. */ ret = lcd_cfg_dma(cfg->dma_burst_sz, cfg->fifo_th); if (ret < 0) return ret; /* Configure the vertical and horizontal sync properties. */ lcd_cfg_vertical_sync(panel->upper_margin, panel->vsync_len, panel->lower_margin); lcd_cfg_horizontal_sync(panel->left_margin, panel->hsync_len, panel->right_margin); /* Configure for disply */ ret = lcd_cfg_display(cfg, panel); if (ret < 0) return ret; bpp = cfg->bpp; if (bpp == 12) bpp = 16; ret = lcd_cfg_frame_buffer(par, (unsigned int)panel->xres, (unsigned int)panel->yres, bpp, cfg->raster_order); if (ret < 0) return ret; /* Configure FDD */ lcdc_write((lcdc_read(LCD_RASTER_CTRL_REG) & 0xfff00fff) | (cfg->fdd << 12), LCD_RASTER_CTRL_REG); return 0; } /* IRQ handler for version 2 of LCDC */ static irqreturn_t lcdc_irq_handler_rev02(int irq, void *arg) { struct da8xx_fb_par *par = arg; u32 stat = lcdc_read(LCD_MASKED_STAT_REG); if ((stat & LCD_SYNC_LOST) && (stat & LCD_FIFO_UNDERFLOW)) { lcd_disable_raster(DA8XX_FRAME_NOWAIT); lcdc_write(stat, LCD_MASKED_STAT_REG); lcd_enable_raster(); } else if (stat & LCD_PL_LOAD_DONE) { /* * Must disable raster before changing state of any control bit. * And also must be disabled before clearing the PL loading * interrupt via the following write to the status register. If * this is done after then one gets multiple PL done interrupts. */ lcd_disable_raster(DA8XX_FRAME_NOWAIT); lcdc_write(stat, LCD_MASKED_STAT_REG); /* Disable PL completion interrupt */ lcdc_write(LCD_V2_PL_INT_ENA, LCD_INT_ENABLE_CLR_REG); /* Setup and start data loading mode */ lcd_blit(LOAD_DATA, par); } else { lcdc_write(stat, LCD_MASKED_STAT_REG); if (stat & LCD_END_OF_FRAME0) { par->which_dma_channel_done = 0; lcdc_write(par->dma_start, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG); lcdc_write(par->dma_end, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG); par->vsync_flag = 1; wake_up_interruptible(&par->vsync_wait); } if (stat & LCD_END_OF_FRAME1) { par->which_dma_channel_done = 1; lcdc_write(par->dma_start, LCD_DMA_FRM_BUF_BASE_ADDR_1_REG); lcdc_write(par->dma_end, LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG); par->vsync_flag = 1; wake_up_interruptible(&par->vsync_wait); } /* Set only when controller is disabled and at the end of * active frame */ if (stat & BIT(0)) { frame_done_flag = 1; wake_up_interruptible(&frame_done_wq); } } lcdc_write(0, LCD_END_OF_INT_IND_REG); return IRQ_HANDLED; } /* IRQ handler for version 1 LCDC */ static irqreturn_t lcdc_irq_handler_rev01(int irq, void *arg) { struct da8xx_fb_par *par = arg; u32 stat = lcdc_read(LCD_STAT_REG); u32 reg_ras; if ((stat & LCD_SYNC_LOST) && (stat & LCD_FIFO_UNDERFLOW)) { lcd_disable_raster(DA8XX_FRAME_NOWAIT); lcdc_write(stat, LCD_STAT_REG); lcd_enable_raster(); } else if (stat & LCD_PL_LOAD_DONE) { /* * Must disable raster before changing state of any control bit. * And also must be disabled before clearing the PL loading * interrupt via the following write to the status register. If * this is done after then one gets multiple PL done interrupts. */ lcd_disable_raster(DA8XX_FRAME_NOWAIT); lcdc_write(stat, LCD_STAT_REG); /* Disable PL completion inerrupt */ reg_ras = lcdc_read(LCD_RASTER_CTRL_REG); reg_ras &= ~LCD_V1_PL_INT_ENA; lcdc_write(reg_ras, LCD_RASTER_CTRL_REG); /* Setup and start data loading mode */ lcd_blit(LOAD_DATA, par); } else { lcdc_write(stat, LCD_STAT_REG); if (stat & LCD_END_OF_FRAME0) { par->which_dma_channel_done = 0; lcdc_write(par->dma_start, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG); lcdc_write(par->dma_end, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG); par->vsync_flag = 1; wake_up_interruptible(&par->vsync_wait); } if (stat & LCD_END_OF_FRAME1) { par->which_dma_channel_done = 1; lcdc_write(par->dma_start, LCD_DMA_FRM_BUF_BASE_ADDR_1_REG); lcdc_write(par->dma_end, LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG); par->vsync_flag = 1; wake_up_interruptible(&par->vsync_wait); } } return IRQ_HANDLED; } static int fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info) { int err = 0; struct da8xx_fb_par *par = info->par; int bpp = var->bits_per_pixel >> 3; unsigned long line_size = var->xres_virtual * bpp; if (var->bits_per_pixel > 16 && lcd_revision == LCD_VERSION_1) return -EINVAL; switch (var->bits_per_pixel) { case 1: case 8: var->red.offset = 0; var->red.length = 8; var->green.offset = 0; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->transp.offset = 0; var->transp.length = 0; var->nonstd = 0; break; case 4: var->red.offset = 0; var->red.length = 4; var->green.offset = 0; var->green.length = 4; var->blue.offset = 0; var->blue.length = 4; var->transp.offset = 0; var->transp.length = 0; var->nonstd = FB_NONSTD_REV_PIX_IN_B; break; case 16: /* RGB 565 */ var->red.offset = 11; var->red.length = 5; var->green.offset = 5; var->green.length = 6; var->blue.offset = 0; var->blue.length = 5; var->transp.offset = 0; var->transp.length = 0; var->nonstd = 0; break; case 24: var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->nonstd = 0; break; case 32: var->transp.offset = 24; var->transp.length = 8; var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.offset = 0; var->blue.length = 8; var->nonstd = 0; break; default: err = -EINVAL; } var->red.msb_right = 0; var->green.msb_right = 0; var->blue.msb_right = 0; var->transp.msb_right = 0; if (line_size * var->yres_virtual > par->vram_size) var->yres_virtual = par->vram_size / line_size; if (var->yres > var->yres_virtual) var->yres = var->yres_virtual; if (var->xres > var->xres_virtual) var->xres = var->xres_virtual; if (var->xres + var->xoffset > var->xres_virtual) var->xoffset = var->xres_virtual - var->xres; if (var->yres + var->yoffset > var->yres_virtual) var->yoffset = var->yres_virtual - var->yres; var->pixclock = da8xx_fb_round_clk(par, var->pixclock); return err; } #ifdef CONFIG_CPU_FREQ static int lcd_da8xx_cpufreq_transition(struct notifier_block *nb, unsigned long val, void *data) { struct da8xx_fb_par *par; par = container_of(nb, struct da8xx_fb_par, freq_transition); if (val == CPUFREQ_POSTCHANGE) { if (par->lcdc_clk_rate != clk_get_rate(par->lcdc_clk)) { par->lcdc_clk_rate = clk_get_rate(par->lcdc_clk); lcd_disable_raster(DA8XX_FRAME_WAIT); da8xx_fb_calc_config_clk_divider(par, &par->mode); if (par->blank == FB_BLANK_UNBLANK) lcd_enable_raster(); } } return 0; } static int lcd_da8xx_cpufreq_register(struct da8xx_fb_par *par) { par->freq_transition.notifier_call = lcd_da8xx_cpufreq_transition; return cpufreq_register_notifier(&par->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); } static void lcd_da8xx_cpufreq_deregister(struct da8xx_fb_par *par) { cpufreq_unregister_notifier(&par->freq_transition, CPUFREQ_TRANSITION_NOTIFIER); } #endif static void fb_remove(struct platform_device *dev) { struct fb_info *info = platform_get_drvdata(dev); struct da8xx_fb_par *par = info->par; int ret; #ifdef CONFIG_CPU_FREQ lcd_da8xx_cpufreq_deregister(par); #endif if (par->lcd_supply) { ret = regulator_disable(par->lcd_supply); if (ret) dev_warn(&dev->dev, "Failed to disable regulator (%pe)\n", ERR_PTR(ret)); } lcd_disable_raster(DA8XX_FRAME_WAIT); lcdc_write(0, LCD_RASTER_CTRL_REG); /* disable DMA */ lcdc_write(0, LCD_DMA_CTRL_REG); unregister_framebuffer(info); fb_dealloc_cmap(&info->cmap); pm_runtime_put_sync(&dev->dev); pm_runtime_disable(&dev->dev); framebuffer_release(info); } /* * Function to wait for vertical sync which for this LCD peripheral * translates into waiting for the current raster frame to complete. */ static int fb_wait_for_vsync(struct fb_info *info) { struct da8xx_fb_par *par = info->par; int ret; /* * Set flag to 0 and wait for isr to set to 1. It would seem there is a * race condition here where the ISR could have occurred just before or * just after this set. But since we are just coarsely waiting for * a frame to complete then that's OK. i.e. if the frame completed * just before this code executed then we have to wait another full * frame time but there is no way to avoid such a situation. On the * other hand if the frame completed just after then we don't need * to wait long at all. Either way we are guaranteed to return to the * user immediately after a frame completion which is all that is * required. */ par->vsync_flag = 0; ret = wait_event_interruptible_timeout(par->vsync_wait, par->vsync_flag != 0, par->vsync_timeout); if (ret < 0) return ret; if (ret == 0) return -ETIMEDOUT; return 0; } static int fb_ioctl(struct fb_info *info, unsigned int cmd, unsigned long arg) { struct lcd_sync_arg sync_arg; switch (cmd) { case FBIOGET_CONTRAST: case FBIOPUT_CONTRAST: case FBIGET_BRIGHTNESS: case FBIPUT_BRIGHTNESS: case FBIGET_COLOR: case FBIPUT_COLOR: return -ENOTTY; case FBIPUT_HSYNC: if (copy_from_user(&sync_arg, (char *)arg, sizeof(struct lcd_sync_arg))) return -EFAULT; lcd_cfg_horizontal_sync(sync_arg.back_porch, sync_arg.pulse_width, sync_arg.front_porch); break; case FBIPUT_VSYNC: if (copy_from_user(&sync_arg, (char *)arg, sizeof(struct lcd_sync_arg))) return -EFAULT; lcd_cfg_vertical_sync(sync_arg.back_porch, sync_arg.pulse_width, sync_arg.front_porch); break; case FBIO_WAITFORVSYNC: return fb_wait_for_vsync(info); default: return -EINVAL; } return 0; } static int cfb_blank(int blank, struct fb_info *info) { struct da8xx_fb_par *par = info->par; int ret = 0; if (par->blank == blank) return 0; par->blank = blank; switch (blank) { case FB_BLANK_UNBLANK: lcd_enable_raster(); if (par->lcd_supply) { ret = regulator_enable(par->lcd_supply); if (ret) return ret; } break; case FB_BLANK_NORMAL: case FB_BLANK_VSYNC_SUSPEND: case FB_BLANK_HSYNC_SUSPEND: case FB_BLANK_POWERDOWN: if (par->lcd_supply) { ret = regulator_disable(par->lcd_supply); if (ret) return ret; } lcd_disable_raster(DA8XX_FRAME_WAIT); break; default: ret = -EINVAL; } return ret; } /* * Set new x,y offsets in the virtual display for the visible area and switch * to the new mode. */ static int da8xx_pan_display(struct fb_var_screeninfo *var, struct fb_info *fbi) { int ret = 0; struct fb_var_screeninfo new_var; struct da8xx_fb_par *par = fbi->par; struct fb_fix_screeninfo *fix = &fbi->fix; unsigned int end; unsigned int start; unsigned long irq_flags; if (var->xoffset != fbi->var.xoffset || var->yoffset != fbi->var.yoffset) { memcpy(&new_var, &fbi->var, sizeof(new_var)); new_var.xoffset = var->xoffset; new_var.yoffset = var->yoffset; if (fb_check_var(&new_var, fbi)) ret = -EINVAL; else { memcpy(&fbi->var, &new_var, sizeof(new_var)); start = fix->smem_start + new_var.yoffset * fix->line_length + new_var.xoffset * fbi->var.bits_per_pixel / 8; end = start + fbi->var.yres * fix->line_length - 1; par->dma_start = start; par->dma_end = end; spin_lock_irqsave(&par->lock_for_chan_update, irq_flags); if (par->which_dma_channel_done == 0) { lcdc_write(par->dma_start, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG); lcdc_write(par->dma_end, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG); } else if (par->which_dma_channel_done == 1) { lcdc_write(par->dma_start, LCD_DMA_FRM_BUF_BASE_ADDR_1_REG); lcdc_write(par->dma_end, LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG); } spin_unlock_irqrestore(&par->lock_for_chan_update, irq_flags); } } return ret; } static int da8xxfb_set_par(struct fb_info *info) { struct da8xx_fb_par *par = info->par; int ret; bool raster = da8xx_fb_is_raster_enabled(); if (raster) lcd_disable_raster(DA8XX_FRAME_WAIT); fb_var_to_videomode(&par->mode, &info->var); par->cfg.bpp = info->var.bits_per_pixel; info->fix.visual = (par->cfg.bpp <= 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR; info->fix.line_length = (par->mode.xres * par->cfg.bpp) / 8; ret = lcd_init(par, &par->cfg, &par->mode); if (ret < 0) { dev_err(par->dev, "lcd init failed\n"); return ret; } par->dma_start = info->fix.smem_start + info->var.yoffset * info->fix.line_length + info->var.xoffset * info->var.bits_per_pixel / 8; par->dma_end = par->dma_start + info->var.yres * info->fix.line_length - 1; lcdc_write(par->dma_start, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG); lcdc_write(par->dma_end, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG); lcdc_write(par->dma_start, LCD_DMA_FRM_BUF_BASE_ADDR_1_REG); lcdc_write(par->dma_end, LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG); if (raster) lcd_enable_raster(); return 0; } static const struct fb_ops da8xx_fb_ops = { .owner = THIS_MODULE, FB_DEFAULT_IOMEM_OPS, .fb_check_var = fb_check_var, .fb_set_par = da8xxfb_set_par, .fb_setcolreg = fb_setcolreg, .fb_pan_display = da8xx_pan_display, .fb_ioctl = fb_ioctl, .fb_blank = cfb_blank, }; static struct fb_videomode *da8xx_fb_get_videomode(struct platform_device *dev) { struct da8xx_lcdc_platform_data *fb_pdata = dev_get_platdata(&dev->dev); struct fb_videomode *lcdc_info; int i; for (i = 0, lcdc_info = known_lcd_panels; i < ARRAY_SIZE(known_lcd_panels); i++, lcdc_info++) { if (strcmp(fb_pdata->type, lcdc_info->name) == 0) break; } if (i == ARRAY_SIZE(known_lcd_panels)) { dev_err(&dev->dev, "no panel found\n"); return NULL; } dev_info(&dev->dev, "found %s panel\n", lcdc_info->name); return lcdc_info; } static int fb_probe(struct platform_device *device) { struct da8xx_lcdc_platform_data *fb_pdata = dev_get_platdata(&device->dev); struct lcd_ctrl_config *lcd_cfg; struct fb_videomode *lcdc_info; struct fb_info *da8xx_fb_info; struct da8xx_fb_par *par; struct clk *tmp_lcdc_clk; int ret; unsigned long ulcm; if (fb_pdata == NULL) { dev_err(&device->dev, "Can not get platform data\n"); return -ENOENT; } lcdc_info = da8xx_fb_get_videomode(device); if (lcdc_info == NULL) return -ENODEV; da8xx_fb_reg_base = devm_platform_ioremap_resource(device, 0); if (IS_ERR(da8xx_fb_reg_base)) return PTR_ERR(da8xx_fb_reg_base); tmp_lcdc_clk = devm_clk_get(&device->dev, "fck"); if (IS_ERR(tmp_lcdc_clk)) return dev_err_probe(&device->dev, PTR_ERR(tmp_lcdc_clk), "Can not get device clock\n"); pm_runtime_enable(&device->dev); pm_runtime_get_sync(&device->dev); /* Determine LCD IP Version */ switch (lcdc_read(LCD_PID_REG)) { case 0x4C100102: lcd_revision = LCD_VERSION_1; break; case 0x4F200800: case 0x4F201000: lcd_revision = LCD_VERSION_2; break; default: dev_warn(&device->dev, "Unknown PID Reg value 0x%x, " "defaulting to LCD revision 1\n", lcdc_read(LCD_PID_REG)); lcd_revision = LCD_VERSION_1; break; } lcd_cfg = (struct lcd_ctrl_config *)fb_pdata->controller_data; if (!lcd_cfg) { ret = -EINVAL; goto err_pm_runtime_disable; } da8xx_fb_info = framebuffer_alloc(sizeof(struct da8xx_fb_par), &device->dev); if (!da8xx_fb_info) { ret = -ENOMEM; goto err_pm_runtime_disable; } par = da8xx_fb_info->par; par->dev = &device->dev; par->lcdc_clk = tmp_lcdc_clk; par->lcdc_clk_rate = clk_get_rate(par->lcdc_clk); par->lcd_supply = devm_regulator_get_optional(&device->dev, "lcd"); if (IS_ERR(par->lcd_supply)) { if (PTR_ERR(par->lcd_supply) == -EPROBE_DEFER) { ret = -EPROBE_DEFER; goto err_release_fb; } par->lcd_supply = NULL; } else { ret = regulator_enable(par->lcd_supply); if (ret) goto err_release_fb; } fb_videomode_to_var(&da8xx_fb_var, lcdc_info); par->cfg = *lcd_cfg; da8xx_fb_lcd_reset(); /* allocate frame buffer */ par->vram_size = lcdc_info->xres * lcdc_info->yres * lcd_cfg->bpp; ulcm = lcm((lcdc_info->xres * lcd_cfg->bpp)/8, PAGE_SIZE); par->vram_size = roundup(par->vram_size/8, ulcm); par->vram_size = par->vram_size * LCD_NUM_BUFFERS; par->vram_virt = dmam_alloc_coherent(par->dev, par->vram_size, &par->vram_phys, GFP_KERNEL | GFP_DMA); if (!par->vram_virt) { dev_err(&device->dev, "GLCD: kmalloc for frame buffer failed\n"); ret = -EINVAL; goto err_disable_reg; } da8xx_fb_info->screen_base = (char __iomem *) par->vram_virt; da8xx_fb_fix.smem_start = par->vram_phys; da8xx_fb_fix.smem_len = par->vram_size; da8xx_fb_fix.line_length = (lcdc_info->xres * lcd_cfg->bpp) / 8; par->dma_start = par->vram_phys; par->dma_end = par->dma_start + lcdc_info->yres * da8xx_fb_fix.line_length - 1; /* allocate palette buffer */ par->v_palette_base = dmam_alloc_coherent(par->dev, PALETTE_SIZE, &par->p_palette_base, GFP_KERNEL | GFP_DMA); if (!par->v_palette_base) { dev_err(&device->dev, "GLCD: kmalloc for palette buffer failed\n"); ret = -EINVAL; goto err_release_fb; } par->irq = platform_get_irq(device, 0); if (par->irq < 0) { ret = -ENOENT; goto err_release_fb; } da8xx_fb_var.grayscale = lcd_cfg->panel_shade == MONOCHROME ? 1 : 0; da8xx_fb_var.bits_per_pixel = lcd_cfg->bpp; /* Initialize fbinfo */ da8xx_fb_info->fix = da8xx_fb_fix; da8xx_fb_info->var = da8xx_fb_var; da8xx_fb_info->fbops = &da8xx_fb_ops; da8xx_fb_info->pseudo_palette = par->pseudo_palette; da8xx_fb_info->fix.visual = (da8xx_fb_info->var.bits_per_pixel <= 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR; ret = fb_alloc_cmap(&da8xx_fb_info->cmap, PALETTE_SIZE, 0); if (ret) goto err_disable_reg; da8xx_fb_info->cmap.len = par->palette_sz; /* initialize var_screeninfo */ da8xx_fb_var.activate = FB_ACTIVATE_FORCE; fb_set_var(da8xx_fb_info, &da8xx_fb_var); platform_set_drvdata(device, da8xx_fb_info); /* initialize the vsync wait queue */ init_waitqueue_head(&par->vsync_wait); par->vsync_timeout = HZ / 5; par->which_dma_channel_done = -1; spin_lock_init(&par->lock_for_chan_update); /* Register the Frame Buffer */ if (register_framebuffer(da8xx_fb_info) < 0) { dev_err(&device->dev, "GLCD: Frame Buffer Registration Failed!\n"); ret = -EINVAL; goto err_dealloc_cmap; } #ifdef CONFIG_CPU_FREQ ret = lcd_da8xx_cpufreq_register(par); if (ret) { dev_err(&device->dev, "failed to register cpufreq\n"); goto err_cpu_freq; } #endif if (lcd_revision == LCD_VERSION_1) lcdc_irq_handler = lcdc_irq_handler_rev01; else { init_waitqueue_head(&frame_done_wq); lcdc_irq_handler = lcdc_irq_handler_rev02; } ret = devm_request_irq(&device->dev, par->irq, lcdc_irq_handler, 0, DRIVER_NAME, par); if (ret) goto irq_freq; return 0; irq_freq: #ifdef CONFIG_CPU_FREQ lcd_da8xx_cpufreq_deregister(par); err_cpu_freq: #endif unregister_framebuffer(da8xx_fb_info); err_dealloc_cmap: fb_dealloc_cmap(&da8xx_fb_info->cmap); err_disable_reg: if (par->lcd_supply) regulator_disable(par->lcd_supply); err_release_fb: framebuffer_release(da8xx_fb_info); err_pm_runtime_disable: pm_runtime_put_sync(&device->dev); pm_runtime_disable(&device->dev); return ret; } #ifdef CONFIG_PM_SLEEP static struct lcdc_context { u32 clk_enable; u32 ctrl; u32 dma_ctrl; u32 raster_timing_0; u32 raster_timing_1; u32 raster_timing_2; u32 int_enable_set; u32 dma_frm_buf_base_addr_0; u32 dma_frm_buf_ceiling_addr_0; u32 dma_frm_buf_base_addr_1; u32 dma_frm_buf_ceiling_addr_1; u32 raster_ctrl; } reg_context; static void lcd_context_save(void) { if (lcd_revision == LCD_VERSION_2) { reg_context.clk_enable = lcdc_read(LCD_CLK_ENABLE_REG); reg_context.int_enable_set = lcdc_read(LCD_INT_ENABLE_SET_REG); } reg_context.ctrl = lcdc_read(LCD_CTRL_REG); reg_context.dma_ctrl = lcdc_read(LCD_DMA_CTRL_REG); reg_context.raster_timing_0 = lcdc_read(LCD_RASTER_TIMING_0_REG); reg_context.raster_timing_1 = lcdc_read(LCD_RASTER_TIMING_1_REG); reg_context.raster_timing_2 = lcdc_read(LCD_RASTER_TIMING_2_REG); reg_context.dma_frm_buf_base_addr_0 = lcdc_read(LCD_DMA_FRM_BUF_BASE_ADDR_0_REG); reg_context.dma_frm_buf_ceiling_addr_0 = lcdc_read(LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG); reg_context.dma_frm_buf_base_addr_1 = lcdc_read(LCD_DMA_FRM_BUF_BASE_ADDR_1_REG); reg_context.dma_frm_buf_ceiling_addr_1 = lcdc_read(LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG); reg_context.raster_ctrl = lcdc_read(LCD_RASTER_CTRL_REG); return; } static void lcd_context_restore(void) { if (lcd_revision == LCD_VERSION_2) { lcdc_write(reg_context.clk_enable, LCD_CLK_ENABLE_REG); lcdc_write(reg_context.int_enable_set, LCD_INT_ENABLE_SET_REG); } lcdc_write(reg_context.ctrl, LCD_CTRL_REG); lcdc_write(reg_context.dma_ctrl, LCD_DMA_CTRL_REG); lcdc_write(reg_context.raster_timing_0, LCD_RASTER_TIMING_0_REG); lcdc_write(reg_context.raster_timing_1, LCD_RASTER_TIMING_1_REG); lcdc_write(reg_context.raster_timing_2, LCD_RASTER_TIMING_2_REG); lcdc_write(reg_context.dma_frm_buf_base_addr_0, LCD_DMA_FRM_BUF_BASE_ADDR_0_REG); lcdc_write(reg_context.dma_frm_buf_ceiling_addr_0, LCD_DMA_FRM_BUF_CEILING_ADDR_0_REG); lcdc_write(reg_context.dma_frm_buf_base_addr_1, LCD_DMA_FRM_BUF_BASE_ADDR_1_REG); lcdc_write(reg_context.dma_frm_buf_ceiling_addr_1, LCD_DMA_FRM_BUF_CEILING_ADDR_1_REG); lcdc_write(reg_context.raster_ctrl, LCD_RASTER_CTRL_REG); return; } static int fb_suspend(struct device *dev) { struct fb_info *info = dev_get_drvdata(dev); struct da8xx_fb_par *par = info->par; int ret; console_lock(); if (par->lcd_supply) { ret = regulator_disable(par->lcd_supply); if (ret) return ret; } fb_set_suspend(info, 1); lcd_disable_raster(DA8XX_FRAME_WAIT); lcd_context_save(); pm_runtime_put_sync(dev); console_unlock(); return 0; } static int fb_resume(struct device *dev) { struct fb_info *info = dev_get_drvdata(dev); struct da8xx_fb_par *par = info->par; int ret; console_lock(); pm_runtime_get_sync(dev); lcd_context_restore(); if (par->blank == FB_BLANK_UNBLANK) { lcd_enable_raster(); if (par->lcd_supply) { ret = regulator_enable(par->lcd_supply); if (ret) return ret; } } fb_set_suspend(info, 0); console_unlock(); return 0; } #endif static SIMPLE_DEV_PM_OPS(fb_pm_ops, fb_suspend, fb_resume); static struct platform_driver da8xx_fb_driver = { .probe = fb_probe, .remove_new = fb_remove, .driver = { .name = DRIVER_NAME, .pm = &fb_pm_ops, }, }; module_platform_driver(da8xx_fb_driver); MODULE_DESCRIPTION("Framebuffer driver for TI da8xx/omap-l1xx"); MODULE_AUTHOR("Texas Instruments"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1