Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ard Biesheuvel | 4248 | 98.81% | 8 | 61.54% |
Herbert Xu | 42 | 0.98% | 1 | 7.69% |
Eric Biggers | 8 | 0.19% | 3 | 23.08% |
Thomas Gleixner | 1 | 0.02% | 1 | 7.69% |
Total | 4299 | 13 |
// SPDX-License-Identifier: GPL-2.0-only /* * Accelerated GHASH implementation with ARMv8 vmull.p64 instructions. * * Copyright (C) 2015 - 2018 Linaro Ltd. * Copyright (C) 2023 Google LLC. */ #include <asm/hwcap.h> #include <asm/neon.h> #include <asm/simd.h> #include <asm/unaligned.h> #include <crypto/aes.h> #include <crypto/gcm.h> #include <crypto/b128ops.h> #include <crypto/cryptd.h> #include <crypto/internal/aead.h> #include <crypto/internal/hash.h> #include <crypto/internal/simd.h> #include <crypto/internal/skcipher.h> #include <crypto/gf128mul.h> #include <crypto/scatterwalk.h> #include <linux/cpufeature.h> #include <linux/crypto.h> #include <linux/jump_label.h> #include <linux/module.h> MODULE_DESCRIPTION("GHASH hash function using ARMv8 Crypto Extensions"); MODULE_AUTHOR("Ard Biesheuvel <ardb@kernel.org>"); MODULE_LICENSE("GPL"); MODULE_ALIAS_CRYPTO("ghash"); MODULE_ALIAS_CRYPTO("gcm(aes)"); MODULE_ALIAS_CRYPTO("rfc4106(gcm(aes))"); #define GHASH_BLOCK_SIZE 16 #define GHASH_DIGEST_SIZE 16 #define RFC4106_NONCE_SIZE 4 struct ghash_key { be128 k; u64 h[][2]; }; struct gcm_key { u64 h[4][2]; u32 rk[AES_MAX_KEYLENGTH_U32]; int rounds; u8 nonce[]; // for RFC4106 nonce }; struct ghash_desc_ctx { u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)]; u8 buf[GHASH_BLOCK_SIZE]; u32 count; }; struct ghash_async_ctx { struct cryptd_ahash *cryptd_tfm; }; asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src, u64 const h[][2], const char *head); asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src, u64 const h[][2], const char *head); static __ro_after_init DEFINE_STATIC_KEY_FALSE(use_p64); static int ghash_init(struct shash_desc *desc) { struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); *ctx = (struct ghash_desc_ctx){}; return 0; } static void ghash_do_update(int blocks, u64 dg[], const char *src, struct ghash_key *key, const char *head) { if (likely(crypto_simd_usable())) { kernel_neon_begin(); if (static_branch_likely(&use_p64)) pmull_ghash_update_p64(blocks, dg, src, key->h, head); else pmull_ghash_update_p8(blocks, dg, src, key->h, head); kernel_neon_end(); } else { be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) }; do { const u8 *in = src; if (head) { in = head; blocks++; head = NULL; } else { src += GHASH_BLOCK_SIZE; } crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE); gf128mul_lle(&dst, &key->k); } while (--blocks); dg[0] = be64_to_cpu(dst.b); dg[1] = be64_to_cpu(dst.a); } } static int ghash_update(struct shash_desc *desc, const u8 *src, unsigned int len) { struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; ctx->count += len; if ((partial + len) >= GHASH_BLOCK_SIZE) { struct ghash_key *key = crypto_shash_ctx(desc->tfm); int blocks; if (partial) { int p = GHASH_BLOCK_SIZE - partial; memcpy(ctx->buf + partial, src, p); src += p; len -= p; } blocks = len / GHASH_BLOCK_SIZE; len %= GHASH_BLOCK_SIZE; ghash_do_update(blocks, ctx->digest, src, key, partial ? ctx->buf : NULL); src += blocks * GHASH_BLOCK_SIZE; partial = 0; } if (len) memcpy(ctx->buf + partial, src, len); return 0; } static int ghash_final(struct shash_desc *desc, u8 *dst) { struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; if (partial) { struct ghash_key *key = crypto_shash_ctx(desc->tfm); memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); ghash_do_update(1, ctx->digest, ctx->buf, key, NULL); } put_unaligned_be64(ctx->digest[1], dst); put_unaligned_be64(ctx->digest[0], dst + 8); *ctx = (struct ghash_desc_ctx){}; return 0; } static void ghash_reflect(u64 h[], const be128 *k) { u64 carry = be64_to_cpu(k->a) >> 63; h[0] = (be64_to_cpu(k->b) << 1) | carry; h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63); if (carry) h[1] ^= 0xc200000000000000UL; } static int ghash_setkey(struct crypto_shash *tfm, const u8 *inkey, unsigned int keylen) { struct ghash_key *key = crypto_shash_ctx(tfm); if (keylen != GHASH_BLOCK_SIZE) return -EINVAL; /* needed for the fallback */ memcpy(&key->k, inkey, GHASH_BLOCK_SIZE); ghash_reflect(key->h[0], &key->k); if (static_branch_likely(&use_p64)) { be128 h = key->k; gf128mul_lle(&h, &key->k); ghash_reflect(key->h[1], &h); gf128mul_lle(&h, &key->k); ghash_reflect(key->h[2], &h); gf128mul_lle(&h, &key->k); ghash_reflect(key->h[3], &h); } return 0; } static struct shash_alg ghash_alg = { .digestsize = GHASH_DIGEST_SIZE, .init = ghash_init, .update = ghash_update, .final = ghash_final, .setkey = ghash_setkey, .descsize = sizeof(struct ghash_desc_ctx), .base.cra_name = "ghash", .base.cra_driver_name = "ghash-ce-sync", .base.cra_priority = 300 - 1, .base.cra_blocksize = GHASH_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct ghash_key) + sizeof(u64[2]), .base.cra_module = THIS_MODULE, }; static int ghash_async_init(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *cryptd_req = ahash_request_ctx(req); struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; struct shash_desc *desc = cryptd_shash_desc(cryptd_req); struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm); desc->tfm = child; return crypto_shash_init(desc); } static int ghash_async_update(struct ahash_request *req) { struct ahash_request *cryptd_req = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; if (!crypto_simd_usable() || (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) { memcpy(cryptd_req, req, sizeof(*req)); ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base); return crypto_ahash_update(cryptd_req); } else { struct shash_desc *desc = cryptd_shash_desc(cryptd_req); return shash_ahash_update(req, desc); } } static int ghash_async_final(struct ahash_request *req) { struct ahash_request *cryptd_req = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; if (!crypto_simd_usable() || (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) { memcpy(cryptd_req, req, sizeof(*req)); ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base); return crypto_ahash_final(cryptd_req); } else { struct shash_desc *desc = cryptd_shash_desc(cryptd_req); return crypto_shash_final(desc, req->result); } } static int ghash_async_digest(struct ahash_request *req) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); struct ahash_request *cryptd_req = ahash_request_ctx(req); struct cryptd_ahash *cryptd_tfm = ctx->cryptd_tfm; if (!crypto_simd_usable() || (in_atomic() && cryptd_ahash_queued(cryptd_tfm))) { memcpy(cryptd_req, req, sizeof(*req)); ahash_request_set_tfm(cryptd_req, &cryptd_tfm->base); return crypto_ahash_digest(cryptd_req); } else { struct shash_desc *desc = cryptd_shash_desc(cryptd_req); struct crypto_shash *child = cryptd_ahash_child(cryptd_tfm); desc->tfm = child; return shash_ahash_digest(req, desc); } } static int ghash_async_import(struct ahash_request *req, const void *in) { struct ahash_request *cryptd_req = ahash_request_ctx(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); struct shash_desc *desc = cryptd_shash_desc(cryptd_req); desc->tfm = cryptd_ahash_child(ctx->cryptd_tfm); return crypto_shash_import(desc, in); } static int ghash_async_export(struct ahash_request *req, void *out) { struct ahash_request *cryptd_req = ahash_request_ctx(req); struct shash_desc *desc = cryptd_shash_desc(cryptd_req); return crypto_shash_export(desc, out); } static int ghash_async_setkey(struct crypto_ahash *tfm, const u8 *key, unsigned int keylen) { struct ghash_async_ctx *ctx = crypto_ahash_ctx(tfm); struct crypto_ahash *child = &ctx->cryptd_tfm->base; crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK); crypto_ahash_set_flags(child, crypto_ahash_get_flags(tfm) & CRYPTO_TFM_REQ_MASK); return crypto_ahash_setkey(child, key, keylen); } static int ghash_async_init_tfm(struct crypto_tfm *tfm) { struct cryptd_ahash *cryptd_tfm; struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm); cryptd_tfm = cryptd_alloc_ahash("ghash-ce-sync", 0, 0); if (IS_ERR(cryptd_tfm)) return PTR_ERR(cryptd_tfm); ctx->cryptd_tfm = cryptd_tfm; crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), sizeof(struct ahash_request) + crypto_ahash_reqsize(&cryptd_tfm->base)); return 0; } static void ghash_async_exit_tfm(struct crypto_tfm *tfm) { struct ghash_async_ctx *ctx = crypto_tfm_ctx(tfm); cryptd_free_ahash(ctx->cryptd_tfm); } static struct ahash_alg ghash_async_alg = { .init = ghash_async_init, .update = ghash_async_update, .final = ghash_async_final, .setkey = ghash_async_setkey, .digest = ghash_async_digest, .import = ghash_async_import, .export = ghash_async_export, .halg.digestsize = GHASH_DIGEST_SIZE, .halg.statesize = sizeof(struct ghash_desc_ctx), .halg.base = { .cra_name = "ghash", .cra_driver_name = "ghash-ce", .cra_priority = 300, .cra_flags = CRYPTO_ALG_ASYNC, .cra_blocksize = GHASH_BLOCK_SIZE, .cra_ctxsize = sizeof(struct ghash_async_ctx), .cra_module = THIS_MODULE, .cra_init = ghash_async_init_tfm, .cra_exit = ghash_async_exit_tfm, }, }; void pmull_gcm_encrypt(int blocks, u64 dg[], const char *src, struct gcm_key const *k, char *dst, const char *iv, int rounds, u32 counter); void pmull_gcm_enc_final(int blocks, u64 dg[], char *tag, struct gcm_key const *k, char *head, const char *iv, int rounds, u32 counter); void pmull_gcm_decrypt(int bytes, u64 dg[], const char *src, struct gcm_key const *k, char *dst, const char *iv, int rounds, u32 counter); int pmull_gcm_dec_final(int bytes, u64 dg[], char *tag, struct gcm_key const *k, char *head, const char *iv, int rounds, u32 counter, const char *otag, int authsize); static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey, unsigned int keylen) { struct gcm_key *ctx = crypto_aead_ctx(tfm); struct crypto_aes_ctx aes_ctx; be128 h, k; int ret; ret = aes_expandkey(&aes_ctx, inkey, keylen); if (ret) return -EINVAL; aes_encrypt(&aes_ctx, (u8 *)&k, (u8[AES_BLOCK_SIZE]){}); memcpy(ctx->rk, aes_ctx.key_enc, sizeof(ctx->rk)); ctx->rounds = 6 + keylen / 4; memzero_explicit(&aes_ctx, sizeof(aes_ctx)); ghash_reflect(ctx->h[0], &k); h = k; gf128mul_lle(&h, &k); ghash_reflect(ctx->h[1], &h); gf128mul_lle(&h, &k); ghash_reflect(ctx->h[2], &h); gf128mul_lle(&h, &k); ghash_reflect(ctx->h[3], &h); return 0; } static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { return crypto_gcm_check_authsize(authsize); } static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[], int *buf_count, struct gcm_key *ctx) { if (*buf_count > 0) { int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count); memcpy(&buf[*buf_count], src, buf_added); *buf_count += buf_added; src += buf_added; count -= buf_added; } if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) { int blocks = count / GHASH_BLOCK_SIZE; pmull_ghash_update_p64(blocks, dg, src, ctx->h, *buf_count ? buf : NULL); src += blocks * GHASH_BLOCK_SIZE; count %= GHASH_BLOCK_SIZE; *buf_count = 0; } if (count > 0) { memcpy(buf, src, count); *buf_count = count; } } static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct gcm_key *ctx = crypto_aead_ctx(aead); u8 buf[GHASH_BLOCK_SIZE]; struct scatter_walk walk; int buf_count = 0; scatterwalk_start(&walk, req->src); do { u32 n = scatterwalk_clamp(&walk, len); u8 *p; if (!n) { scatterwalk_start(&walk, sg_next(walk.sg)); n = scatterwalk_clamp(&walk, len); } p = scatterwalk_map(&walk); gcm_update_mac(dg, p, n, buf, &buf_count, ctx); scatterwalk_unmap(p); if (unlikely(len / SZ_4K > (len - n) / SZ_4K)) { kernel_neon_end(); kernel_neon_begin(); } len -= n; scatterwalk_advance(&walk, n); scatterwalk_done(&walk, 0, len); } while (len); if (buf_count) { memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count); pmull_ghash_update_p64(1, dg, buf, ctx->h, NULL); } } static int gcm_encrypt(struct aead_request *req, const u8 *iv, u32 assoclen) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct gcm_key *ctx = crypto_aead_ctx(aead); struct skcipher_walk walk; u8 buf[AES_BLOCK_SIZE]; u32 counter = 2; u64 dg[2] = {}; be128 lengths; const u8 *src; u8 *tag, *dst; int tail, err; if (WARN_ON_ONCE(!may_use_simd())) return -EBUSY; err = skcipher_walk_aead_encrypt(&walk, req, false); kernel_neon_begin(); if (assoclen) gcm_calculate_auth_mac(req, dg, assoclen); src = walk.src.virt.addr; dst = walk.dst.virt.addr; while (walk.nbytes >= AES_BLOCK_SIZE) { int nblocks = walk.nbytes / AES_BLOCK_SIZE; pmull_gcm_encrypt(nblocks, dg, src, ctx, dst, iv, ctx->rounds, counter); counter += nblocks; if (walk.nbytes == walk.total) { src += nblocks * AES_BLOCK_SIZE; dst += nblocks * AES_BLOCK_SIZE; break; } kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); if (err) return err; src = walk.src.virt.addr; dst = walk.dst.virt.addr; kernel_neon_begin(); } lengths.a = cpu_to_be64(assoclen * 8); lengths.b = cpu_to_be64(req->cryptlen * 8); tag = (u8 *)&lengths; tail = walk.nbytes % AES_BLOCK_SIZE; /* * Bounce via a buffer unless we are encrypting in place and src/dst * are not pointing to the start of the walk buffer. In that case, we * can do a NEON load/xor/store sequence in place as long as we move * the plain/ciphertext and keystream to the start of the register. If * not, do a memcpy() to the end of the buffer so we can reuse the same * logic. */ if (unlikely(tail && (tail == walk.nbytes || src != dst))) src = memcpy(buf + sizeof(buf) - tail, src, tail); pmull_gcm_enc_final(tail, dg, tag, ctx, (u8 *)src, iv, ctx->rounds, counter); kernel_neon_end(); if (unlikely(tail && src != dst)) memcpy(dst, src, tail); if (walk.nbytes) { err = skcipher_walk_done(&walk, 0); if (err) return err; } /* copy authtag to end of dst */ scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen, crypto_aead_authsize(aead), 1); return 0; } static int gcm_decrypt(struct aead_request *req, const u8 *iv, u32 assoclen) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct gcm_key *ctx = crypto_aead_ctx(aead); int authsize = crypto_aead_authsize(aead); struct skcipher_walk walk; u8 otag[AES_BLOCK_SIZE]; u8 buf[AES_BLOCK_SIZE]; u32 counter = 2; u64 dg[2] = {}; be128 lengths; const u8 *src; u8 *tag, *dst; int tail, err, ret; if (WARN_ON_ONCE(!may_use_simd())) return -EBUSY; scatterwalk_map_and_copy(otag, req->src, req->assoclen + req->cryptlen - authsize, authsize, 0); err = skcipher_walk_aead_decrypt(&walk, req, false); kernel_neon_begin(); if (assoclen) gcm_calculate_auth_mac(req, dg, assoclen); src = walk.src.virt.addr; dst = walk.dst.virt.addr; while (walk.nbytes >= AES_BLOCK_SIZE) { int nblocks = walk.nbytes / AES_BLOCK_SIZE; pmull_gcm_decrypt(nblocks, dg, src, ctx, dst, iv, ctx->rounds, counter); counter += nblocks; if (walk.nbytes == walk.total) { src += nblocks * AES_BLOCK_SIZE; dst += nblocks * AES_BLOCK_SIZE; break; } kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); if (err) return err; src = walk.src.virt.addr; dst = walk.dst.virt.addr; kernel_neon_begin(); } lengths.a = cpu_to_be64(assoclen * 8); lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8); tag = (u8 *)&lengths; tail = walk.nbytes % AES_BLOCK_SIZE; if (unlikely(tail && (tail == walk.nbytes || src != dst))) src = memcpy(buf + sizeof(buf) - tail, src, tail); ret = pmull_gcm_dec_final(tail, dg, tag, ctx, (u8 *)src, iv, ctx->rounds, counter, otag, authsize); kernel_neon_end(); if (unlikely(tail && src != dst)) memcpy(dst, src, tail); if (walk.nbytes) { err = skcipher_walk_done(&walk, 0); if (err) return err; } return ret ? -EBADMSG : 0; } static int gcm_aes_encrypt(struct aead_request *req) { return gcm_encrypt(req, req->iv, req->assoclen); } static int gcm_aes_decrypt(struct aead_request *req) { return gcm_decrypt(req, req->iv, req->assoclen); } static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey, unsigned int keylen) { struct gcm_key *ctx = crypto_aead_ctx(tfm); int err; keylen -= RFC4106_NONCE_SIZE; err = gcm_aes_setkey(tfm, inkey, keylen); if (err) return err; memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE); return 0; } static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { return crypto_rfc4106_check_authsize(authsize); } static int rfc4106_encrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct gcm_key *ctx = crypto_aead_ctx(aead); u8 iv[GCM_AES_IV_SIZE]; memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE); memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE); return crypto_ipsec_check_assoclen(req->assoclen) ?: gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE); } static int rfc4106_decrypt(struct aead_request *req) { struct crypto_aead *aead = crypto_aead_reqtfm(req); struct gcm_key *ctx = crypto_aead_ctx(aead); u8 iv[GCM_AES_IV_SIZE]; memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE); memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE); return crypto_ipsec_check_assoclen(req->assoclen) ?: gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE); } static struct aead_alg gcm_aes_algs[] = {{ .ivsize = GCM_AES_IV_SIZE, .chunksize = AES_BLOCK_SIZE, .maxauthsize = AES_BLOCK_SIZE, .setkey = gcm_aes_setkey, .setauthsize = gcm_aes_setauthsize, .encrypt = gcm_aes_encrypt, .decrypt = gcm_aes_decrypt, .base.cra_name = "gcm(aes)", .base.cra_driver_name = "gcm-aes-ce", .base.cra_priority = 400, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct gcm_key), .base.cra_module = THIS_MODULE, }, { .ivsize = GCM_RFC4106_IV_SIZE, .chunksize = AES_BLOCK_SIZE, .maxauthsize = AES_BLOCK_SIZE, .setkey = rfc4106_setkey, .setauthsize = rfc4106_setauthsize, .encrypt = rfc4106_encrypt, .decrypt = rfc4106_decrypt, .base.cra_name = "rfc4106(gcm(aes))", .base.cra_driver_name = "rfc4106-gcm-aes-ce", .base.cra_priority = 400, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct gcm_key) + RFC4106_NONCE_SIZE, .base.cra_module = THIS_MODULE, }}; static int __init ghash_ce_mod_init(void) { int err; if (!(elf_hwcap & HWCAP_NEON)) return -ENODEV; if (elf_hwcap2 & HWCAP2_PMULL) { err = crypto_register_aeads(gcm_aes_algs, ARRAY_SIZE(gcm_aes_algs)); if (err) return err; ghash_alg.base.cra_ctxsize += 3 * sizeof(u64[2]); static_branch_enable(&use_p64); } err = crypto_register_shash(&ghash_alg); if (err) goto err_aead; err = crypto_register_ahash(&ghash_async_alg); if (err) goto err_shash; return 0; err_shash: crypto_unregister_shash(&ghash_alg); err_aead: if (elf_hwcap2 & HWCAP2_PMULL) crypto_unregister_aeads(gcm_aes_algs, ARRAY_SIZE(gcm_aes_algs)); return err; } static void __exit ghash_ce_mod_exit(void) { crypto_unregister_ahash(&ghash_async_alg); crypto_unregister_shash(&ghash_alg); if (elf_hwcap2 & HWCAP2_PMULL) crypto_unregister_aeads(gcm_aes_algs, ARRAY_SIZE(gcm_aes_algs)); } module_init(ghash_ce_mod_init); module_exit(ghash_ce_mod_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1