Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Russell King | 544 | 45.00% | 24 | 34.78% |
Nico Pitre | 174 | 14.39% | 3 | 4.35% |
Tony Lindgren | 103 | 8.52% | 1 | 1.45% |
James Bottomley | 50 | 4.14% | 1 | 1.45% |
Linus Torvalds (pre-git) | 50 | 4.14% | 8 | 11.59% |
Catalin Marinas | 39 | 3.23% | 3 | 4.35% |
Andrew Morton | 38 | 3.14% | 2 | 2.90% |
Will Deacon | 37 | 3.06% | 5 | 7.25% |
Matthew Wilcox | 31 | 2.56% | 3 | 4.35% |
George G. Davis | 25 | 2.07% | 1 | 1.45% |
Lorenzo Pieralisi | 21 | 1.74% | 1 | 1.45% |
Marek Szyprowski | 21 | 1.74% | 1 | 1.45% |
Linus Torvalds | 17 | 1.41% | 2 | 2.90% |
Rusty Russell | 12 | 0.99% | 1 | 1.45% |
David S. Miller | 8 | 0.66% | 1 | 1.45% |
Ralf Baechle | 7 | 0.58% | 1 | 1.45% |
Pete Zaitcev | 6 | 0.50% | 1 | 1.45% |
Christoph Hellwig | 6 | 0.50% | 2 | 2.90% |
Victor Kamensky | 5 | 0.41% | 1 | 1.45% |
Ilya Loginov | 4 | 0.33% | 1 | 1.45% |
Alexandre Ghiti | 3 | 0.25% | 1 | 1.45% |
Thomas Gleixner | 2 | 0.17% | 1 | 1.45% |
Ard Biesheuvel | 2 | 0.17% | 1 | 1.45% |
Vinayak Kale | 2 | 0.17% | 1 | 1.45% |
Kees Cook | 1 | 0.08% | 1 | 1.45% |
Mauro Carvalho Chehab | 1 | 0.08% | 1 | 1.45% |
Total | 1209 | 69 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * arch/arm/include/asm/cacheflush.h * * Copyright (C) 1999-2002 Russell King */ #ifndef _ASMARM_CACHEFLUSH_H #define _ASMARM_CACHEFLUSH_H #include <linux/mm.h> #include <asm/glue-cache.h> #include <asm/shmparam.h> #include <asm/cachetype.h> #include <asm/outercache.h> #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) /* * This flag is used to indicate that the page pointed to by a pte is clean * and does not require cleaning before returning it to the user. */ #define PG_dcache_clean PG_arch_1 /* * MM Cache Management * =================== * * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files * implement these methods. * * Start addresses are inclusive and end addresses are exclusive; * start addresses should be rounded down, end addresses up. * * See Documentation/core-api/cachetlb.rst for more information. * Please note that the implementation of these, and the required * effects are cache-type (VIVT/VIPT/PIPT) specific. * * flush_icache_all() * * Unconditionally clean and invalidate the entire icache. * Currently only needed for cache-v6.S and cache-v7.S, see * __flush_icache_all for the generic implementation. * * flush_kern_all() * * Unconditionally clean and invalidate the entire cache. * * flush_kern_louis() * * Flush data cache levels up to the level of unification * inner shareable and invalidate the I-cache. * Only needed from v7 onwards, falls back to flush_cache_all() * for all other processor versions. * * flush_user_all() * * Clean and invalidate all user space cache entries * before a change of page tables. * * flush_user_range(start, end, flags) * * Clean and invalidate a range of cache entries in the * specified address space before a change of page tables. * - start - user start address (inclusive, page aligned) * - end - user end address (exclusive, page aligned) * - flags - vma->vm_flags field * * coherent_kern_range(start, end) * * Ensure coherency between the Icache and the Dcache in the * region described by start, end. If you have non-snooping * Harvard caches, you need to implement this function. * - start - virtual start address * - end - virtual end address * * coherent_user_range(start, end) * * Ensure coherency between the Icache and the Dcache in the * region described by start, end. If you have non-snooping * Harvard caches, you need to implement this function. * - start - virtual start address * - end - virtual end address * * flush_kern_dcache_area(kaddr, size) * * Ensure that the data held in page is written back. * - kaddr - page address * - size - region size * * DMA Cache Coherency * =================== * * dma_flush_range(start, end) * * Clean and invalidate the specified virtual address range. * - start - virtual start address * - end - virtual end address */ struct cpu_cache_fns { void (*flush_icache_all)(void); void (*flush_kern_all)(void); void (*flush_kern_louis)(void); void (*flush_user_all)(void); void (*flush_user_range)(unsigned long, unsigned long, unsigned int); void (*coherent_kern_range)(unsigned long, unsigned long); int (*coherent_user_range)(unsigned long, unsigned long); void (*flush_kern_dcache_area)(void *, size_t); void (*dma_map_area)(const void *, size_t, int); void (*dma_unmap_area)(const void *, size_t, int); void (*dma_flush_range)(const void *, const void *); } __no_randomize_layout; /* * Select the calling method */ #ifdef MULTI_CACHE extern struct cpu_cache_fns cpu_cache; #define __cpuc_flush_icache_all cpu_cache.flush_icache_all #define __cpuc_flush_kern_all cpu_cache.flush_kern_all #define __cpuc_flush_kern_louis cpu_cache.flush_kern_louis #define __cpuc_flush_user_all cpu_cache.flush_user_all #define __cpuc_flush_user_range cpu_cache.flush_user_range #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range #define __cpuc_coherent_user_range cpu_cache.coherent_user_range #define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area /* * These are private to the dma-mapping API. Do not use directly. * Their sole purpose is to ensure that data held in the cache * is visible to DMA, or data written by DMA to system memory is * visible to the CPU. */ #define dmac_flush_range cpu_cache.dma_flush_range #else extern void __cpuc_flush_icache_all(void); extern void __cpuc_flush_kern_all(void); extern void __cpuc_flush_kern_louis(void); extern void __cpuc_flush_user_all(void); extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); extern int __cpuc_coherent_user_range(unsigned long, unsigned long); extern void __cpuc_flush_dcache_area(void *, size_t); /* * These are private to the dma-mapping API. Do not use directly. * Their sole purpose is to ensure that data held in the cache * is visible to DMA, or data written by DMA to system memory is * visible to the CPU. */ extern void dmac_flush_range(const void *, const void *); #endif /* * Copy user data from/to a page which is mapped into a different * processes address space. Really, we want to allow our "user * space" model to handle this. */ extern void copy_to_user_page(struct vm_area_struct *, struct page *, unsigned long, void *, const void *, unsigned long); #define copy_from_user_page(vma, page, vaddr, dst, src, len) \ do { \ memcpy(dst, src, len); \ } while (0) /* * Convert calls to our calling convention. */ /* Invalidate I-cache */ #define __flush_icache_all_generic() \ asm("mcr p15, 0, %0, c7, c5, 0" \ : : "r" (0)); /* Invalidate I-cache inner shareable */ #define __flush_icache_all_v7_smp() \ asm("mcr p15, 0, %0, c7, c1, 0" \ : : "r" (0)); /* * Optimized __flush_icache_all for the common cases. Note that UP ARMv7 * will fall through to use __flush_icache_all_generic. */ #if (defined(CONFIG_CPU_V7) && \ (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \ defined(CONFIG_SMP_ON_UP) #define __flush_icache_preferred __cpuc_flush_icache_all #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP) #define __flush_icache_preferred __flush_icache_all_v7_smp #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920) #define __flush_icache_preferred __cpuc_flush_icache_all #else #define __flush_icache_preferred __flush_icache_all_generic #endif static inline void __flush_icache_all(void) { __flush_icache_preferred(); dsb(ishst); } /* * Flush caches up to Level of Unification Inner Shareable */ #define flush_cache_louis() __cpuc_flush_kern_louis() #define flush_cache_all() __cpuc_flush_kern_all() static inline void vivt_flush_cache_mm(struct mm_struct *mm) { if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) __cpuc_flush_user_all(); } static inline void vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), vma->vm_flags); } static inline void vivt_flush_cache_pages(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn, unsigned int nr) { struct mm_struct *mm = vma->vm_mm; if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) { unsigned long addr = user_addr & PAGE_MASK; __cpuc_flush_user_range(addr, addr + nr * PAGE_SIZE, vma->vm_flags); } } #ifndef CONFIG_CPU_CACHE_VIPT #define flush_cache_mm(mm) \ vivt_flush_cache_mm(mm) #define flush_cache_range(vma,start,end) \ vivt_flush_cache_range(vma,start,end) #define flush_cache_pages(vma, addr, pfn, nr) \ vivt_flush_cache_pages(vma, addr, pfn, nr) #else void flush_cache_mm(struct mm_struct *mm); void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); void flush_cache_pages(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn, unsigned int nr); #endif #define flush_cache_dup_mm(mm) flush_cache_mm(mm) #define flush_cache_page(vma, addr, pfn) flush_cache_pages(vma, addr, pfn, 1) /* * flush_icache_user_range is used when we want to ensure that the * Harvard caches are synchronised for the user space address range. * This is used for the ARM private sys_cacheflush system call. */ #define flush_icache_user_range(s,e) __cpuc_coherent_user_range(s,e) /* * Perform necessary cache operations to ensure that data previously * stored within this range of addresses can be executed by the CPU. */ #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) /* * Perform necessary cache operations to ensure that the TLB will * see data written in the specified area. */ #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) /* * flush_dcache_page is used when the kernel has written to the page * cache page at virtual address page->virtual. * * If this page isn't mapped (ie, folio_mapping == NULL), or it might * have userspace mappings, then we _must_ always clean + invalidate * the dcache entries associated with the kernel mapping. * * Otherwise we can defer the operation, and clean the cache when we are * about to change to user space. This is the same method as used on SPARC64. * See update_mmu_cache for the user space part. */ #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1 void flush_dcache_page(struct page *); void flush_dcache_folio(struct folio *folio); #define flush_dcache_folio flush_dcache_folio #define ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 1 static inline void flush_kernel_vmap_range(void *addr, int size) { if ((cache_is_vivt() || cache_is_vipt_aliasing())) __cpuc_flush_dcache_area(addr, (size_t)size); } static inline void invalidate_kernel_vmap_range(void *addr, int size) { if ((cache_is_vivt() || cache_is_vipt_aliasing())) __cpuc_flush_dcache_area(addr, (size_t)size); } #define ARCH_HAS_FLUSH_ANON_PAGE static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr) { extern void __flush_anon_page(struct vm_area_struct *vma, struct page *, unsigned long); if (PageAnon(page)) __flush_anon_page(vma, page, vmaddr); } #define flush_dcache_mmap_lock(mapping) xa_lock_irq(&mapping->i_pages) #define flush_dcache_mmap_unlock(mapping) xa_unlock_irq(&mapping->i_pages) /* * flush_cache_vmap() is used when creating mappings (eg, via vmap, * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT * caches, since the direct-mappings of these pages may contain cached * data, we need to do a full cache flush to ensure that writebacks * don't corrupt data placed into these pages via the new mappings. */ static inline void flush_cache_vmap(unsigned long start, unsigned long end) { if (!cache_is_vipt_nonaliasing()) flush_cache_all(); else /* * set_pte_at() called from vmap_pte_range() does not * have a DSB after cleaning the cache line. */ dsb(ishst); } #define flush_cache_vmap_early(start, end) do { } while (0) static inline void flush_cache_vunmap(unsigned long start, unsigned long end) { if (!cache_is_vipt_nonaliasing()) flush_cache_all(); } /* * Memory synchronization helpers for mixed cached vs non cached accesses. * * Some synchronization algorithms have to set states in memory with the * cache enabled or disabled depending on the code path. It is crucial * to always ensure proper cache maintenance to update main memory right * away in that case. * * Any cached write must be followed by a cache clean operation. * Any cached read must be preceded by a cache invalidate operation. * Yet, in the read case, a cache flush i.e. atomic clean+invalidate * operation is needed to avoid discarding possible concurrent writes to the * accessed memory. * * Also, in order to prevent a cached writer from interfering with an * adjacent non-cached writer, each state variable must be located to * a separate cache line. */ /* * This needs to be >= the max cache writeback size of all * supported platforms included in the current kernel configuration. * This is used to align state variables to their own cache lines. */ #define __CACHE_WRITEBACK_ORDER 6 /* guessed from existing platforms */ #define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER) /* * There is no __cpuc_clean_dcache_area but we use it anyway for * code intent clarity, and alias it to __cpuc_flush_dcache_area. */ #define __cpuc_clean_dcache_area __cpuc_flush_dcache_area /* * Ensure preceding writes to *p by this CPU are visible to * subsequent reads by other CPUs: */ static inline void __sync_cache_range_w(volatile void *p, size_t size) { char *_p = (char *)p; __cpuc_clean_dcache_area(_p, size); outer_clean_range(__pa(_p), __pa(_p + size)); } /* * Ensure preceding writes to *p by other CPUs are visible to * subsequent reads by this CPU. We must be careful not to * discard data simultaneously written by another CPU, hence the * usage of flush rather than invalidate operations. */ static inline void __sync_cache_range_r(volatile void *p, size_t size) { char *_p = (char *)p; #ifdef CONFIG_OUTER_CACHE if (outer_cache.flush_range) { /* * Ensure dirty data migrated from other CPUs into our cache * are cleaned out safely before the outer cache is cleaned: */ __cpuc_clean_dcache_area(_p, size); /* Clean and invalidate stale data for *p from outer ... */ outer_flush_range(__pa(_p), __pa(_p + size)); } #endif /* ... and inner cache: */ __cpuc_flush_dcache_area(_p, size); } #define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr)) #define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr)) /* * Disabling cache access for one CPU in an ARMv7 SMP system is tricky. * To do so we must: * * - Clear the SCTLR.C bit to prevent further cache allocations * - Flush the desired level of cache * - Clear the ACTLR "SMP" bit to disable local coherency * * ... and so without any intervening memory access in between those steps, * not even to the stack. * * WARNING -- After this has been called: * * - No ldrex/strex (and similar) instructions must be used. * - The CPU is obviously no longer coherent with the other CPUs. * - This is unlikely to work as expected if Linux is running non-secure. * * Note: * * - This is known to apply to several ARMv7 processor implementations, * however some exceptions may exist. Caveat emptor. * * - The clobber list is dictated by the call to v7_flush_dcache_*. */ #define v7_exit_coherency_flush(level) \ asm volatile( \ ".arch armv7-a \n\t" \ "mrc p15, 0, r0, c1, c0, 0 @ get SCTLR \n\t" \ "bic r0, r0, #"__stringify(CR_C)" \n\t" \ "mcr p15, 0, r0, c1, c0, 0 @ set SCTLR \n\t" \ "isb \n\t" \ "bl v7_flush_dcache_"__stringify(level)" \n\t" \ "mrc p15, 0, r0, c1, c0, 1 @ get ACTLR \n\t" \ "bic r0, r0, #(1 << 6) @ disable local coherency \n\t" \ "mcr p15, 0, r0, c1, c0, 1 @ set ACTLR \n\t" \ "isb \n\t" \ "dsb" \ : : : "r0","r1","r2","r3","r4","r5","r6", \ "r9","r10","ip","lr","memory" ) void flush_uprobe_xol_access(struct page *page, unsigned long uaddr, void *kaddr, unsigned long len); #ifdef CONFIG_CPU_ICACHE_MISMATCH_WORKAROUND void check_cpu_icache_size(int cpuid); #else static inline void check_cpu_icache_size(int cpuid) { } #endif #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1