Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marek Szyprowski | 3047 | 38.09% | 31 | 14.69% |
Russell King | 1227 | 15.34% | 48 | 22.75% |
Rabin Vincent | 692 | 8.65% | 2 | 0.95% |
Christoph Hellwig | 440 | 5.50% | 14 | 6.64% |
Andreas Herrmann | 353 | 4.41% | 2 | 0.95% |
Hiroshi Doyu | 255 | 3.19% | 7 | 3.32% |
Robin Murphy | 218 | 2.73% | 4 | 1.90% |
Gregory CLEMENT | 179 | 2.24% | 3 | 1.42% |
Niklas Söderlund | 168 | 2.10% | 1 | 0.47% |
Will Deacon | 166 | 2.08% | 5 | 2.37% |
Laura Abbott | 119 | 1.49% | 1 | 0.47% |
Linus Torvalds (pre-git) | 115 | 1.44% | 16 | 7.58% |
Rob Herring | 111 | 1.39% | 2 | 0.95% |
R Sricharan | 102 | 1.27% | 2 | 0.95% |
Krzysztof Kozlowski | 75 | 0.94% | 1 | 0.47% |
Laurent Pinchart | 67 | 0.84% | 3 | 1.42% |
Doug Anderson | 65 | 0.81% | 2 | 0.95% |
Carlo Caione | 63 | 0.79% | 1 | 0.47% |
Matthew Wilcox | 59 | 0.74% | 1 | 0.47% |
Catalin Marinas | 54 | 0.68% | 3 | 1.42% |
Nico Pitre | 52 | 0.65% | 3 | 1.42% |
Mike Looijmans | 42 | 0.53% | 1 | 0.47% |
Lei Ming | 33 | 0.41% | 1 | 0.47% |
Martin Oliveira | 28 | 0.35% | 1 | 0.47% |
YoungJun Cho | 25 | 0.31% | 1 | 0.47% |
Ritesh Harjani | 25 | 0.31% | 2 | 0.95% |
Jon Medhurst (Tixy) | 23 | 0.29% | 1 | 0.47% |
Prathyush K | 20 | 0.25% | 1 | 0.47% |
Lucas Stach | 14 | 0.18% | 1 | 0.47% |
Tomasz Figa | 12 | 0.15% | 1 | 0.47% |
Jason Gunthorpe | 12 | 0.15% | 2 | 0.95% |
Alexandre Courbot | 11 | 0.14% | 2 | 0.95% |
JoonSoo Kim | 11 | 0.14% | 2 | 0.95% |
Kevin Hilman | 10 | 0.12% | 1 | 0.47% |
Seung-Woo Kim | 10 | 0.12% | 1 | 0.47% |
Deepak Saxena | 6 | 0.07% | 2 | 0.95% |
Arnd Bergmann | 5 | 0.06% | 1 | 0.47% |
Linus Walleij | 5 | 0.06% | 2 | 0.95% |
Christoph Lameter | 5 | 0.06% | 1 | 0.47% |
Lorenzo Nava | 5 | 0.06% | 1 | 0.47% |
FUJITA Tomonori | 5 | 0.06% | 1 | 0.47% |
Souptick Joarder | 5 | 0.06% | 1 | 0.47% |
Ben Dooks | 4 | 0.05% | 1 | 0.47% |
Oleksandr Tyshchenko | 4 | 0.05% | 1 | 0.47% |
Kees Cook | 4 | 0.05% | 2 | 0.95% |
Dan J Williams | 4 | 0.05% | 1 | 0.47% |
Alessandro Rubini | 4 | 0.05% | 1 | 0.47% |
Vladimir Murzin | 3 | 0.04% | 2 | 0.95% |
Linus Torvalds | 3 | 0.04% | 3 | 1.42% |
Lennert Buytenhek | 3 | 0.04% | 1 | 0.47% |
Andre Przywara | 3 | 0.04% | 1 | 0.47% |
Mel Gorman | 3 | 0.04% | 1 | 0.47% |
Gioh Kim | 2 | 0.03% | 1 | 0.47% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.47% |
Al Viro | 2 | 0.03% | 1 | 0.47% |
Thierry Reding | 2 | 0.03% | 1 | 0.47% |
Fabio Estevam | 2 | 0.03% | 1 | 0.47% |
Stefano Stabellini | 2 | 0.03% | 1 | 0.47% |
Tetsuo Handa | 2 | 0.03% | 1 | 0.47% |
Christian Bornträger | 2 | 0.03% | 1 | 0.47% |
Jingoo Han | 1 | 0.01% | 1 | 0.47% |
Huang Shijie | 1 | 0.01% | 1 | 0.47% |
Tejun Heo | 1 | 0.01% | 1 | 0.47% |
Chen Haonan | 1 | 0.01% | 1 | 0.47% |
Chris Brand | 1 | 0.01% | 1 | 0.47% |
Bart Van Assche | 1 | 0.01% | 1 | 0.47% |
Vitaly Andrianov | 1 | 0.01% | 1 | 0.47% |
Greg Kroah-Hartman | 1 | 0.01% | 1 | 0.47% |
Lukas Bulwahn | 1 | 0.01% | 1 | 0.47% |
Wolfram Sang | 1 | 0.01% | 1 | 0.47% |
Total | 8000 | 211 |
// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/mm/dma-mapping.c * * Copyright (C) 2000-2004 Russell King * * DMA uncached mapping support. */ #include <linux/module.h> #include <linux/mm.h> #include <linux/genalloc.h> #include <linux/gfp.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/init.h> #include <linux/device.h> #include <linux/dma-direct.h> #include <linux/dma-map-ops.h> #include <linux/highmem.h> #include <linux/memblock.h> #include <linux/slab.h> #include <linux/iommu.h> #include <linux/io.h> #include <linux/vmalloc.h> #include <linux/sizes.h> #include <linux/cma.h> #include <asm/page.h> #include <asm/highmem.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> #include <asm/mach/arch.h> #include <asm/dma-iommu.h> #include <asm/mach/map.h> #include <asm/system_info.h> #include <asm/xen/xen-ops.h> #include "dma.h" #include "mm.h" struct arm_dma_alloc_args { struct device *dev; size_t size; gfp_t gfp; pgprot_t prot; const void *caller; bool want_vaddr; int coherent_flag; }; struct arm_dma_free_args { struct device *dev; size_t size; void *cpu_addr; struct page *page; bool want_vaddr; }; #define NORMAL 0 #define COHERENT 1 struct arm_dma_allocator { void *(*alloc)(struct arm_dma_alloc_args *args, struct page **ret_page); void (*free)(struct arm_dma_free_args *args); }; struct arm_dma_buffer { struct list_head list; void *virt; struct arm_dma_allocator *allocator; }; static LIST_HEAD(arm_dma_bufs); static DEFINE_SPINLOCK(arm_dma_bufs_lock); static struct arm_dma_buffer *arm_dma_buffer_find(void *virt) { struct arm_dma_buffer *buf, *found = NULL; unsigned long flags; spin_lock_irqsave(&arm_dma_bufs_lock, flags); list_for_each_entry(buf, &arm_dma_bufs, list) { if (buf->virt == virt) { list_del(&buf->list); found = buf; break; } } spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); return found; } /* * The DMA API is built upon the notion of "buffer ownership". A buffer * is either exclusively owned by the CPU (and therefore may be accessed * by it) or exclusively owned by the DMA device. These helper functions * represent the transitions between these two ownership states. * * Note, however, that on later ARMs, this notion does not work due to * speculative prefetches. We model our approach on the assumption that * the CPU does do speculative prefetches, which means we clean caches * before transfers and delay cache invalidation until transfer completion. * */ static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag) { /* * Ensure that the allocated pages are zeroed, and that any data * lurking in the kernel direct-mapped region is invalidated. */ if (PageHighMem(page)) { phys_addr_t base = __pfn_to_phys(page_to_pfn(page)); phys_addr_t end = base + size; while (size > 0) { void *ptr = kmap_atomic(page); memset(ptr, 0, PAGE_SIZE); if (coherent_flag != COHERENT) dmac_flush_range(ptr, ptr + PAGE_SIZE); kunmap_atomic(ptr); page++; size -= PAGE_SIZE; } if (coherent_flag != COHERENT) outer_flush_range(base, end); } else { void *ptr = page_address(page); memset(ptr, 0, size); if (coherent_flag != COHERENT) { dmac_flush_range(ptr, ptr + size); outer_flush_range(__pa(ptr), __pa(ptr) + size); } } } /* * Allocate a DMA buffer for 'dev' of size 'size' using the * specified gfp mask. Note that 'size' must be page aligned. */ static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp, int coherent_flag) { unsigned long order = get_order(size); struct page *page, *p, *e; page = alloc_pages(gfp, order); if (!page) return NULL; /* * Now split the huge page and free the excess pages */ split_page(page, order); for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++) __free_page(p); __dma_clear_buffer(page, size, coherent_flag); return page; } /* * Free a DMA buffer. 'size' must be page aligned. */ static void __dma_free_buffer(struct page *page, size_t size) { struct page *e = page + (size >> PAGE_SHIFT); while (page < e) { __free_page(page); page++; } } static void *__alloc_from_contiguous(struct device *dev, size_t size, pgprot_t prot, struct page **ret_page, const void *caller, bool want_vaddr, int coherent_flag, gfp_t gfp); static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, pgprot_t prot, struct page **ret_page, const void *caller, bool want_vaddr); #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K static struct gen_pool *atomic_pool __ro_after_init; static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; static int __init early_coherent_pool(char *p) { atomic_pool_size = memparse(p, &p); return 0; } early_param("coherent_pool", early_coherent_pool); /* * Initialise the coherent pool for atomic allocations. */ static int __init atomic_pool_init(void) { pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL); gfp_t gfp = GFP_KERNEL | GFP_DMA; struct page *page; void *ptr; atomic_pool = gen_pool_create(PAGE_SHIFT, -1); if (!atomic_pool) goto out; /* * The atomic pool is only used for non-coherent allocations * so we must pass NORMAL for coherent_flag. */ if (dev_get_cma_area(NULL)) ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot, &page, atomic_pool_init, true, NORMAL, GFP_KERNEL); else ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot, &page, atomic_pool_init, true); if (ptr) { int ret; ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr, page_to_phys(page), atomic_pool_size, -1); if (ret) goto destroy_genpool; gen_pool_set_algo(atomic_pool, gen_pool_first_fit_order_align, NULL); pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n", atomic_pool_size / 1024); return 0; } destroy_genpool: gen_pool_destroy(atomic_pool); atomic_pool = NULL; out: pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", atomic_pool_size / 1024); return -ENOMEM; } /* * CMA is activated by core_initcall, so we must be called after it. */ postcore_initcall(atomic_pool_init); #ifdef CONFIG_CMA_AREAS struct dma_contig_early_reserve { phys_addr_t base; unsigned long size; }; static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata; static int dma_mmu_remap_num __initdata; #ifdef CONFIG_DMA_CMA void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size) { dma_mmu_remap[dma_mmu_remap_num].base = base; dma_mmu_remap[dma_mmu_remap_num].size = size; dma_mmu_remap_num++; } #endif void __init dma_contiguous_remap(void) { int i; for (i = 0; i < dma_mmu_remap_num; i++) { phys_addr_t start = dma_mmu_remap[i].base; phys_addr_t end = start + dma_mmu_remap[i].size; struct map_desc map; unsigned long addr; if (end > arm_lowmem_limit) end = arm_lowmem_limit; if (start >= end) continue; map.pfn = __phys_to_pfn(start); map.virtual = __phys_to_virt(start); map.length = end - start; map.type = MT_MEMORY_DMA_READY; /* * Clear previous low-memory mapping to ensure that the * TLB does not see any conflicting entries, then flush * the TLB of the old entries before creating new mappings. * * This ensures that any speculatively loaded TLB entries * (even though they may be rare) can not cause any problems, * and ensures that this code is architecturally compliant. */ for (addr = __phys_to_virt(start); addr < __phys_to_virt(end); addr += PMD_SIZE) pmd_clear(pmd_off_k(addr)); flush_tlb_kernel_range(__phys_to_virt(start), __phys_to_virt(end)); iotable_init(&map, 1); } } #endif static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data) { struct page *page = virt_to_page((void *)addr); pgprot_t prot = *(pgprot_t *)data; set_pte_ext(pte, mk_pte(page, prot), 0); return 0; } static void __dma_remap(struct page *page, size_t size, pgprot_t prot) { unsigned long start = (unsigned long) page_address(page); unsigned end = start + size; apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot); flush_tlb_kernel_range(start, end); } static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp, pgprot_t prot, struct page **ret_page, const void *caller, bool want_vaddr) { struct page *page; void *ptr = NULL; /* * __alloc_remap_buffer is only called when the device is * non-coherent */ page = __dma_alloc_buffer(dev, size, gfp, NORMAL); if (!page) return NULL; if (!want_vaddr) goto out; ptr = dma_common_contiguous_remap(page, size, prot, caller); if (!ptr) { __dma_free_buffer(page, size); return NULL; } out: *ret_page = page; return ptr; } static void *__alloc_from_pool(size_t size, struct page **ret_page) { unsigned long val; void *ptr = NULL; if (!atomic_pool) { WARN(1, "coherent pool not initialised!\n"); return NULL; } val = gen_pool_alloc(atomic_pool, size); if (val) { phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); *ret_page = phys_to_page(phys); ptr = (void *)val; } return ptr; } static bool __in_atomic_pool(void *start, size_t size) { return gen_pool_has_addr(atomic_pool, (unsigned long)start, size); } static int __free_from_pool(void *start, size_t size) { if (!__in_atomic_pool(start, size)) return 0; gen_pool_free(atomic_pool, (unsigned long)start, size); return 1; } static void *__alloc_from_contiguous(struct device *dev, size_t size, pgprot_t prot, struct page **ret_page, const void *caller, bool want_vaddr, int coherent_flag, gfp_t gfp) { unsigned long order = get_order(size); size_t count = size >> PAGE_SHIFT; struct page *page; void *ptr = NULL; page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); if (!page) return NULL; __dma_clear_buffer(page, size, coherent_flag); if (!want_vaddr) goto out; if (PageHighMem(page)) { ptr = dma_common_contiguous_remap(page, size, prot, caller); if (!ptr) { dma_release_from_contiguous(dev, page, count); return NULL; } } else { __dma_remap(page, size, prot); ptr = page_address(page); } out: *ret_page = page; return ptr; } static void __free_from_contiguous(struct device *dev, struct page *page, void *cpu_addr, size_t size, bool want_vaddr) { if (want_vaddr) { if (PageHighMem(page)) dma_common_free_remap(cpu_addr, size); else __dma_remap(page, size, PAGE_KERNEL); } dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); } static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot) { prot = (attrs & DMA_ATTR_WRITE_COMBINE) ? pgprot_writecombine(prot) : pgprot_dmacoherent(prot); return prot; } static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp, struct page **ret_page) { struct page *page; /* __alloc_simple_buffer is only called when the device is coherent */ page = __dma_alloc_buffer(dev, size, gfp, COHERENT); if (!page) return NULL; *ret_page = page; return page_address(page); } static void *simple_allocator_alloc(struct arm_dma_alloc_args *args, struct page **ret_page) { return __alloc_simple_buffer(args->dev, args->size, args->gfp, ret_page); } static void simple_allocator_free(struct arm_dma_free_args *args) { __dma_free_buffer(args->page, args->size); } static struct arm_dma_allocator simple_allocator = { .alloc = simple_allocator_alloc, .free = simple_allocator_free, }; static void *cma_allocator_alloc(struct arm_dma_alloc_args *args, struct page **ret_page) { return __alloc_from_contiguous(args->dev, args->size, args->prot, ret_page, args->caller, args->want_vaddr, args->coherent_flag, args->gfp); } static void cma_allocator_free(struct arm_dma_free_args *args) { __free_from_contiguous(args->dev, args->page, args->cpu_addr, args->size, args->want_vaddr); } static struct arm_dma_allocator cma_allocator = { .alloc = cma_allocator_alloc, .free = cma_allocator_free, }; static void *pool_allocator_alloc(struct arm_dma_alloc_args *args, struct page **ret_page) { return __alloc_from_pool(args->size, ret_page); } static void pool_allocator_free(struct arm_dma_free_args *args) { __free_from_pool(args->cpu_addr, args->size); } static struct arm_dma_allocator pool_allocator = { .alloc = pool_allocator_alloc, .free = pool_allocator_free, }; static void *remap_allocator_alloc(struct arm_dma_alloc_args *args, struct page **ret_page) { return __alloc_remap_buffer(args->dev, args->size, args->gfp, args->prot, ret_page, args->caller, args->want_vaddr); } static void remap_allocator_free(struct arm_dma_free_args *args) { if (args->want_vaddr) dma_common_free_remap(args->cpu_addr, args->size); __dma_free_buffer(args->page, args->size); } static struct arm_dma_allocator remap_allocator = { .alloc = remap_allocator_alloc, .free = remap_allocator_free, }; static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, pgprot_t prot, bool is_coherent, unsigned long attrs, const void *caller) { u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit); struct page *page = NULL; void *addr; bool allowblock, cma; struct arm_dma_buffer *buf; struct arm_dma_alloc_args args = { .dev = dev, .size = PAGE_ALIGN(size), .gfp = gfp, .prot = prot, .caller = caller, .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), .coherent_flag = is_coherent ? COHERENT : NORMAL, }; #ifdef CONFIG_DMA_API_DEBUG u64 limit = (mask + 1) & ~mask; if (limit && size >= limit) { dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n", size, mask); return NULL; } #endif buf = kzalloc(sizeof(*buf), gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)); if (!buf) return NULL; if (mask < 0xffffffffULL) gfp |= GFP_DMA; args.gfp = gfp; *handle = DMA_MAPPING_ERROR; allowblock = gfpflags_allow_blocking(gfp); cma = allowblock ? dev_get_cma_area(dev) : NULL; if (cma) buf->allocator = &cma_allocator; else if (is_coherent) buf->allocator = &simple_allocator; else if (allowblock) buf->allocator = &remap_allocator; else buf->allocator = &pool_allocator; addr = buf->allocator->alloc(&args, &page); if (page) { unsigned long flags; *handle = phys_to_dma(dev, page_to_phys(page)); buf->virt = args.want_vaddr ? addr : page; spin_lock_irqsave(&arm_dma_bufs_lock, flags); list_add(&buf->list, &arm_dma_bufs); spin_unlock_irqrestore(&arm_dma_bufs_lock, flags); } else { kfree(buf); } return args.want_vaddr ? addr : page; } /* * Free a buffer as defined by the above mapping. */ static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle, unsigned long attrs, bool is_coherent) { struct page *page = phys_to_page(dma_to_phys(dev, handle)); struct arm_dma_buffer *buf; struct arm_dma_free_args args = { .dev = dev, .size = PAGE_ALIGN(size), .cpu_addr = cpu_addr, .page = page, .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0), }; buf = arm_dma_buffer_find(cpu_addr); if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr)) return; buf->allocator->free(&args); kfree(buf); } static void dma_cache_maint_page(struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, void (*op)(const void *, size_t, int)) { unsigned long pfn; size_t left = size; pfn = page_to_pfn(page) + offset / PAGE_SIZE; offset %= PAGE_SIZE; /* * A single sg entry may refer to multiple physically contiguous * pages. But we still need to process highmem pages individually. * If highmem is not configured then the bulk of this loop gets * optimized out. */ do { size_t len = left; void *vaddr; page = pfn_to_page(pfn); if (PageHighMem(page)) { if (len + offset > PAGE_SIZE) len = PAGE_SIZE - offset; if (cache_is_vipt_nonaliasing()) { vaddr = kmap_atomic(page); op(vaddr + offset, len, dir); kunmap_atomic(vaddr); } else { vaddr = kmap_high_get(page); if (vaddr) { op(vaddr + offset, len, dir); kunmap_high(page); } } } else { vaddr = page_address(page) + offset; op(vaddr, len, dir); } offset = 0; pfn++; left -= len; } while (left); } /* * Make an area consistent for devices. * Note: Drivers should NOT use this function directly. * Use the driver DMA support - see dma-mapping.h (dma_sync_*) */ static void __dma_page_cpu_to_dev(struct page *page, unsigned long off, size_t size, enum dma_data_direction dir) { phys_addr_t paddr; dma_cache_maint_page(page, off, size, dir, dmac_map_area); paddr = page_to_phys(page) + off; if (dir == DMA_FROM_DEVICE) { outer_inv_range(paddr, paddr + size); } else { outer_clean_range(paddr, paddr + size); } /* FIXME: non-speculating: flush on bidirectional mappings? */ } static void __dma_page_dev_to_cpu(struct page *page, unsigned long off, size_t size, enum dma_data_direction dir) { phys_addr_t paddr = page_to_phys(page) + off; /* FIXME: non-speculating: not required */ /* in any case, don't bother invalidating if DMA to device */ if (dir != DMA_TO_DEVICE) { outer_inv_range(paddr, paddr + size); dma_cache_maint_page(page, off, size, dir, dmac_unmap_area); } /* * Mark the D-cache clean for these pages to avoid extra flushing. */ if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) { struct folio *folio = pfn_folio(paddr / PAGE_SIZE); size_t offset = offset_in_folio(folio, paddr); for (;;) { size_t sz = folio_size(folio) - offset; if (size < sz) break; if (!offset) set_bit(PG_dcache_clean, &folio->flags); offset = 0; size -= sz; if (!size) break; folio = folio_next(folio); } } } #ifdef CONFIG_ARM_DMA_USE_IOMMU static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs) { int prot = 0; if (attrs & DMA_ATTR_PRIVILEGED) prot |= IOMMU_PRIV; switch (dir) { case DMA_BIDIRECTIONAL: return prot | IOMMU_READ | IOMMU_WRITE; case DMA_TO_DEVICE: return prot | IOMMU_READ; case DMA_FROM_DEVICE: return prot | IOMMU_WRITE; default: return prot; } } /* IOMMU */ static int extend_iommu_mapping(struct dma_iommu_mapping *mapping); static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping, size_t size) { unsigned int order = get_order(size); unsigned int align = 0; unsigned int count, start; size_t mapping_size = mapping->bits << PAGE_SHIFT; unsigned long flags; dma_addr_t iova; int i; if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT) order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT; count = PAGE_ALIGN(size) >> PAGE_SHIFT; align = (1 << order) - 1; spin_lock_irqsave(&mapping->lock, flags); for (i = 0; i < mapping->nr_bitmaps; i++) { start = bitmap_find_next_zero_area(mapping->bitmaps[i], mapping->bits, 0, count, align); if (start > mapping->bits) continue; bitmap_set(mapping->bitmaps[i], start, count); break; } /* * No unused range found. Try to extend the existing mapping * and perform a second attempt to reserve an IO virtual * address range of size bytes. */ if (i == mapping->nr_bitmaps) { if (extend_iommu_mapping(mapping)) { spin_unlock_irqrestore(&mapping->lock, flags); return DMA_MAPPING_ERROR; } start = bitmap_find_next_zero_area(mapping->bitmaps[i], mapping->bits, 0, count, align); if (start > mapping->bits) { spin_unlock_irqrestore(&mapping->lock, flags); return DMA_MAPPING_ERROR; } bitmap_set(mapping->bitmaps[i], start, count); } spin_unlock_irqrestore(&mapping->lock, flags); iova = mapping->base + (mapping_size * i); iova += start << PAGE_SHIFT; return iova; } static inline void __free_iova(struct dma_iommu_mapping *mapping, dma_addr_t addr, size_t size) { unsigned int start, count; size_t mapping_size = mapping->bits << PAGE_SHIFT; unsigned long flags; dma_addr_t bitmap_base; u32 bitmap_index; if (!size) return; bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size; BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions); bitmap_base = mapping->base + mapping_size * bitmap_index; start = (addr - bitmap_base) >> PAGE_SHIFT; if (addr + size > bitmap_base + mapping_size) { /* * The address range to be freed reaches into the iova * range of the next bitmap. This should not happen as * we don't allow this in __alloc_iova (at the * moment). */ BUG(); } else count = size >> PAGE_SHIFT; spin_lock_irqsave(&mapping->lock, flags); bitmap_clear(mapping->bitmaps[bitmap_index], start, count); spin_unlock_irqrestore(&mapping->lock, flags); } /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */ static const int iommu_order_array[] = { 9, 8, 4, 0 }; static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp, unsigned long attrs, int coherent_flag) { struct page **pages; int count = size >> PAGE_SHIFT; int array_size = count * sizeof(struct page *); int i = 0; int order_idx = 0; pages = kvzalloc(array_size, GFP_KERNEL); if (!pages) return NULL; if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { unsigned long order = get_order(size); struct page *page; page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN); if (!page) goto error; __dma_clear_buffer(page, size, coherent_flag); for (i = 0; i < count; i++) pages[i] = page + i; return pages; } /* Go straight to 4K chunks if caller says it's OK. */ if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES) order_idx = ARRAY_SIZE(iommu_order_array) - 1; /* * IOMMU can map any pages, so himem can also be used here */ gfp |= __GFP_NOWARN | __GFP_HIGHMEM; while (count) { int j, order; order = iommu_order_array[order_idx]; /* Drop down when we get small */ if (__fls(count) < order) { order_idx++; continue; } if (order) { /* See if it's easy to allocate a high-order chunk */ pages[i] = alloc_pages(gfp | __GFP_NORETRY, order); /* Go down a notch at first sign of pressure */ if (!pages[i]) { order_idx++; continue; } } else { pages[i] = alloc_pages(gfp, 0); if (!pages[i]) goto error; } if (order) { split_page(pages[i], order); j = 1 << order; while (--j) pages[i + j] = pages[i] + j; } __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag); i += 1 << order; count -= 1 << order; } return pages; error: while (i--) if (pages[i]) __free_pages(pages[i], 0); kvfree(pages); return NULL; } static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size, unsigned long attrs) { int count = size >> PAGE_SHIFT; int i; if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { dma_release_from_contiguous(dev, pages[0], count); } else { for (i = 0; i < count; i++) if (pages[i]) __free_pages(pages[i], 0); } kvfree(pages); return 0; } /* * Create a mapping in device IO address space for specified pages */ static dma_addr_t __iommu_create_mapping(struct device *dev, struct page **pages, size_t size, unsigned long attrs) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; dma_addr_t dma_addr, iova; int i; dma_addr = __alloc_iova(mapping, size); if (dma_addr == DMA_MAPPING_ERROR) return dma_addr; iova = dma_addr; for (i = 0; i < count; ) { int ret; unsigned int next_pfn = page_to_pfn(pages[i]) + 1; phys_addr_t phys = page_to_phys(pages[i]); unsigned int len, j; for (j = i + 1; j < count; j++, next_pfn++) if (page_to_pfn(pages[j]) != next_pfn) break; len = (j - i) << PAGE_SHIFT; ret = iommu_map(mapping->domain, iova, phys, len, __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs), GFP_KERNEL); if (ret < 0) goto fail; iova += len; i = j; } return dma_addr; fail: iommu_unmap(mapping->domain, dma_addr, iova-dma_addr); __free_iova(mapping, dma_addr, size); return DMA_MAPPING_ERROR; } static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); /* * add optional in-page offset from iova to size and align * result to page size */ size = PAGE_ALIGN((iova & ~PAGE_MASK) + size); iova &= PAGE_MASK; iommu_unmap(mapping->domain, iova, size); __free_iova(mapping, iova, size); return 0; } static struct page **__atomic_get_pages(void *addr) { struct page *page; phys_addr_t phys; phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr); page = phys_to_page(phys); return (struct page **)page; } static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs) { if (__in_atomic_pool(cpu_addr, PAGE_SIZE)) return __atomic_get_pages(cpu_addr); if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) return cpu_addr; return dma_common_find_pages(cpu_addr); } static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp, dma_addr_t *handle, int coherent_flag, unsigned long attrs) { struct page *page; void *addr; if (coherent_flag == COHERENT) addr = __alloc_simple_buffer(dev, size, gfp, &page); else addr = __alloc_from_pool(size, &page); if (!addr) return NULL; *handle = __iommu_create_mapping(dev, &page, size, attrs); if (*handle == DMA_MAPPING_ERROR) goto err_mapping; return addr; err_mapping: __free_from_pool(addr, size); return NULL; } static void __iommu_free_atomic(struct device *dev, void *cpu_addr, dma_addr_t handle, size_t size, int coherent_flag) { __iommu_remove_mapping(dev, handle, size); if (coherent_flag == COHERENT) __dma_free_buffer(virt_to_page(cpu_addr), size); else __free_from_pool(cpu_addr, size); } static void *arm_iommu_alloc_attrs(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp, unsigned long attrs) { pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL); struct page **pages; void *addr = NULL; int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL; *handle = DMA_MAPPING_ERROR; size = PAGE_ALIGN(size); if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp)) return __iommu_alloc_simple(dev, size, gfp, handle, coherent_flag, attrs); pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag); if (!pages) return NULL; *handle = __iommu_create_mapping(dev, pages, size, attrs); if (*handle == DMA_MAPPING_ERROR) goto err_buffer; if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) return pages; addr = dma_common_pages_remap(pages, size, prot, __builtin_return_address(0)); if (!addr) goto err_mapping; return addr; err_mapping: __iommu_remove_mapping(dev, *handle, size); err_buffer: __iommu_free_buffer(dev, pages, size, attrs); return NULL; } static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { struct page **pages = __iommu_get_pages(cpu_addr, attrs); unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; int err; if (!pages) return -ENXIO; if (vma->vm_pgoff >= nr_pages) return -ENXIO; if (!dev->dma_coherent) vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot); err = vm_map_pages(vma, pages, nr_pages); if (err) pr_err("Remapping memory failed: %d\n", err); return err; } /* * free a page as defined by the above mapping. * Must not be called with IRQs disabled. */ static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle, unsigned long attrs) { int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL; struct page **pages; size = PAGE_ALIGN(size); if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) { __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag); return; } pages = __iommu_get_pages(cpu_addr, attrs); if (!pages) { WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr); return; } if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0) dma_common_free_remap(cpu_addr, size); __iommu_remove_mapping(dev, handle, size); __iommu_free_buffer(dev, pages, size, attrs); } static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; struct page **pages = __iommu_get_pages(cpu_addr, attrs); if (!pages) return -ENXIO; return sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL); } /* * Map a part of the scatter-gather list into contiguous io address space */ static int __map_sg_chunk(struct device *dev, struct scatterlist *sg, size_t size, dma_addr_t *handle, enum dma_data_direction dir, unsigned long attrs) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); dma_addr_t iova, iova_base; int ret = 0; unsigned int count; struct scatterlist *s; int prot; size = PAGE_ALIGN(size); *handle = DMA_MAPPING_ERROR; iova_base = iova = __alloc_iova(mapping, size); if (iova == DMA_MAPPING_ERROR) return -ENOMEM; for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) { phys_addr_t phys = page_to_phys(sg_page(s)); unsigned int len = PAGE_ALIGN(s->offset + s->length); if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); prot = __dma_info_to_prot(dir, attrs); ret = iommu_map(mapping->domain, iova, phys, len, prot, GFP_KERNEL); if (ret < 0) goto fail; count += len >> PAGE_SHIFT; iova += len; } *handle = iova_base; return 0; fail: iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE); __free_iova(mapping, iova_base, size); return ret; } /** * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA * @dev: valid struct device pointer * @sg: list of buffers * @nents: number of buffers to map * @dir: DMA transfer direction * * Map a set of buffers described by scatterlist in streaming mode for DMA. * The scatter gather list elements are merged together (if possible) and * tagged with the appropriate dma address and length. They are obtained via * sg_dma_{address,length}. */ static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *s = sg, *dma = sg, *start = sg; int i, count = 0, ret; unsigned int offset = s->offset; unsigned int size = s->offset + s->length; unsigned int max = dma_get_max_seg_size(dev); for (i = 1; i < nents; i++) { s = sg_next(s); s->dma_length = 0; if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) { ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs); if (ret < 0) goto bad_mapping; dma->dma_address += offset; dma->dma_length = size - offset; size = offset = s->offset; start = s; dma = sg_next(dma); count += 1; } size += s->length; } ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs); if (ret < 0) goto bad_mapping; dma->dma_address += offset; dma->dma_length = size - offset; return count+1; bad_mapping: for_each_sg(sg, s, count, i) __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); if (ret == -ENOMEM) return ret; return -EINVAL; } /** * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg * @dev: valid struct device pointer * @sg: list of buffers * @nents: number of buffers to unmap (same as was passed to dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) * * Unmap a set of streaming mode DMA translations. Again, CPU access * rules concerning calls here are the same as for dma_unmap_single(). */ static void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir, unsigned long attrs) { struct scatterlist *s; int i; for_each_sg(sg, s, nents, i) { if (sg_dma_len(s)) __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s)); if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); } } /** * arm_iommu_sync_sg_for_cpu * @dev: valid struct device pointer * @sg: list of buffers * @nents: number of buffers to map (returned from dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) */ static void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; if (dev->dma_coherent) return; for_each_sg(sg, s, nents, i) __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir); } /** * arm_iommu_sync_sg_for_device * @dev: valid struct device pointer * @sg: list of buffers * @nents: number of buffers to map (returned from dma_map_sg) * @dir: DMA transfer direction (same as was passed to dma_map_sg) */ static void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents, enum dma_data_direction dir) { struct scatterlist *s; int i; if (dev->dma_coherent) return; for_each_sg(sg, s, nents, i) __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir); } /** * arm_iommu_map_page * @dev: valid struct device pointer * @page: page that buffer resides in * @offset: offset into page for start of buffer * @size: size of buffer to map * @dir: DMA transfer direction * * IOMMU aware version of arm_dma_map_page() */ static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page, unsigned long offset, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); dma_addr_t dma_addr; int ret, prot, len = PAGE_ALIGN(size + offset); if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) __dma_page_cpu_to_dev(page, offset, size, dir); dma_addr = __alloc_iova(mapping, len); if (dma_addr == DMA_MAPPING_ERROR) return dma_addr; prot = __dma_info_to_prot(dir, attrs); ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot, GFP_KERNEL); if (ret < 0) goto fail; return dma_addr + offset; fail: __free_iova(mapping, dma_addr, len); return DMA_MAPPING_ERROR; } /** * arm_iommu_unmap_page * @dev: valid struct device pointer * @handle: DMA address of buffer * @size: size of buffer (same as passed to dma_map_page) * @dir: DMA transfer direction (same as passed to dma_map_page) * * IOMMU aware version of arm_dma_unmap_page() */ static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); dma_addr_t iova = handle & PAGE_MASK; struct page *page; int offset = handle & ~PAGE_MASK; int len = PAGE_ALIGN(size + offset); if (!iova) return; if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) { page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); __dma_page_dev_to_cpu(page, offset, size, dir); } iommu_unmap(mapping->domain, iova, len); __free_iova(mapping, iova, len); } /** * arm_iommu_map_resource - map a device resource for DMA * @dev: valid struct device pointer * @phys_addr: physical address of resource * @size: size of resource to map * @dir: DMA transfer direction */ static dma_addr_t arm_iommu_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); dma_addr_t dma_addr; int ret, prot; phys_addr_t addr = phys_addr & PAGE_MASK; unsigned int offset = phys_addr & ~PAGE_MASK; size_t len = PAGE_ALIGN(size + offset); dma_addr = __alloc_iova(mapping, len); if (dma_addr == DMA_MAPPING_ERROR) return dma_addr; prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO; ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL); if (ret < 0) goto fail; return dma_addr + offset; fail: __free_iova(mapping, dma_addr, len); return DMA_MAPPING_ERROR; } /** * arm_iommu_unmap_resource - unmap a device DMA resource * @dev: valid struct device pointer * @dma_handle: DMA address to resource * @size: size of resource to map * @dir: DMA transfer direction */ static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction dir, unsigned long attrs) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); dma_addr_t iova = dma_handle & PAGE_MASK; unsigned int offset = dma_handle & ~PAGE_MASK; size_t len = PAGE_ALIGN(size + offset); if (!iova) return; iommu_unmap(mapping->domain, iova, len); __free_iova(mapping, iova, len); } static void arm_iommu_sync_single_for_cpu(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); dma_addr_t iova = handle & PAGE_MASK; struct page *page; unsigned int offset = handle & ~PAGE_MASK; if (dev->dma_coherent || !iova) return; page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); __dma_page_dev_to_cpu(page, offset, size, dir); } static void arm_iommu_sync_single_for_device(struct device *dev, dma_addr_t handle, size_t size, enum dma_data_direction dir) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); dma_addr_t iova = handle & PAGE_MASK; struct page *page; unsigned int offset = handle & ~PAGE_MASK; if (dev->dma_coherent || !iova) return; page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova)); __dma_page_cpu_to_dev(page, offset, size, dir); } static const struct dma_map_ops iommu_ops = { .alloc = arm_iommu_alloc_attrs, .free = arm_iommu_free_attrs, .mmap = arm_iommu_mmap_attrs, .get_sgtable = arm_iommu_get_sgtable, .map_page = arm_iommu_map_page, .unmap_page = arm_iommu_unmap_page, .sync_single_for_cpu = arm_iommu_sync_single_for_cpu, .sync_single_for_device = arm_iommu_sync_single_for_device, .map_sg = arm_iommu_map_sg, .unmap_sg = arm_iommu_unmap_sg, .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu, .sync_sg_for_device = arm_iommu_sync_sg_for_device, .map_resource = arm_iommu_map_resource, .unmap_resource = arm_iommu_unmap_resource, }; /** * arm_iommu_create_mapping * @bus: pointer to the bus holding the client device (for IOMMU calls) * @base: start address of the valid IO address space * @size: maximum size of the valid IO address space * * Creates a mapping structure which holds information about used/unused * IO address ranges, which is required to perform memory allocation and * mapping with IOMMU aware functions. * * The client device need to be attached to the mapping with * arm_iommu_attach_device function. */ struct dma_iommu_mapping * arm_iommu_create_mapping(const struct bus_type *bus, dma_addr_t base, u64 size) { unsigned int bits = size >> PAGE_SHIFT; unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long); struct dma_iommu_mapping *mapping; int extensions = 1; int err = -ENOMEM; /* currently only 32-bit DMA address space is supported */ if (size > DMA_BIT_MASK(32) + 1) return ERR_PTR(-ERANGE); if (!bitmap_size) return ERR_PTR(-EINVAL); if (bitmap_size > PAGE_SIZE) { extensions = bitmap_size / PAGE_SIZE; bitmap_size = PAGE_SIZE; } mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL); if (!mapping) goto err; mapping->bitmap_size = bitmap_size; mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *), GFP_KERNEL); if (!mapping->bitmaps) goto err2; mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL); if (!mapping->bitmaps[0]) goto err3; mapping->nr_bitmaps = 1; mapping->extensions = extensions; mapping->base = base; mapping->bits = BITS_PER_BYTE * bitmap_size; spin_lock_init(&mapping->lock); mapping->domain = iommu_domain_alloc(bus); if (!mapping->domain) goto err4; kref_init(&mapping->kref); return mapping; err4: kfree(mapping->bitmaps[0]); err3: kfree(mapping->bitmaps); err2: kfree(mapping); err: return ERR_PTR(err); } EXPORT_SYMBOL_GPL(arm_iommu_create_mapping); static void release_iommu_mapping(struct kref *kref) { int i; struct dma_iommu_mapping *mapping = container_of(kref, struct dma_iommu_mapping, kref); iommu_domain_free(mapping->domain); for (i = 0; i < mapping->nr_bitmaps; i++) kfree(mapping->bitmaps[i]); kfree(mapping->bitmaps); kfree(mapping); } static int extend_iommu_mapping(struct dma_iommu_mapping *mapping) { int next_bitmap; if (mapping->nr_bitmaps >= mapping->extensions) return -EINVAL; next_bitmap = mapping->nr_bitmaps; mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size, GFP_ATOMIC); if (!mapping->bitmaps[next_bitmap]) return -ENOMEM; mapping->nr_bitmaps++; return 0; } void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping) { if (mapping) kref_put(&mapping->kref, release_iommu_mapping); } EXPORT_SYMBOL_GPL(arm_iommu_release_mapping); static int __arm_iommu_attach_device(struct device *dev, struct dma_iommu_mapping *mapping) { int err; err = iommu_attach_device(mapping->domain, dev); if (err) return err; kref_get(&mapping->kref); to_dma_iommu_mapping(dev) = mapping; pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev)); return 0; } /** * arm_iommu_attach_device * @dev: valid struct device pointer * @mapping: io address space mapping structure (returned from * arm_iommu_create_mapping) * * Attaches specified io address space mapping to the provided device. * This replaces the dma operations (dma_map_ops pointer) with the * IOMMU aware version. * * More than one client might be attached to the same io address space * mapping. */ int arm_iommu_attach_device(struct device *dev, struct dma_iommu_mapping *mapping) { int err; err = __arm_iommu_attach_device(dev, mapping); if (err) return err; set_dma_ops(dev, &iommu_ops); return 0; } EXPORT_SYMBOL_GPL(arm_iommu_attach_device); /** * arm_iommu_detach_device * @dev: valid struct device pointer * * Detaches the provided device from a previously attached map. * This overwrites the dma_ops pointer with appropriate non-IOMMU ops. */ void arm_iommu_detach_device(struct device *dev) { struct dma_iommu_mapping *mapping; mapping = to_dma_iommu_mapping(dev); if (!mapping) { dev_warn(dev, "Not attached\n"); return; } iommu_detach_device(mapping->domain, dev); kref_put(&mapping->kref, release_iommu_mapping); to_dma_iommu_mapping(dev) = NULL; set_dma_ops(dev, NULL); pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev)); } EXPORT_SYMBOL_GPL(arm_iommu_detach_device); static void arm_setup_iommu_dma_ops(struct device *dev) { struct dma_iommu_mapping *mapping; u64 dma_base = 0, size = 1ULL << 32; if (dev->dma_range_map) { dma_base = dma_range_map_min(dev->dma_range_map); size = dma_range_map_max(dev->dma_range_map) - dma_base; } mapping = arm_iommu_create_mapping(dev->bus, dma_base, size); if (IS_ERR(mapping)) { pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n", size, dev_name(dev)); return; } if (__arm_iommu_attach_device(dev, mapping)) { pr_warn("Failed to attached device %s to IOMMU_mapping\n", dev_name(dev)); arm_iommu_release_mapping(mapping); return; } set_dma_ops(dev, &iommu_ops); } static void arm_teardown_iommu_dma_ops(struct device *dev) { struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev); if (!mapping) return; arm_iommu_detach_device(dev); arm_iommu_release_mapping(mapping); } #else static void arm_setup_iommu_dma_ops(struct device *dev) { } static void arm_teardown_iommu_dma_ops(struct device *dev) { } #endif /* CONFIG_ARM_DMA_USE_IOMMU */ void arch_setup_dma_ops(struct device *dev, bool coherent) { /* * Due to legacy code that sets the ->dma_coherent flag from a bus * notifier we can't just assign coherent to the ->dma_coherent flag * here, but instead have to make sure we only set but never clear it * for now. */ if (coherent) dev->dma_coherent = true; /* * Don't override the dma_ops if they have already been set. Ideally * this should be the only location where dma_ops are set, remove this * check when all other callers of set_dma_ops will have disappeared. */ if (dev->dma_ops) return; if (device_iommu_mapped(dev)) arm_setup_iommu_dma_ops(dev); xen_setup_dma_ops(dev); dev->archdata.dma_ops_setup = true; } void arch_teardown_dma_ops(struct device *dev) { if (!dev->archdata.dma_ops_setup) return; arm_teardown_iommu_dma_ops(dev); /* Let arch_setup_dma_ops() start again from scratch upon re-probe */ set_dma_ops(dev, NULL); } void arch_sync_dma_for_device(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), size, dir); } void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1), size, dir); } void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { return __dma_alloc(dev, size, dma_handle, gfp, __get_dma_pgprot(attrs, PAGE_KERNEL), false, attrs, __builtin_return_address(0)); } void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle, unsigned long attrs) { __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1