Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jon Medhurst (Tixy) | 1184 | 69.77% | 8 | 29.63% |
Wang Nan | 226 | 13.32% | 4 | 14.81% |
David A. Long | 210 | 12.37% | 9 | 33.33% |
Quentin Barnes | 36 | 2.12% | 1 | 3.70% |
Ben Dooks | 22 | 1.30% | 1 | 3.70% |
Abhishek Sagar | 12 | 0.71% | 1 | 3.70% |
David Howells | 3 | 0.18% | 1 | 3.70% |
Gustavo A. R. Silva | 2 | 0.12% | 1 | 3.70% |
Thomas Gleixner | 2 | 0.12% | 1 | 3.70% |
Total | 1697 | 27 |
// SPDX-License-Identifier: GPL-2.0-only /* * arch/arm/probes/decode.c * * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>. * * Some contents moved here from arch/arm/include/asm/kprobes-arm.c which is * Copyright (C) 2006, 2007 Motorola Inc. */ #include <linux/kernel.h> #include <linux/types.h> #include <asm/system_info.h> #include <asm/ptrace.h> #include <linux/bug.h> #include "decode.h" #ifndef find_str_pc_offset /* * For STR and STM instructions, an ARM core may choose to use either * a +8 or a +12 displacement from the current instruction's address. * Whichever value is chosen for a given core, it must be the same for * both instructions and may not change. This function measures it. */ int str_pc_offset; void __init find_str_pc_offset(void) { int addr, scratch, ret; __asm__ ( "sub %[ret], pc, #4 \n\t" "str pc, %[addr] \n\t" "ldr %[scr], %[addr] \n\t" "sub %[ret], %[scr], %[ret] \n\t" : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr)); str_pc_offset = ret; } #endif /* !find_str_pc_offset */ #ifndef test_load_write_pc_interworking bool load_write_pc_interworks; void __init test_load_write_pc_interworking(void) { int arch = cpu_architecture(); BUG_ON(arch == CPU_ARCH_UNKNOWN); load_write_pc_interworks = arch >= CPU_ARCH_ARMv5T; } #endif /* !test_load_write_pc_interworking */ #ifndef test_alu_write_pc_interworking bool alu_write_pc_interworks; void __init test_alu_write_pc_interworking(void) { int arch = cpu_architecture(); BUG_ON(arch == CPU_ARCH_UNKNOWN); alu_write_pc_interworks = arch >= CPU_ARCH_ARMv7; } #endif /* !test_alu_write_pc_interworking */ void __init arm_probes_decode_init(void) { find_str_pc_offset(); test_load_write_pc_interworking(); test_alu_write_pc_interworking(); } static unsigned long __kprobes __check_eq(unsigned long cpsr) { return cpsr & PSR_Z_BIT; } static unsigned long __kprobes __check_ne(unsigned long cpsr) { return (~cpsr) & PSR_Z_BIT; } static unsigned long __kprobes __check_cs(unsigned long cpsr) { return cpsr & PSR_C_BIT; } static unsigned long __kprobes __check_cc(unsigned long cpsr) { return (~cpsr) & PSR_C_BIT; } static unsigned long __kprobes __check_mi(unsigned long cpsr) { return cpsr & PSR_N_BIT; } static unsigned long __kprobes __check_pl(unsigned long cpsr) { return (~cpsr) & PSR_N_BIT; } static unsigned long __kprobes __check_vs(unsigned long cpsr) { return cpsr & PSR_V_BIT; } static unsigned long __kprobes __check_vc(unsigned long cpsr) { return (~cpsr) & PSR_V_BIT; } static unsigned long __kprobes __check_hi(unsigned long cpsr) { cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ return cpsr & PSR_C_BIT; } static unsigned long __kprobes __check_ls(unsigned long cpsr) { cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */ return (~cpsr) & PSR_C_BIT; } static unsigned long __kprobes __check_ge(unsigned long cpsr) { cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ return (~cpsr) & PSR_N_BIT; } static unsigned long __kprobes __check_lt(unsigned long cpsr) { cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ return cpsr & PSR_N_BIT; } static unsigned long __kprobes __check_gt(unsigned long cpsr) { unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */ return (~temp) & PSR_N_BIT; } static unsigned long __kprobes __check_le(unsigned long cpsr) { unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */ temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */ return temp & PSR_N_BIT; } static unsigned long __kprobes __check_al(unsigned long cpsr) { return true; } probes_check_cc * const probes_condition_checks[16] = { &__check_eq, &__check_ne, &__check_cs, &__check_cc, &__check_mi, &__check_pl, &__check_vs, &__check_vc, &__check_hi, &__check_ls, &__check_ge, &__check_lt, &__check_gt, &__check_le, &__check_al, &__check_al }; void __kprobes probes_simulate_nop(probes_opcode_t opcode, struct arch_probes_insn *asi, struct pt_regs *regs) { } void __kprobes probes_emulate_none(probes_opcode_t opcode, struct arch_probes_insn *asi, struct pt_regs *regs) { asi->insn_fn(); } /* * Prepare an instruction slot to receive an instruction for emulating. * This is done by placing a subroutine return after the location where the * instruction will be placed. We also modify ARM instructions to be * unconditional as the condition code will already be checked before any * emulation handler is called. */ static probes_opcode_t __kprobes prepare_emulated_insn(probes_opcode_t insn, struct arch_probes_insn *asi, bool thumb) { #ifdef CONFIG_THUMB2_KERNEL if (thumb) { u16 *thumb_insn = (u16 *)asi->insn; /* Thumb bx lr */ thumb_insn[1] = __opcode_to_mem_thumb16(0x4770); thumb_insn[2] = __opcode_to_mem_thumb16(0x4770); return insn; } asi->insn[1] = __opcode_to_mem_arm(0xe12fff1e); /* ARM bx lr */ #else asi->insn[1] = __opcode_to_mem_arm(0xe1a0f00e); /* mov pc, lr */ #endif /* Make an ARM instruction unconditional */ if (insn < 0xe0000000) insn = (insn | 0xe0000000) & ~0x10000000; return insn; } /* * Write a (probably modified) instruction into the slot previously prepared by * prepare_emulated_insn */ static void __kprobes set_emulated_insn(probes_opcode_t insn, struct arch_probes_insn *asi, bool thumb) { #ifdef CONFIG_THUMB2_KERNEL if (thumb) { u16 *ip = (u16 *)asi->insn; if (is_wide_instruction(insn)) *ip++ = __opcode_to_mem_thumb16(insn >> 16); *ip++ = __opcode_to_mem_thumb16(insn); return; } #endif asi->insn[0] = __opcode_to_mem_arm(insn); } /* * When we modify the register numbers encoded in an instruction to be emulated, * the new values come from this define. For ARM and 32-bit Thumb instructions * this gives... * * bit position 16 12 8 4 0 * ---------------+---+---+---+---+---+ * register r2 r0 r1 -- r3 */ #define INSN_NEW_BITS 0x00020103 /* Each nibble has same value as that at INSN_NEW_BITS bit 16 */ #define INSN_SAMEAS16_BITS 0x22222222 /* * Validate and modify each of the registers encoded in an instruction. * * Each nibble in regs contains a value from enum decode_reg_type. For each * non-zero value, the corresponding nibble in pinsn is validated and modified * according to the type. */ static bool __kprobes decode_regs(probes_opcode_t *pinsn, u32 regs, bool modify) { probes_opcode_t insn = *pinsn; probes_opcode_t mask = 0xf; /* Start at least significant nibble */ for (; regs != 0; regs >>= 4, mask <<= 4) { probes_opcode_t new_bits = INSN_NEW_BITS; switch (regs & 0xf) { case REG_TYPE_NONE: /* Nibble not a register, skip to next */ continue; case REG_TYPE_ANY: /* Any register is allowed */ break; case REG_TYPE_SAMEAS16: /* Replace register with same as at bit position 16 */ new_bits = INSN_SAMEAS16_BITS; break; case REG_TYPE_SP: /* Only allow SP (R13) */ if ((insn ^ 0xdddddddd) & mask) goto reject; break; case REG_TYPE_PC: /* Only allow PC (R15) */ if ((insn ^ 0xffffffff) & mask) goto reject; break; case REG_TYPE_NOSP: /* Reject SP (R13) */ if (((insn ^ 0xdddddddd) & mask) == 0) goto reject; break; case REG_TYPE_NOSPPC: case REG_TYPE_NOSPPCX: /* Reject SP and PC (R13 and R15) */ if (((insn ^ 0xdddddddd) & 0xdddddddd & mask) == 0) goto reject; break; case REG_TYPE_NOPCWB: if (!is_writeback(insn)) break; /* No writeback, so any register is OK */ fallthrough; case REG_TYPE_NOPC: case REG_TYPE_NOPCX: /* Reject PC (R15) */ if (((insn ^ 0xffffffff) & mask) == 0) goto reject; break; } /* Replace value of nibble with new register number... */ insn &= ~mask; insn |= new_bits & mask; } if (modify) *pinsn = insn; return true; reject: return false; } static const int decode_struct_sizes[NUM_DECODE_TYPES] = { [DECODE_TYPE_TABLE] = sizeof(struct decode_table), [DECODE_TYPE_CUSTOM] = sizeof(struct decode_custom), [DECODE_TYPE_SIMULATE] = sizeof(struct decode_simulate), [DECODE_TYPE_EMULATE] = sizeof(struct decode_emulate), [DECODE_TYPE_OR] = sizeof(struct decode_or), [DECODE_TYPE_REJECT] = sizeof(struct decode_reject) }; static int run_checkers(const struct decode_checker *checkers[], int action, probes_opcode_t insn, struct arch_probes_insn *asi, const struct decode_header *h) { const struct decode_checker **p; if (!checkers) return INSN_GOOD; p = checkers; while (*p != NULL) { int retval; probes_check_t *checker_func = (*p)[action].checker; retval = INSN_GOOD; if (checker_func) retval = checker_func(insn, asi, h); if (retval == INSN_REJECTED) return retval; p++; } return INSN_GOOD; } /* * probes_decode_insn operates on data tables in order to decode an ARM * architecture instruction onto which a kprobe has been placed. * * These instruction decoding tables are a concatenation of entries each * of which consist of one of the following structs: * * decode_table * decode_custom * decode_simulate * decode_emulate * decode_or * decode_reject * * Each of these starts with a struct decode_header which has the following * fields: * * type_regs * mask * value * * The least significant DECODE_TYPE_BITS of type_regs contains a value * from enum decode_type, this indicates which of the decode_* structs * the entry contains. The value DECODE_TYPE_END indicates the end of the * table. * * When the table is parsed, each entry is checked in turn to see if it * matches the instruction to be decoded using the test: * * (insn & mask) == value * * If no match is found before the end of the table is reached then decoding * fails with INSN_REJECTED. * * When a match is found, decode_regs() is called to validate and modify each * of the registers encoded in the instruction; the data it uses to do this * is (type_regs >> DECODE_TYPE_BITS). A validation failure will cause decoding * to fail with INSN_REJECTED. * * Once the instruction has passed the above tests, further processing * depends on the type of the table entry's decode struct. * */ int __kprobes probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi, const union decode_item *table, bool thumb, bool emulate, const union decode_action *actions, const struct decode_checker *checkers[]) { const struct decode_header *h = (struct decode_header *)table; const struct decode_header *next; bool matched = false; /* * @insn can be modified by decode_regs. Save its original * value for checkers. */ probes_opcode_t origin_insn = insn; /* * stack_space is initialized to 0 here. Checker functions * should update is value if they find this is a stack store * instruction: positive value means bytes of stack usage, * negitive value means unable to determine stack usage * statically. For instruction doesn't store to stack, checker * do nothing with it. */ asi->stack_space = 0; /* * Similarly to stack_space, register_usage_flags is filled by * checkers. Its default value is set to ~0, which is 'all * registers are used', to prevent any potential optimization. */ asi->register_usage_flags = ~0UL; if (emulate) insn = prepare_emulated_insn(insn, asi, thumb); for (;; h = next) { enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK; u32 regs = h->type_regs.bits >> DECODE_TYPE_BITS; if (type == DECODE_TYPE_END) return INSN_REJECTED; next = (struct decode_header *) ((uintptr_t)h + decode_struct_sizes[type]); if (!matched && (insn & h->mask.bits) != h->value.bits) continue; if (!decode_regs(&insn, regs, emulate)) return INSN_REJECTED; switch (type) { case DECODE_TYPE_TABLE: { struct decode_table *d = (struct decode_table *)h; next = (struct decode_header *)d->table.table; break; } case DECODE_TYPE_CUSTOM: { int err; struct decode_custom *d = (struct decode_custom *)h; int action = d->decoder.action; err = run_checkers(checkers, action, origin_insn, asi, h); if (err == INSN_REJECTED) return INSN_REJECTED; return actions[action].decoder(insn, asi, h); } case DECODE_TYPE_SIMULATE: { int err; struct decode_simulate *d = (struct decode_simulate *)h; int action = d->handler.action; err = run_checkers(checkers, action, origin_insn, asi, h); if (err == INSN_REJECTED) return INSN_REJECTED; asi->insn_handler = actions[action].handler; return INSN_GOOD_NO_SLOT; } case DECODE_TYPE_EMULATE: { int err; struct decode_emulate *d = (struct decode_emulate *)h; int action = d->handler.action; err = run_checkers(checkers, action, origin_insn, asi, h); if (err == INSN_REJECTED) return INSN_REJECTED; if (!emulate) return actions[action].decoder(insn, asi, h); asi->insn_handler = actions[action].handler; set_emulated_insn(insn, asi, thumb); return INSN_GOOD; } case DECODE_TYPE_OR: matched = true; break; case DECODE_TYPE_REJECT: default: return INSN_REJECTED; } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1