Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Abhishek Sagar | 874 | 51.35% | 2 | 4.44% |
Jon Medhurst (Tixy) | 366 | 21.50% | 8 | 17.78% |
Wang Nan | 117 | 6.87% | 4 | 8.89% |
Masami Hiramatsu | 109 | 6.40% | 9 | 20.00% |
Russell King | 49 | 2.88% | 1 | 2.22% |
David A. Long | 46 | 2.70% | 6 | 13.33% |
Rabin Vincent | 45 | 2.64% | 1 | 2.22% |
Nico Pitre | 30 | 1.76% | 2 | 4.44% |
Ben Dooks | 24 | 1.41% | 1 | 2.22% |
Frédéric Riss | 20 | 1.18% | 1 | 2.22% |
Christoph Lameter | 6 | 0.35% | 1 | 2.22% |
Arnd Bergmann | 4 | 0.24% | 2 | 4.44% |
Ingo Molnar | 3 | 0.18% | 1 | 2.22% |
Thomas Gleixner | 3 | 0.18% | 2 | 4.44% |
Gustavo A. R. Silva | 2 | 0.12% | 1 | 2.22% |
Linus Torvalds (pre-git) | 2 | 0.12% | 1 | 2.22% |
Rusty Russell | 1 | 0.06% | 1 | 2.22% |
Linus Torvalds | 1 | 0.06% | 1 | 2.22% |
Total | 1702 | 45 |
// SPDX-License-Identifier: GPL-2.0-only /* * arch/arm/kernel/kprobes.c * * Kprobes on ARM * * Abhishek Sagar <sagar.abhishek@gmail.com> * Copyright (C) 2006, 2007 Motorola Inc. * * Nicolas Pitre <nico@marvell.com> * Copyright (C) 2007 Marvell Ltd. */ #define pr_fmt(fmt) "kprobes: " fmt #include <linux/kernel.h> #include <linux/kprobes.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/stop_machine.h> #include <linux/sched/debug.h> #include <linux/stringify.h> #include <asm/traps.h> #include <asm/opcodes.h> #include <asm/cacheflush.h> #include <linux/percpu.h> #include <linux/bug.h> #include <asm/patch.h> #include <asm/sections.h> #include "../decode-arm.h" #include "../decode-thumb.h" #include "core.h" #define MIN_STACK_SIZE(addr) \ min((unsigned long)MAX_STACK_SIZE, \ (unsigned long)current_thread_info() + THREAD_START_SP - (addr)) #define flush_insns(addr, size) \ flush_icache_range((unsigned long)(addr), \ (unsigned long)(addr) + \ (size)) DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); int __kprobes arch_prepare_kprobe(struct kprobe *p) { kprobe_opcode_t insn; kprobe_opcode_t tmp_insn[MAX_INSN_SIZE]; unsigned long addr = (unsigned long)p->addr; bool thumb; kprobe_decode_insn_t *decode_insn; const union decode_action *actions; int is; const struct decode_checker **checkers; #ifdef CONFIG_THUMB2_KERNEL thumb = true; addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */ insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]); if (is_wide_instruction(insn)) { u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]); insn = __opcode_thumb32_compose(insn, inst2); decode_insn = thumb32_probes_decode_insn; actions = kprobes_t32_actions; checkers = kprobes_t32_checkers; } else { decode_insn = thumb16_probes_decode_insn; actions = kprobes_t16_actions; checkers = kprobes_t16_checkers; } #else /* !CONFIG_THUMB2_KERNEL */ thumb = false; if (addr & 0x3) return -EINVAL; insn = __mem_to_opcode_arm(*p->addr); decode_insn = arm_probes_decode_insn; actions = kprobes_arm_actions; checkers = kprobes_arm_checkers; #endif p->opcode = insn; p->ainsn.insn = tmp_insn; switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) { case INSN_REJECTED: /* not supported */ return -EINVAL; case INSN_GOOD: /* instruction uses slot */ p->ainsn.insn = get_insn_slot(); if (!p->ainsn.insn) return -ENOMEM; for (is = 0; is < MAX_INSN_SIZE; ++is) p->ainsn.insn[is] = tmp_insn[is]; flush_insns(p->ainsn.insn, sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE); p->ainsn.insn_fn = (probes_insn_fn_t *) ((uintptr_t)p->ainsn.insn | thumb); break; case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */ p->ainsn.insn = NULL; break; } /* * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes * 'str r0, [sp, #-68]' should also be prohibited. * See __und_svc. */ if ((p->ainsn.stack_space < 0) || (p->ainsn.stack_space > MAX_STACK_SIZE)) return -EINVAL; return 0; } void __kprobes arch_arm_kprobe(struct kprobe *p) { unsigned int brkp; void *addr; if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { /* Remove any Thumb flag */ addr = (void *)((uintptr_t)p->addr & ~1); if (is_wide_instruction(p->opcode)) brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION; else brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION; } else { kprobe_opcode_t insn = p->opcode; addr = p->addr; brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION; if (insn >= 0xe0000000) brkp |= 0xe0000000; /* Unconditional instruction */ else brkp |= insn & 0xf0000000; /* Copy condition from insn */ } patch_text(addr, brkp); } /* * The actual disarming is done here on each CPU and synchronized using * stop_machine. This synchronization is necessary on SMP to avoid removing * a probe between the moment the 'Undefined Instruction' exception is raised * and the moment the exception handler reads the faulting instruction from * memory. It is also needed to atomically set the two half-words of a 32-bit * Thumb breakpoint. */ struct patch { void *addr; unsigned int insn; }; static int __kprobes_remove_breakpoint(void *data) { struct patch *p = data; __patch_text(p->addr, p->insn); return 0; } void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn) { struct patch p = { .addr = addr, .insn = insn, }; stop_machine_cpuslocked(__kprobes_remove_breakpoint, &p, cpu_online_mask); } void __kprobes arch_disarm_kprobe(struct kprobe *p) { kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1), p->opcode); } void __kprobes arch_remove_kprobe(struct kprobe *p) { if (p->ainsn.insn) { free_insn_slot(p->ainsn.insn, 0); p->ainsn.insn = NULL; } } static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) { kcb->prev_kprobe.kp = kprobe_running(); kcb->prev_kprobe.status = kcb->kprobe_status; } static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) { __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); kcb->kprobe_status = kcb->prev_kprobe.status; } static void __kprobes set_current_kprobe(struct kprobe *p) { __this_cpu_write(current_kprobe, p); } static void __kprobes singlestep_skip(struct kprobe *p, struct pt_regs *regs) { #ifdef CONFIG_THUMB2_KERNEL regs->ARM_cpsr = it_advance(regs->ARM_cpsr); if (is_wide_instruction(p->opcode)) regs->ARM_pc += 4; else regs->ARM_pc += 2; #else regs->ARM_pc += 4; #endif } static inline void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) { p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs); } /* * Called with IRQs disabled. IRQs must remain disabled from that point * all the way until processing this kprobe is complete. The current * kprobes implementation cannot process more than one nested level of * kprobe, and that level is reserved for user kprobe handlers, so we can't * risk encountering a new kprobe in an interrupt handler. */ static void __kprobes kprobe_handler(struct pt_regs *regs) { struct kprobe *p, *cur; struct kprobe_ctlblk *kcb; kcb = get_kprobe_ctlblk(); cur = kprobe_running(); #ifdef CONFIG_THUMB2_KERNEL /* * First look for a probe which was registered using an address with * bit 0 set, this is the usual situation for pointers to Thumb code. * If not found, fallback to looking for one with bit 0 clear. */ p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1)); if (!p) p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); #else /* ! CONFIG_THUMB2_KERNEL */ p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); #endif if (p) { if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) { /* * Probe hit but conditional execution check failed, * so just skip the instruction and continue as if * nothing had happened. * In this case, we can skip recursing check too. */ singlestep_skip(p, regs); } else if (cur) { /* Kprobe is pending, so we're recursing. */ switch (kcb->kprobe_status) { case KPROBE_HIT_ACTIVE: case KPROBE_HIT_SSDONE: case KPROBE_HIT_SS: /* A pre- or post-handler probe got us here. */ kprobes_inc_nmissed_count(p); save_previous_kprobe(kcb); set_current_kprobe(p); kcb->kprobe_status = KPROBE_REENTER; singlestep(p, regs, kcb); restore_previous_kprobe(kcb); break; case KPROBE_REENTER: /* A nested probe was hit in FIQ, it is a BUG */ pr_warn("Failed to recover from reentered kprobes.\n"); dump_kprobe(p); fallthrough; default: /* impossible cases */ BUG(); } } else { /* Probe hit and conditional execution check ok. */ set_current_kprobe(p); kcb->kprobe_status = KPROBE_HIT_ACTIVE; /* * If we have no pre-handler or it returned 0, we * continue with normal processing. If we have a * pre-handler and it returned non-zero, it will * modify the execution path and no need to single * stepping. Let's just reset current kprobe and exit. */ if (!p->pre_handler || !p->pre_handler(p, regs)) { kcb->kprobe_status = KPROBE_HIT_SS; singlestep(p, regs, kcb); if (p->post_handler) { kcb->kprobe_status = KPROBE_HIT_SSDONE; p->post_handler(p, regs, 0); } } reset_current_kprobe(); } } else { /* * The probe was removed and a race is in progress. * There is nothing we can do about it. Let's restart * the instruction. By the time we can restart, the * real instruction will be there. */ } } static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr) { unsigned long flags; local_irq_save(flags); kprobe_handler(regs); local_irq_restore(flags); return 0; } int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) { struct kprobe *cur = kprobe_running(); struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); switch (kcb->kprobe_status) { case KPROBE_HIT_SS: case KPROBE_REENTER: /* * We are here because the instruction being single * stepped caused a page fault. We reset the current * kprobe and the PC to point back to the probe address * and allow the page fault handler to continue as a * normal page fault. */ regs->ARM_pc = (long)cur->addr; if (kcb->kprobe_status == KPROBE_REENTER) { restore_previous_kprobe(kcb); } else { reset_current_kprobe(); } break; } return 0; } int __kprobes kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) { /* * notify_die() is currently never called on ARM, * so this callback is currently empty. */ return NOTIFY_DONE; } /* * When a retprobed function returns, trampoline_handler() is called, * calling the kretprobe's handler. We construct a struct pt_regs to * give a view of registers r0-r11, sp, lr, and pc to the user * return-handler. This is not a complete pt_regs structure, but that * should be enough for stacktrace from the return handler with or * without pt_regs. */ void __naked __kprobes __kretprobe_trampoline(void) { __asm__ __volatile__ ( #ifdef CONFIG_FRAME_POINTER "ldr lr, =__kretprobe_trampoline \n\t" /* __kretprobe_trampoline makes a framepointer on pt_regs. */ #ifdef CONFIG_CC_IS_CLANG "stmdb sp, {sp, lr, pc} \n\t" "sub sp, sp, #12 \n\t" /* In clang case, pt_regs->ip = lr. */ "stmdb sp!, {r0 - r11, lr} \n\t" /* fp points regs->r11 (fp) */ "add fp, sp, #44 \n\t" #else /* !CONFIG_CC_IS_CLANG */ /* In gcc case, pt_regs->ip = fp. */ "stmdb sp, {fp, sp, lr, pc} \n\t" "sub sp, sp, #16 \n\t" "stmdb sp!, {r0 - r11} \n\t" /* fp points regs->r15 (pc) */ "add fp, sp, #60 \n\t" #endif /* CONFIG_CC_IS_CLANG */ #else /* !CONFIG_FRAME_POINTER */ "sub sp, sp, #16 \n\t" "stmdb sp!, {r0 - r11} \n\t" #endif /* CONFIG_FRAME_POINTER */ "mov r0, sp \n\t" "bl trampoline_handler \n\t" "mov lr, r0 \n\t" "ldmia sp!, {r0 - r11} \n\t" "add sp, sp, #16 \n\t" #ifdef CONFIG_THUMB2_KERNEL "bx lr \n\t" #else "mov pc, lr \n\t" #endif : : : "memory"); } /* Called from __kretprobe_trampoline */ static __used __kprobes void *trampoline_handler(struct pt_regs *regs) { return (void *)kretprobe_trampoline_handler(regs, (void *)regs->ARM_fp); } void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) { ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr; ri->fp = (void *)regs->ARM_fp; /* Replace the return addr with trampoline addr. */ regs->ARM_lr = (unsigned long)&__kretprobe_trampoline; } int __kprobes arch_trampoline_kprobe(struct kprobe *p) { return 0; } #ifdef CONFIG_THUMB2_KERNEL static struct undef_hook kprobes_thumb16_break_hook = { .instr_mask = 0xffff, .instr_val = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION, .cpsr_mask = MODE_MASK, .cpsr_val = SVC_MODE, .fn = kprobe_trap_handler, }; static struct undef_hook kprobes_thumb32_break_hook = { .instr_mask = 0xffffffff, .instr_val = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION, .cpsr_mask = MODE_MASK, .cpsr_val = SVC_MODE, .fn = kprobe_trap_handler, }; #else /* !CONFIG_THUMB2_KERNEL */ static struct undef_hook kprobes_arm_break_hook = { .instr_mask = 0x0fffffff, .instr_val = KPROBE_ARM_BREAKPOINT_INSTRUCTION, .cpsr_mask = MODE_MASK, .cpsr_val = SVC_MODE, .fn = kprobe_trap_handler, }; #endif /* !CONFIG_THUMB2_KERNEL */ int __init arch_init_kprobes(void) { arm_probes_decode_init(); #ifdef CONFIG_THUMB2_KERNEL register_undef_hook(&kprobes_thumb16_break_hook); register_undef_hook(&kprobes_thumb32_break_hook); #else register_undef_hook(&kprobes_arm_break_hook); #endif return 0; } bool arch_within_kprobe_blacklist(unsigned long addr) { void *a = (void *)addr; return __in_irqentry_text(addr) || in_entry_text(addr) || in_idmap_text(addr) || memory_contains(__kprobes_text_start, __kprobes_text_end, a, 1); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1