Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marc Zyngier | 1522 | 59.55% | 46 | 41.82% |
Christoffer Dall | 338 | 13.22% | 12 | 10.91% |
Jintack Lim | 130 | 5.09% | 2 | 1.82% |
Mark Rutland | 85 | 3.33% | 5 | 4.55% |
Fuad Tabba | 77 | 3.01% | 7 | 6.36% |
Ard Biesheuvel | 67 | 2.62% | 3 | 2.73% |
James Morse | 65 | 2.54% | 5 | 4.55% |
Pavel Fedin | 44 | 1.72% | 2 | 1.82% |
Oliver Upton | 36 | 1.41% | 4 | 3.64% |
Mark Brown | 24 | 0.94% | 1 | 0.91% |
gengdongjiu | 23 | 0.90% | 3 | 2.73% |
Victor Kamensky | 20 | 0.78% | 1 | 0.91% |
Gavin Shan | 17 | 0.67% | 1 | 0.91% |
Reiji Watanabe | 15 | 0.59% | 1 | 0.91% |
Will Deacon | 11 | 0.43% | 2 | 1.82% |
Tyler Baicar | 10 | 0.39% | 1 | 0.91% |
Yanan Wang | 10 | 0.39% | 1 | 0.91% |
Wei Huang | 10 | 0.39% | 1 | 0.91% |
David Brazdil | 9 | 0.35% | 1 | 0.91% |
Shannon Zhao | 8 | 0.31% | 1 | 0.91% |
Sebastian Ott | 7 | 0.27% | 1 | 0.91% |
Dave P Martin | 6 | 0.23% | 1 | 0.91% |
Sean Christopherson | 4 | 0.16% | 1 | 0.91% |
Anshuman Khandual | 3 | 0.12% | 1 | 0.91% |
Alexandru Elisei | 3 | 0.12% | 1 | 0.91% |
Andre Przywara | 3 | 0.12% | 1 | 0.91% |
Alex Bennée | 3 | 0.12% | 1 | 0.91% |
Steven Price | 3 | 0.12% | 1 | 0.91% |
Thomas Gleixner | 2 | 0.08% | 1 | 0.91% |
Paolo Bonzini | 1 | 0.04% | 1 | 0.91% |
Total | 2556 | 110 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012,2013 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> * * Derived from arch/arm/include/kvm_emulate.h * Copyright (C) 2012 - Virtual Open Systems and Columbia University * Author: Christoffer Dall <c.dall@virtualopensystems.com> */ #ifndef __ARM64_KVM_EMULATE_H__ #define __ARM64_KVM_EMULATE_H__ #include <linux/bitfield.h> #include <linux/kvm_host.h> #include <asm/debug-monitors.h> #include <asm/esr.h> #include <asm/kvm_arm.h> #include <asm/kvm_hyp.h> #include <asm/kvm_nested.h> #include <asm/ptrace.h> #include <asm/cputype.h> #include <asm/virt.h> #define CURRENT_EL_SP_EL0_VECTOR 0x0 #define CURRENT_EL_SP_ELx_VECTOR 0x200 #define LOWER_EL_AArch64_VECTOR 0x400 #define LOWER_EL_AArch32_VECTOR 0x600 enum exception_type { except_type_sync = 0, except_type_irq = 0x80, except_type_fiq = 0x100, except_type_serror = 0x180, }; #define kvm_exception_type_names \ { except_type_sync, "SYNC" }, \ { except_type_irq, "IRQ" }, \ { except_type_fiq, "FIQ" }, \ { except_type_serror, "SERROR" } bool kvm_condition_valid32(const struct kvm_vcpu *vcpu); void kvm_skip_instr32(struct kvm_vcpu *vcpu); void kvm_inject_undefined(struct kvm_vcpu *vcpu); void kvm_inject_vabt(struct kvm_vcpu *vcpu); void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr); void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr); void kvm_inject_size_fault(struct kvm_vcpu *vcpu); void kvm_vcpu_wfi(struct kvm_vcpu *vcpu); void kvm_emulate_nested_eret(struct kvm_vcpu *vcpu); int kvm_inject_nested_sync(struct kvm_vcpu *vcpu, u64 esr_el2); int kvm_inject_nested_irq(struct kvm_vcpu *vcpu); static inline void kvm_inject_nested_sve_trap(struct kvm_vcpu *vcpu) { u64 esr = FIELD_PREP(ESR_ELx_EC_MASK, ESR_ELx_EC_SVE) | ESR_ELx_IL; kvm_inject_nested_sync(vcpu, esr); } #if defined(__KVM_VHE_HYPERVISOR__) || defined(__KVM_NVHE_HYPERVISOR__) static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) { return !(vcpu->arch.hcr_el2 & HCR_RW); } #else static __always_inline bool vcpu_el1_is_32bit(struct kvm_vcpu *vcpu) { return vcpu_has_feature(vcpu, KVM_ARM_VCPU_EL1_32BIT); } #endif static inline void vcpu_reset_hcr(struct kvm_vcpu *vcpu) { if (!vcpu_has_run_once(vcpu)) vcpu->arch.hcr_el2 = HCR_GUEST_FLAGS; /* * For non-FWB CPUs, we trap VM ops (HCR_EL2.TVM) until M+C * get set in SCTLR_EL1 such that we can detect when the guest * MMU gets turned on and do the necessary cache maintenance * then. */ if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB)) vcpu->arch.hcr_el2 |= HCR_TVM; } static inline unsigned long *vcpu_hcr(struct kvm_vcpu *vcpu) { return (unsigned long *)&vcpu->arch.hcr_el2; } static inline void vcpu_clear_wfx_traps(struct kvm_vcpu *vcpu) { vcpu->arch.hcr_el2 &= ~HCR_TWE; if (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) || vcpu->kvm->arch.vgic.nassgireq) vcpu->arch.hcr_el2 &= ~HCR_TWI; else vcpu->arch.hcr_el2 |= HCR_TWI; } static inline void vcpu_set_wfx_traps(struct kvm_vcpu *vcpu) { vcpu->arch.hcr_el2 |= HCR_TWE; vcpu->arch.hcr_el2 |= HCR_TWI; } static inline unsigned long vcpu_get_vsesr(struct kvm_vcpu *vcpu) { return vcpu->arch.vsesr_el2; } static inline void vcpu_set_vsesr(struct kvm_vcpu *vcpu, u64 vsesr) { vcpu->arch.vsesr_el2 = vsesr; } static __always_inline unsigned long *vcpu_pc(const struct kvm_vcpu *vcpu) { return (unsigned long *)&vcpu_gp_regs(vcpu)->pc; } static __always_inline unsigned long *vcpu_cpsr(const struct kvm_vcpu *vcpu) { return (unsigned long *)&vcpu_gp_regs(vcpu)->pstate; } static __always_inline bool vcpu_mode_is_32bit(const struct kvm_vcpu *vcpu) { return !!(*vcpu_cpsr(vcpu) & PSR_MODE32_BIT); } static __always_inline bool kvm_condition_valid(const struct kvm_vcpu *vcpu) { if (vcpu_mode_is_32bit(vcpu)) return kvm_condition_valid32(vcpu); return true; } static inline void vcpu_set_thumb(struct kvm_vcpu *vcpu) { *vcpu_cpsr(vcpu) |= PSR_AA32_T_BIT; } /* * vcpu_get_reg and vcpu_set_reg should always be passed a register number * coming from a read of ESR_EL2. Otherwise, it may give the wrong result on * AArch32 with banked registers. */ static __always_inline unsigned long vcpu_get_reg(const struct kvm_vcpu *vcpu, u8 reg_num) { return (reg_num == 31) ? 0 : vcpu_gp_regs(vcpu)->regs[reg_num]; } static __always_inline void vcpu_set_reg(struct kvm_vcpu *vcpu, u8 reg_num, unsigned long val) { if (reg_num != 31) vcpu_gp_regs(vcpu)->regs[reg_num] = val; } static inline bool vcpu_is_el2_ctxt(const struct kvm_cpu_context *ctxt) { switch (ctxt->regs.pstate & (PSR_MODE32_BIT | PSR_MODE_MASK)) { case PSR_MODE_EL2h: case PSR_MODE_EL2t: return true; default: return false; } } static inline bool vcpu_is_el2(const struct kvm_vcpu *vcpu) { return vcpu_is_el2_ctxt(&vcpu->arch.ctxt); } static inline bool __vcpu_el2_e2h_is_set(const struct kvm_cpu_context *ctxt) { return (!cpus_have_final_cap(ARM64_HAS_HCR_NV1) || (ctxt_sys_reg(ctxt, HCR_EL2) & HCR_E2H)); } static inline bool vcpu_el2_e2h_is_set(const struct kvm_vcpu *vcpu) { return __vcpu_el2_e2h_is_set(&vcpu->arch.ctxt); } static inline bool __vcpu_el2_tge_is_set(const struct kvm_cpu_context *ctxt) { return ctxt_sys_reg(ctxt, HCR_EL2) & HCR_TGE; } static inline bool vcpu_el2_tge_is_set(const struct kvm_vcpu *vcpu) { return __vcpu_el2_tge_is_set(&vcpu->arch.ctxt); } static inline bool __is_hyp_ctxt(const struct kvm_cpu_context *ctxt) { /* * We are in a hypervisor context if the vcpu mode is EL2 or * E2H and TGE bits are set. The latter means we are in the user space * of the VHE kernel. ARMv8.1 ARM describes this as 'InHost' * * Note that the HCR_EL2.{E2H,TGE}={0,1} isn't really handled in the * rest of the KVM code, and will result in a misbehaving guest. */ return vcpu_is_el2_ctxt(ctxt) || (__vcpu_el2_e2h_is_set(ctxt) && __vcpu_el2_tge_is_set(ctxt)) || __vcpu_el2_tge_is_set(ctxt); } static inline bool is_hyp_ctxt(const struct kvm_vcpu *vcpu) { return vcpu_has_nv(vcpu) && __is_hyp_ctxt(&vcpu->arch.ctxt); } /* * The layout of SPSR for an AArch32 state is different when observed from an * AArch64 SPSR_ELx or an AArch32 SPSR_*. This function generates the AArch32 * view given an AArch64 view. * * In ARM DDI 0487E.a see: * * - The AArch64 view (SPSR_EL2) in section C5.2.18, page C5-426 * - The AArch32 view (SPSR_abt) in section G8.2.126, page G8-6256 * - The AArch32 view (SPSR_und) in section G8.2.132, page G8-6280 * * Which show the following differences: * * | Bit | AA64 | AA32 | Notes | * +-----+------+------+-----------------------------| * | 24 | DIT | J | J is RES0 in ARMv8 | * | 21 | SS | DIT | SS doesn't exist in AArch32 | * * ... and all other bits are (currently) common. */ static inline unsigned long host_spsr_to_spsr32(unsigned long spsr) { const unsigned long overlap = BIT(24) | BIT(21); unsigned long dit = !!(spsr & PSR_AA32_DIT_BIT); spsr &= ~overlap; spsr |= dit << 21; return spsr; } static inline bool vcpu_mode_priv(const struct kvm_vcpu *vcpu) { u32 mode; if (vcpu_mode_is_32bit(vcpu)) { mode = *vcpu_cpsr(vcpu) & PSR_AA32_MODE_MASK; return mode > PSR_AA32_MODE_USR; } mode = *vcpu_cpsr(vcpu) & PSR_MODE_MASK; return mode != PSR_MODE_EL0t; } static __always_inline u64 kvm_vcpu_get_esr(const struct kvm_vcpu *vcpu) { return vcpu->arch.fault.esr_el2; } static __always_inline int kvm_vcpu_get_condition(const struct kvm_vcpu *vcpu) { u64 esr = kvm_vcpu_get_esr(vcpu); if (esr & ESR_ELx_CV) return (esr & ESR_ELx_COND_MASK) >> ESR_ELx_COND_SHIFT; return -1; } static __always_inline unsigned long kvm_vcpu_get_hfar(const struct kvm_vcpu *vcpu) { return vcpu->arch.fault.far_el2; } static __always_inline phys_addr_t kvm_vcpu_get_fault_ipa(const struct kvm_vcpu *vcpu) { return ((phys_addr_t)vcpu->arch.fault.hpfar_el2 & HPFAR_MASK) << 8; } static inline u64 kvm_vcpu_get_disr(const struct kvm_vcpu *vcpu) { return vcpu->arch.fault.disr_el1; } static inline u32 kvm_vcpu_hvc_get_imm(const struct kvm_vcpu *vcpu) { return kvm_vcpu_get_esr(vcpu) & ESR_ELx_xVC_IMM_MASK; } static __always_inline bool kvm_vcpu_dabt_isvalid(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_ISV); } static inline unsigned long kvm_vcpu_dabt_iss_nisv_sanitized(const struct kvm_vcpu *vcpu) { return kvm_vcpu_get_esr(vcpu) & (ESR_ELx_CM | ESR_ELx_WNR | ESR_ELx_FSC); } static inline bool kvm_vcpu_dabt_issext(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SSE); } static inline bool kvm_vcpu_dabt_issf(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_SF); } static __always_inline int kvm_vcpu_dabt_get_rd(const struct kvm_vcpu *vcpu) { return (kvm_vcpu_get_esr(vcpu) & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT; } static __always_inline bool kvm_vcpu_abt_iss1tw(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_S1PTW); } /* Always check for S1PTW *before* using this. */ static __always_inline bool kvm_vcpu_dabt_iswrite(const struct kvm_vcpu *vcpu) { return kvm_vcpu_get_esr(vcpu) & ESR_ELx_WNR; } static inline bool kvm_vcpu_dabt_is_cm(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_CM); } static __always_inline unsigned int kvm_vcpu_dabt_get_as(const struct kvm_vcpu *vcpu) { return 1 << ((kvm_vcpu_get_esr(vcpu) & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT); } /* This one is not specific to Data Abort */ static __always_inline bool kvm_vcpu_trap_il_is32bit(const struct kvm_vcpu *vcpu) { return !!(kvm_vcpu_get_esr(vcpu) & ESR_ELx_IL); } static __always_inline u8 kvm_vcpu_trap_get_class(const struct kvm_vcpu *vcpu) { return ESR_ELx_EC(kvm_vcpu_get_esr(vcpu)); } static inline bool kvm_vcpu_trap_is_iabt(const struct kvm_vcpu *vcpu) { return kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_IABT_LOW; } static inline bool kvm_vcpu_trap_is_exec_fault(const struct kvm_vcpu *vcpu) { return kvm_vcpu_trap_is_iabt(vcpu) && !kvm_vcpu_abt_iss1tw(vcpu); } static __always_inline u8 kvm_vcpu_trap_get_fault(const struct kvm_vcpu *vcpu) { return kvm_vcpu_get_esr(vcpu) & ESR_ELx_FSC; } static inline bool kvm_vcpu_trap_is_permission_fault(const struct kvm_vcpu *vcpu) { return esr_fsc_is_permission_fault(kvm_vcpu_get_esr(vcpu)); } static inline bool kvm_vcpu_trap_is_translation_fault(const struct kvm_vcpu *vcpu) { return esr_fsc_is_translation_fault(kvm_vcpu_get_esr(vcpu)); } static inline u64 kvm_vcpu_trap_get_perm_fault_granule(const struct kvm_vcpu *vcpu) { unsigned long esr = kvm_vcpu_get_esr(vcpu); BUG_ON(!esr_fsc_is_permission_fault(esr)); return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(esr & ESR_ELx_FSC_LEVEL)); } static __always_inline bool kvm_vcpu_abt_issea(const struct kvm_vcpu *vcpu) { switch (kvm_vcpu_trap_get_fault(vcpu)) { case ESR_ELx_FSC_EXTABT: case ESR_ELx_FSC_SEA_TTW(-1) ... ESR_ELx_FSC_SEA_TTW(3): case ESR_ELx_FSC_SECC: case ESR_ELx_FSC_SECC_TTW(-1) ... ESR_ELx_FSC_SECC_TTW(3): return true; default: return false; } } static __always_inline int kvm_vcpu_sys_get_rt(struct kvm_vcpu *vcpu) { u64 esr = kvm_vcpu_get_esr(vcpu); return ESR_ELx_SYS64_ISS_RT(esr); } static inline bool kvm_is_write_fault(struct kvm_vcpu *vcpu) { if (kvm_vcpu_abt_iss1tw(vcpu)) { /* * Only a permission fault on a S1PTW should be * considered as a write. Otherwise, page tables baked * in a read-only memslot will result in an exception * being delivered in the guest. * * The drawback is that we end-up faulting twice if the * guest is using any of HW AF/DB: a translation fault * to map the page containing the PT (read only at * first), then a permission fault to allow the flags * to be set. */ return kvm_vcpu_trap_is_permission_fault(vcpu); } if (kvm_vcpu_trap_is_iabt(vcpu)) return false; return kvm_vcpu_dabt_iswrite(vcpu); } static inline unsigned long kvm_vcpu_get_mpidr_aff(struct kvm_vcpu *vcpu) { return __vcpu_sys_reg(vcpu, MPIDR_EL1) & MPIDR_HWID_BITMASK; } static inline void kvm_vcpu_set_be(struct kvm_vcpu *vcpu) { if (vcpu_mode_is_32bit(vcpu)) { *vcpu_cpsr(vcpu) |= PSR_AA32_E_BIT; } else { u64 sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1); sctlr |= SCTLR_ELx_EE; vcpu_write_sys_reg(vcpu, sctlr, SCTLR_EL1); } } static inline bool kvm_vcpu_is_be(struct kvm_vcpu *vcpu) { if (vcpu_mode_is_32bit(vcpu)) return !!(*vcpu_cpsr(vcpu) & PSR_AA32_E_BIT); if (vcpu_mode_priv(vcpu)) return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_ELx_EE); else return !!(vcpu_read_sys_reg(vcpu, SCTLR_EL1) & SCTLR_EL1_E0E); } static inline unsigned long vcpu_data_guest_to_host(struct kvm_vcpu *vcpu, unsigned long data, unsigned int len) { if (kvm_vcpu_is_be(vcpu)) { switch (len) { case 1: return data & 0xff; case 2: return be16_to_cpu(data & 0xffff); case 4: return be32_to_cpu(data & 0xffffffff); default: return be64_to_cpu(data); } } else { switch (len) { case 1: return data & 0xff; case 2: return le16_to_cpu(data & 0xffff); case 4: return le32_to_cpu(data & 0xffffffff); default: return le64_to_cpu(data); } } return data; /* Leave LE untouched */ } static inline unsigned long vcpu_data_host_to_guest(struct kvm_vcpu *vcpu, unsigned long data, unsigned int len) { if (kvm_vcpu_is_be(vcpu)) { switch (len) { case 1: return data & 0xff; case 2: return cpu_to_be16(data & 0xffff); case 4: return cpu_to_be32(data & 0xffffffff); default: return cpu_to_be64(data); } } else { switch (len) { case 1: return data & 0xff; case 2: return cpu_to_le16(data & 0xffff); case 4: return cpu_to_le32(data & 0xffffffff); default: return cpu_to_le64(data); } } return data; /* Leave LE untouched */ } static __always_inline void kvm_incr_pc(struct kvm_vcpu *vcpu) { WARN_ON(vcpu_get_flag(vcpu, PENDING_EXCEPTION)); vcpu_set_flag(vcpu, INCREMENT_PC); } #define kvm_pend_exception(v, e) \ do { \ WARN_ON(vcpu_get_flag((v), INCREMENT_PC)); \ vcpu_set_flag((v), PENDING_EXCEPTION); \ vcpu_set_flag((v), e); \ } while (0) #define __build_check_all_or_none(r, bits) \ BUILD_BUG_ON(((r) & (bits)) && ((r) & (bits)) != (bits)) #define __cpacr_to_cptr_clr(clr, set) \ ({ \ u64 cptr = 0; \ \ if ((set) & CPACR_ELx_FPEN) \ cptr |= CPTR_EL2_TFP; \ if ((set) & CPACR_ELx_ZEN) \ cptr |= CPTR_EL2_TZ; \ if ((set) & CPACR_ELx_SMEN) \ cptr |= CPTR_EL2_TSM; \ if ((clr) & CPACR_ELx_TTA) \ cptr |= CPTR_EL2_TTA; \ if ((clr) & CPTR_EL2_TAM) \ cptr |= CPTR_EL2_TAM; \ if ((clr) & CPTR_EL2_TCPAC) \ cptr |= CPTR_EL2_TCPAC; \ \ cptr; \ }) #define __cpacr_to_cptr_set(clr, set) \ ({ \ u64 cptr = 0; \ \ if ((clr) & CPACR_ELx_FPEN) \ cptr |= CPTR_EL2_TFP; \ if ((clr) & CPACR_ELx_ZEN) \ cptr |= CPTR_EL2_TZ; \ if ((clr) & CPACR_ELx_SMEN) \ cptr |= CPTR_EL2_TSM; \ if ((set) & CPACR_ELx_TTA) \ cptr |= CPTR_EL2_TTA; \ if ((set) & CPTR_EL2_TAM) \ cptr |= CPTR_EL2_TAM; \ if ((set) & CPTR_EL2_TCPAC) \ cptr |= CPTR_EL2_TCPAC; \ \ cptr; \ }) #define cpacr_clear_set(clr, set) \ do { \ BUILD_BUG_ON((set) & CPTR_VHE_EL2_RES0); \ BUILD_BUG_ON((clr) & CPACR_ELx_E0POE); \ __build_check_all_or_none((clr), CPACR_ELx_FPEN); \ __build_check_all_or_none((set), CPACR_ELx_FPEN); \ __build_check_all_or_none((clr), CPACR_ELx_ZEN); \ __build_check_all_or_none((set), CPACR_ELx_ZEN); \ __build_check_all_or_none((clr), CPACR_ELx_SMEN); \ __build_check_all_or_none((set), CPACR_ELx_SMEN); \ \ if (has_vhe() || has_hvhe()) \ sysreg_clear_set(cpacr_el1, clr, set); \ else \ sysreg_clear_set(cptr_el2, \ __cpacr_to_cptr_clr(clr, set), \ __cpacr_to_cptr_set(clr, set));\ } while (0) static __always_inline void kvm_write_cptr_el2(u64 val) { if (has_vhe() || has_hvhe()) write_sysreg(val, cpacr_el1); else write_sysreg(val, cptr_el2); } static __always_inline u64 kvm_get_reset_cptr_el2(struct kvm_vcpu *vcpu) { u64 val; if (has_vhe()) { val = (CPACR_ELx_FPEN | CPACR_EL1_ZEN_EL1EN); if (cpus_have_final_cap(ARM64_SME)) val |= CPACR_EL1_SMEN_EL1EN; } else if (has_hvhe()) { val = CPACR_ELx_FPEN; if (!vcpu_has_sve(vcpu) || !guest_owns_fp_regs()) val |= CPACR_ELx_ZEN; if (cpus_have_final_cap(ARM64_SME)) val |= CPACR_ELx_SMEN; } else { val = CPTR_NVHE_EL2_RES1; if (vcpu_has_sve(vcpu) && guest_owns_fp_regs()) val |= CPTR_EL2_TZ; if (cpus_have_final_cap(ARM64_SME)) val &= ~CPTR_EL2_TSM; } return val; } static __always_inline void kvm_reset_cptr_el2(struct kvm_vcpu *vcpu) { u64 val = kvm_get_reset_cptr_el2(vcpu); kvm_write_cptr_el2(val); } /* * Returns a 'sanitised' view of CPTR_EL2, translating from nVHE to the VHE * format if E2H isn't set. */ static inline u64 vcpu_sanitised_cptr_el2(const struct kvm_vcpu *vcpu) { u64 cptr = __vcpu_sys_reg(vcpu, CPTR_EL2); if (!vcpu_el2_e2h_is_set(vcpu)) cptr = translate_cptr_el2_to_cpacr_el1(cptr); return cptr; } static inline bool ____cptr_xen_trap_enabled(const struct kvm_vcpu *vcpu, unsigned int xen) { switch (xen) { case 0b00: case 0b10: return true; case 0b01: return vcpu_el2_tge_is_set(vcpu) && !vcpu_is_el2(vcpu); case 0b11: default: return false; } } #define __guest_hyp_cptr_xen_trap_enabled(vcpu, xen) \ (!vcpu_has_nv(vcpu) ? false : \ ____cptr_xen_trap_enabled(vcpu, \ SYS_FIELD_GET(CPACR_ELx, xen, \ vcpu_sanitised_cptr_el2(vcpu)))) static inline bool guest_hyp_fpsimd_traps_enabled(const struct kvm_vcpu *vcpu) { return __guest_hyp_cptr_xen_trap_enabled(vcpu, FPEN); } static inline bool guest_hyp_sve_traps_enabled(const struct kvm_vcpu *vcpu) { return __guest_hyp_cptr_xen_trap_enabled(vcpu, ZEN); } #endif /* __ARM64_KVM_EMULATE_H__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1