Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marc Zyngier | 4487 | 72.89% | 26 | 43.33% |
Christoffer Dall | 1401 | 22.76% | 8 | 13.33% |
Oliver Upton | 182 | 2.96% | 6 | 10.00% |
Will Deacon | 19 | 0.31% | 2 | 3.33% |
Jing Zhang | 13 | 0.21% | 2 | 3.33% |
Punit Agrawal | 11 | 0.18% | 1 | 1.67% |
Fuad Tabba | 7 | 0.11% | 1 | 1.67% |
Ricardo Koller | 6 | 0.10% | 1 | 1.67% |
Mario Smarduch | 5 | 0.08% | 1 | 1.67% |
Mark Rutland | 5 | 0.08% | 2 | 3.33% |
Vladimir Murzin | 3 | 0.05% | 1 | 1.67% |
Jintack Lim | 3 | 0.05% | 1 | 1.67% |
Amit Daniel Kachhap | 3 | 0.05% | 1 | 1.67% |
Suzuki K. Poulose | 2 | 0.03% | 1 | 1.67% |
Alexandru Elisei | 2 | 0.03% | 1 | 1.67% |
Dave P Martin | 2 | 0.03% | 1 | 1.67% |
Ard Biesheuvel | 2 | 0.03% | 1 | 1.67% |
Steven Price | 1 | 0.02% | 1 | 1.67% |
Thomas Gleixner | 1 | 0.02% | 1 | 1.67% |
Danilo Krummrich | 1 | 0.02% | 1 | 1.67% |
Total | 6156 | 60 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2017 - Columbia University and Linaro Ltd. * Author: Jintack Lim <jintack.lim@linaro.org> */ #include <linux/bitfield.h> #include <linux/kvm.h> #include <linux/kvm_host.h> #include <asm/kvm_arm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_mmu.h> #include <asm/kvm_nested.h> #include <asm/sysreg.h> #include "sys_regs.h" /* Protection against the sysreg repainting madness... */ #define NV_FTR(r, f) ID_AA64##r##_EL1_##f /* * Ratio of live shadow S2 MMU per vcpu. This is a trade-off between * memory usage and potential number of different sets of S2 PTs in * the guests. Running out of S2 MMUs only affects performance (we * will invalidate them more often). */ #define S2_MMU_PER_VCPU 2 void kvm_init_nested(struct kvm *kvm) { kvm->arch.nested_mmus = NULL; kvm->arch.nested_mmus_size = 0; } static int init_nested_s2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu) { /* * We only initialise the IPA range on the canonical MMU, which * defines the contract between KVM and userspace on where the * "hardware" is in the IPA space. This affects the validity of MMIO * exits forwarded to userspace, for example. * * For nested S2s, we use the PARange as exposed to the guest, as it * is allowed to use it at will to expose whatever memory map it * wants to its own guests as it would be on real HW. */ return kvm_init_stage2_mmu(kvm, mmu, kvm_get_pa_bits(kvm)); } int kvm_vcpu_init_nested(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; struct kvm_s2_mmu *tmp; int num_mmus, ret = 0; /* * Let's treat memory allocation failures as benign: If we fail to * allocate anything, return an error and keep the allocated array * alive. Userspace may try to recover by intializing the vcpu * again, and there is no reason to affect the whole VM for this. */ num_mmus = atomic_read(&kvm->online_vcpus) * S2_MMU_PER_VCPU; tmp = kvrealloc(kvm->arch.nested_mmus, size_mul(sizeof(*kvm->arch.nested_mmus), kvm->arch.nested_mmus_size), size_mul(sizeof(*kvm->arch.nested_mmus), num_mmus), GFP_KERNEL_ACCOUNT | __GFP_ZERO); if (!tmp) return -ENOMEM; /* * If we went through a realocation, adjust the MMU back-pointers in * the previously initialised kvm_pgtable structures. */ if (kvm->arch.nested_mmus != tmp) for (int i = 0; i < kvm->arch.nested_mmus_size; i++) tmp[i].pgt->mmu = &tmp[i]; for (int i = kvm->arch.nested_mmus_size; !ret && i < num_mmus; i++) ret = init_nested_s2_mmu(kvm, &tmp[i]); if (ret) { for (int i = kvm->arch.nested_mmus_size; i < num_mmus; i++) kvm_free_stage2_pgd(&tmp[i]); return ret; } kvm->arch.nested_mmus_size = num_mmus; kvm->arch.nested_mmus = tmp; return 0; } struct s2_walk_info { int (*read_desc)(phys_addr_t pa, u64 *desc, void *data); void *data; u64 baddr; unsigned int max_oa_bits; unsigned int pgshift; unsigned int sl; unsigned int t0sz; bool be; }; static unsigned int ps_to_output_size(unsigned int ps) { switch (ps) { case 0: return 32; case 1: return 36; case 2: return 40; case 3: return 42; case 4: return 44; case 5: default: return 48; } } static u32 compute_fsc(int level, u32 fsc) { return fsc | (level & 0x3); } static int esr_s2_fault(struct kvm_vcpu *vcpu, int level, u32 fsc) { u32 esr; esr = kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC; esr |= compute_fsc(level, fsc); return esr; } static int get_ia_size(struct s2_walk_info *wi) { return 64 - wi->t0sz; } static int check_base_s2_limits(struct s2_walk_info *wi, int level, int input_size, int stride) { int start_size, ia_size; ia_size = get_ia_size(wi); /* Check translation limits */ switch (BIT(wi->pgshift)) { case SZ_64K: if (level == 0 || (level == 1 && ia_size <= 42)) return -EFAULT; break; case SZ_16K: if (level == 0 || (level == 1 && ia_size <= 40)) return -EFAULT; break; case SZ_4K: if (level < 0 || (level == 0 && ia_size <= 42)) return -EFAULT; break; } /* Check input size limits */ if (input_size > ia_size) return -EFAULT; /* Check number of entries in starting level table */ start_size = input_size - ((3 - level) * stride + wi->pgshift); if (start_size < 1 || start_size > stride + 4) return -EFAULT; return 0; } /* Check if output is within boundaries */ static int check_output_size(struct s2_walk_info *wi, phys_addr_t output) { unsigned int output_size = wi->max_oa_bits; if (output_size != 48 && (output & GENMASK_ULL(47, output_size))) return -1; return 0; } /* * This is essentially a C-version of the pseudo code from the ARM ARM * AArch64.TranslationTableWalk function. I strongly recommend looking at * that pseudocode in trying to understand this. * * Must be called with the kvm->srcu read lock held */ static int walk_nested_s2_pgd(phys_addr_t ipa, struct s2_walk_info *wi, struct kvm_s2_trans *out) { int first_block_level, level, stride, input_size, base_lower_bound; phys_addr_t base_addr; unsigned int addr_top, addr_bottom; u64 desc; /* page table entry */ int ret; phys_addr_t paddr; switch (BIT(wi->pgshift)) { default: case SZ_64K: case SZ_16K: level = 3 - wi->sl; first_block_level = 2; break; case SZ_4K: level = 2 - wi->sl; first_block_level = 1; break; } stride = wi->pgshift - 3; input_size = get_ia_size(wi); if (input_size > 48 || input_size < 25) return -EFAULT; ret = check_base_s2_limits(wi, level, input_size, stride); if (WARN_ON(ret)) return ret; base_lower_bound = 3 + input_size - ((3 - level) * stride + wi->pgshift); base_addr = wi->baddr & GENMASK_ULL(47, base_lower_bound); if (check_output_size(wi, base_addr)) { out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); return 1; } addr_top = input_size - 1; while (1) { phys_addr_t index; addr_bottom = (3 - level) * stride + wi->pgshift; index = (ipa & GENMASK_ULL(addr_top, addr_bottom)) >> (addr_bottom - 3); paddr = base_addr | index; ret = wi->read_desc(paddr, &desc, wi->data); if (ret < 0) return ret; /* * Handle reversedescriptors if endianness differs between the * host and the guest hypervisor. */ if (wi->be) desc = be64_to_cpu((__force __be64)desc); else desc = le64_to_cpu((__force __le64)desc); /* Check for valid descriptor at this point */ if (!(desc & 1) || ((desc & 3) == 1 && level == 3)) { out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); out->upper_attr = desc; return 1; } /* We're at the final level or block translation level */ if ((desc & 3) == 1 || level == 3) break; if (check_output_size(wi, desc)) { out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); out->upper_attr = desc; return 1; } base_addr = desc & GENMASK_ULL(47, wi->pgshift); level += 1; addr_top = addr_bottom - 1; } if (level < first_block_level) { out->esr = compute_fsc(level, ESR_ELx_FSC_FAULT); out->upper_attr = desc; return 1; } /* * We don't use the contiguous bit in the stage-2 ptes, so skip check * for misprogramming of the contiguous bit. */ if (check_output_size(wi, desc)) { out->esr = compute_fsc(level, ESR_ELx_FSC_ADDRSZ); out->upper_attr = desc; return 1; } if (!(desc & BIT(10))) { out->esr = compute_fsc(level, ESR_ELx_FSC_ACCESS); out->upper_attr = desc; return 1; } /* Calculate and return the result */ paddr = (desc & GENMASK_ULL(47, addr_bottom)) | (ipa & GENMASK_ULL(addr_bottom - 1, 0)); out->output = paddr; out->block_size = 1UL << ((3 - level) * stride + wi->pgshift); out->readable = desc & (0b01 << 6); out->writable = desc & (0b10 << 6); out->level = level; out->upper_attr = desc & GENMASK_ULL(63, 52); return 0; } static int read_guest_s2_desc(phys_addr_t pa, u64 *desc, void *data) { struct kvm_vcpu *vcpu = data; return kvm_read_guest(vcpu->kvm, pa, desc, sizeof(*desc)); } static void vtcr_to_walk_info(u64 vtcr, struct s2_walk_info *wi) { wi->t0sz = vtcr & TCR_EL2_T0SZ_MASK; switch (vtcr & VTCR_EL2_TG0_MASK) { case VTCR_EL2_TG0_4K: wi->pgshift = 12; break; case VTCR_EL2_TG0_16K: wi->pgshift = 14; break; case VTCR_EL2_TG0_64K: default: /* IMPDEF: treat any other value as 64k */ wi->pgshift = 16; break; } wi->sl = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr); /* Global limit for now, should eventually be per-VM */ wi->max_oa_bits = min(get_kvm_ipa_limit(), ps_to_output_size(FIELD_GET(VTCR_EL2_PS_MASK, vtcr))); } int kvm_walk_nested_s2(struct kvm_vcpu *vcpu, phys_addr_t gipa, struct kvm_s2_trans *result) { u64 vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); struct s2_walk_info wi; int ret; result->esr = 0; if (!vcpu_has_nv(vcpu)) return 0; wi.read_desc = read_guest_s2_desc; wi.data = vcpu; wi.baddr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); vtcr_to_walk_info(vtcr, &wi); wi.be = vcpu_read_sys_reg(vcpu, SCTLR_EL2) & SCTLR_ELx_EE; ret = walk_nested_s2_pgd(gipa, &wi, result); if (ret) result->esr |= (kvm_vcpu_get_esr(vcpu) & ~ESR_ELx_FSC); return ret; } static unsigned int ttl_to_size(u8 ttl) { int level = ttl & 3; int gran = (ttl >> 2) & 3; unsigned int max_size = 0; switch (gran) { case TLBI_TTL_TG_4K: switch (level) { case 0: break; case 1: max_size = SZ_1G; break; case 2: max_size = SZ_2M; break; case 3: max_size = SZ_4K; break; } break; case TLBI_TTL_TG_16K: switch (level) { case 0: case 1: break; case 2: max_size = SZ_32M; break; case 3: max_size = SZ_16K; break; } break; case TLBI_TTL_TG_64K: switch (level) { case 0: case 1: /* No 52bit IPA support */ break; case 2: max_size = SZ_512M; break; case 3: max_size = SZ_64K; break; } break; default: /* No size information */ break; } return max_size; } /* * Compute the equivalent of the TTL field by parsing the shadow PT. The * granule size is extracted from the cached VTCR_EL2.TG0 while the level is * retrieved from first entry carrying the level as a tag. */ static u8 get_guest_mapping_ttl(struct kvm_s2_mmu *mmu, u64 addr) { u64 tmp, sz = 0, vtcr = mmu->tlb_vtcr; kvm_pte_t pte; u8 ttl, level; lockdep_assert_held_write(&kvm_s2_mmu_to_kvm(mmu)->mmu_lock); switch (vtcr & VTCR_EL2_TG0_MASK) { case VTCR_EL2_TG0_4K: ttl = (TLBI_TTL_TG_4K << 2); break; case VTCR_EL2_TG0_16K: ttl = (TLBI_TTL_TG_16K << 2); break; case VTCR_EL2_TG0_64K: default: /* IMPDEF: treat any other value as 64k */ ttl = (TLBI_TTL_TG_64K << 2); break; } tmp = addr; again: /* Iteratively compute the block sizes for a particular granule size */ switch (vtcr & VTCR_EL2_TG0_MASK) { case VTCR_EL2_TG0_4K: if (sz < SZ_4K) sz = SZ_4K; else if (sz < SZ_2M) sz = SZ_2M; else if (sz < SZ_1G) sz = SZ_1G; else sz = 0; break; case VTCR_EL2_TG0_16K: if (sz < SZ_16K) sz = SZ_16K; else if (sz < SZ_32M) sz = SZ_32M; else sz = 0; break; case VTCR_EL2_TG0_64K: default: /* IMPDEF: treat any other value as 64k */ if (sz < SZ_64K) sz = SZ_64K; else if (sz < SZ_512M) sz = SZ_512M; else sz = 0; break; } if (sz == 0) return 0; tmp &= ~(sz - 1); if (kvm_pgtable_get_leaf(mmu->pgt, tmp, &pte, NULL)) goto again; if (!(pte & PTE_VALID)) goto again; level = FIELD_GET(KVM_NV_GUEST_MAP_SZ, pte); if (!level) goto again; ttl |= level; /* * We now have found some level information in the shadow S2. Check * that the resulting range is actually including the original IPA. */ sz = ttl_to_size(ttl); if (addr < (tmp + sz)) return ttl; return 0; } unsigned long compute_tlb_inval_range(struct kvm_s2_mmu *mmu, u64 val) { struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu); unsigned long max_size; u8 ttl; ttl = FIELD_GET(TLBI_TTL_MASK, val); if (!ttl || !kvm_has_feat(kvm, ID_AA64MMFR2_EL1, TTL, IMP)) { /* No TTL, check the shadow S2 for a hint */ u64 addr = (val & GENMASK_ULL(35, 0)) << 12; ttl = get_guest_mapping_ttl(mmu, addr); } max_size = ttl_to_size(ttl); if (!max_size) { /* Compute the maximum extent of the invalidation */ switch (mmu->tlb_vtcr & VTCR_EL2_TG0_MASK) { case VTCR_EL2_TG0_4K: max_size = SZ_1G; break; case VTCR_EL2_TG0_16K: max_size = SZ_32M; break; case VTCR_EL2_TG0_64K: default: /* IMPDEF: treat any other value as 64k */ /* * No, we do not support 52bit IPA in nested yet. Once * we do, this should be 4TB. */ max_size = SZ_512M; break; } } WARN_ON(!max_size); return max_size; } /* * We can have multiple *different* MMU contexts with the same VMID: * * - S2 being enabled or not, hence differing by the HCR_EL2.VM bit * * - Multiple vcpus using private S2s (huh huh...), hence differing by the * VBBTR_EL2.BADDR address * * - A combination of the above... * * We can always identify which MMU context to pick at run-time. However, * TLB invalidation involving a VMID must take action on all the TLBs using * this particular VMID. This translates into applying the same invalidation * operation to all the contexts that are using this VMID. Moar phun! */ void kvm_s2_mmu_iterate_by_vmid(struct kvm *kvm, u16 vmid, const union tlbi_info *info, void (*tlbi_callback)(struct kvm_s2_mmu *, const union tlbi_info *)) { write_lock(&kvm->mmu_lock); for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (!kvm_s2_mmu_valid(mmu)) continue; if (vmid == get_vmid(mmu->tlb_vttbr)) tlbi_callback(mmu, info); } write_unlock(&kvm->mmu_lock); } struct kvm_s2_mmu *lookup_s2_mmu(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; bool nested_stage2_enabled; u64 vttbr, vtcr, hcr; lockdep_assert_held_write(&kvm->mmu_lock); vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2); vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); hcr = vcpu_read_sys_reg(vcpu, HCR_EL2); nested_stage2_enabled = hcr & HCR_VM; /* Don't consider the CnP bit for the vttbr match */ vttbr &= ~VTTBR_CNP_BIT; /* * Two possibilities when looking up a S2 MMU context: * * - either S2 is enabled in the guest, and we need a context that is * S2-enabled and matches the full VTTBR (VMID+BADDR) and VTCR, * which makes it safe from a TLB conflict perspective (a broken * guest won't be able to generate them), * * - or S2 is disabled, and we need a context that is S2-disabled * and matches the VMID only, as all TLBs are tagged by VMID even * if S2 translation is disabled. */ for (int i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (!kvm_s2_mmu_valid(mmu)) continue; if (nested_stage2_enabled && mmu->nested_stage2_enabled && vttbr == mmu->tlb_vttbr && vtcr == mmu->tlb_vtcr) return mmu; if (!nested_stage2_enabled && !mmu->nested_stage2_enabled && get_vmid(vttbr) == get_vmid(mmu->tlb_vttbr)) return mmu; } return NULL; } static struct kvm_s2_mmu *get_s2_mmu_nested(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; struct kvm_s2_mmu *s2_mmu; int i; lockdep_assert_held_write(&vcpu->kvm->mmu_lock); s2_mmu = lookup_s2_mmu(vcpu); if (s2_mmu) goto out; /* * Make sure we don't always search from the same point, or we * will always reuse a potentially active context, leaving * free contexts unused. */ for (i = kvm->arch.nested_mmus_next; i < (kvm->arch.nested_mmus_size + kvm->arch.nested_mmus_next); i++) { s2_mmu = &kvm->arch.nested_mmus[i % kvm->arch.nested_mmus_size]; if (atomic_read(&s2_mmu->refcnt) == 0) break; } BUG_ON(atomic_read(&s2_mmu->refcnt)); /* We have struct MMUs to spare */ /* Set the scene for the next search */ kvm->arch.nested_mmus_next = (i + 1) % kvm->arch.nested_mmus_size; /* Clear the old state */ if (kvm_s2_mmu_valid(s2_mmu)) kvm_stage2_unmap_range(s2_mmu, 0, kvm_phys_size(s2_mmu)); /* * The virtual VMID (modulo CnP) will be used as a key when matching * an existing kvm_s2_mmu. * * We cache VTCR at allocation time, once and for all. It'd be great * if the guest didn't screw that one up, as this is not very * forgiving... */ s2_mmu->tlb_vttbr = vcpu_read_sys_reg(vcpu, VTTBR_EL2) & ~VTTBR_CNP_BIT; s2_mmu->tlb_vtcr = vcpu_read_sys_reg(vcpu, VTCR_EL2); s2_mmu->nested_stage2_enabled = vcpu_read_sys_reg(vcpu, HCR_EL2) & HCR_VM; out: atomic_inc(&s2_mmu->refcnt); return s2_mmu; } void kvm_init_nested_s2_mmu(struct kvm_s2_mmu *mmu) { /* CnP being set denotes an invalid entry */ mmu->tlb_vttbr = VTTBR_CNP_BIT; mmu->nested_stage2_enabled = false; atomic_set(&mmu->refcnt, 0); } void kvm_vcpu_load_hw_mmu(struct kvm_vcpu *vcpu) { if (is_hyp_ctxt(vcpu)) { vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu; } else { write_lock(&vcpu->kvm->mmu_lock); vcpu->arch.hw_mmu = get_s2_mmu_nested(vcpu); write_unlock(&vcpu->kvm->mmu_lock); } } void kvm_vcpu_put_hw_mmu(struct kvm_vcpu *vcpu) { if (kvm_is_nested_s2_mmu(vcpu->kvm, vcpu->arch.hw_mmu)) { atomic_dec(&vcpu->arch.hw_mmu->refcnt); vcpu->arch.hw_mmu = NULL; } } /* * Returns non-zero if permission fault is handled by injecting it to the next * level hypervisor. */ int kvm_s2_handle_perm_fault(struct kvm_vcpu *vcpu, struct kvm_s2_trans *trans) { bool forward_fault = false; trans->esr = 0; if (!kvm_vcpu_trap_is_permission_fault(vcpu)) return 0; if (kvm_vcpu_trap_is_iabt(vcpu)) { forward_fault = !kvm_s2_trans_executable(trans); } else { bool write_fault = kvm_is_write_fault(vcpu); forward_fault = ((write_fault && !trans->writable) || (!write_fault && !trans->readable)); } if (forward_fault) trans->esr = esr_s2_fault(vcpu, trans->level, ESR_ELx_FSC_PERM); return forward_fault; } int kvm_inject_s2_fault(struct kvm_vcpu *vcpu, u64 esr_el2) { vcpu_write_sys_reg(vcpu, vcpu->arch.fault.far_el2, FAR_EL2); vcpu_write_sys_reg(vcpu, vcpu->arch.fault.hpfar_el2, HPFAR_EL2); return kvm_inject_nested_sync(vcpu, esr_el2); } void kvm_nested_s2_wp(struct kvm *kvm) { int i; lockdep_assert_held_write(&kvm->mmu_lock); for (i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (kvm_s2_mmu_valid(mmu)) kvm_stage2_wp_range(mmu, 0, kvm_phys_size(mmu)); } } void kvm_nested_s2_unmap(struct kvm *kvm) { int i; lockdep_assert_held_write(&kvm->mmu_lock); for (i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (kvm_s2_mmu_valid(mmu)) kvm_stage2_unmap_range(mmu, 0, kvm_phys_size(mmu)); } } void kvm_nested_s2_flush(struct kvm *kvm) { int i; lockdep_assert_held_write(&kvm->mmu_lock); for (i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (kvm_s2_mmu_valid(mmu)) kvm_stage2_flush_range(mmu, 0, kvm_phys_size(mmu)); } } void kvm_arch_flush_shadow_all(struct kvm *kvm) { int i; for (i = 0; i < kvm->arch.nested_mmus_size; i++) { struct kvm_s2_mmu *mmu = &kvm->arch.nested_mmus[i]; if (!WARN_ON(atomic_read(&mmu->refcnt))) kvm_free_stage2_pgd(mmu); } kvfree(kvm->arch.nested_mmus); kvm->arch.nested_mmus = NULL; kvm->arch.nested_mmus_size = 0; kvm_uninit_stage2_mmu(kvm); } /* * Our emulated CPU doesn't support all the possible features. For the * sake of simplicity (and probably mental sanity), wipe out a number * of feature bits we don't intend to support for the time being. * This list should get updated as new features get added to the NV * support, and new extension to the architecture. */ static void limit_nv_id_regs(struct kvm *kvm) { u64 val, tmp; /* Support everything but TME */ val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1); val &= ~NV_FTR(ISAR0, TME); kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR0_EL1, val); /* Support everything but Spec Invalidation and LS64 */ val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1); val &= ~(NV_FTR(ISAR1, LS64) | NV_FTR(ISAR1, SPECRES)); kvm_set_vm_id_reg(kvm, SYS_ID_AA64ISAR1_EL1, val); /* No AMU, MPAM, S-EL2, or RAS */ val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1); val &= ~(GENMASK_ULL(55, 52) | NV_FTR(PFR0, AMU) | NV_FTR(PFR0, MPAM) | NV_FTR(PFR0, SEL2) | NV_FTR(PFR0, RAS) | NV_FTR(PFR0, EL3) | NV_FTR(PFR0, EL2) | NV_FTR(PFR0, EL1)); /* 64bit EL1/EL2/EL3 only */ val |= FIELD_PREP(NV_FTR(PFR0, EL1), 0b0001); val |= FIELD_PREP(NV_FTR(PFR0, EL2), 0b0001); val |= FIELD_PREP(NV_FTR(PFR0, EL3), 0b0001); kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR0_EL1, val); /* Only support BTI, SSBS, CSV2_frac */ val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1); val &= (NV_FTR(PFR1, BT) | NV_FTR(PFR1, SSBS) | NV_FTR(PFR1, CSV2_frac)); kvm_set_vm_id_reg(kvm, SYS_ID_AA64PFR1_EL1, val); /* Hide ECV, ExS, Secure Memory */ val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1); val &= ~(NV_FTR(MMFR0, ECV) | NV_FTR(MMFR0, EXS) | NV_FTR(MMFR0, TGRAN4_2) | NV_FTR(MMFR0, TGRAN16_2) | NV_FTR(MMFR0, TGRAN64_2) | NV_FTR(MMFR0, SNSMEM)); /* Disallow unsupported S2 page sizes */ switch (PAGE_SIZE) { case SZ_64K: val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0001); fallthrough; case SZ_16K: val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0001); fallthrough; case SZ_4K: /* Support everything */ break; } /* * Since we can't support a guest S2 page size smaller than * the host's own page size (due to KVM only populating its * own S2 using the kernel's page size), advertise the * limitation using FEAT_GTG. */ switch (PAGE_SIZE) { case SZ_4K: val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN4_2), 0b0010); fallthrough; case SZ_16K: val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN16_2), 0b0010); fallthrough; case SZ_64K: val |= FIELD_PREP(NV_FTR(MMFR0, TGRAN64_2), 0b0010); break; } /* Cap PARange to 48bits */ tmp = FIELD_GET(NV_FTR(MMFR0, PARANGE), val); if (tmp > 0b0101) { val &= ~NV_FTR(MMFR0, PARANGE); val |= FIELD_PREP(NV_FTR(MMFR0, PARANGE), 0b0101); } kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR0_EL1, val); val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1); val &= (NV_FTR(MMFR1, HCX) | NV_FTR(MMFR1, PAN) | NV_FTR(MMFR1, LO) | NV_FTR(MMFR1, HPDS) | NV_FTR(MMFR1, VH) | NV_FTR(MMFR1, VMIDBits)); kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR1_EL1, val); val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1); val &= ~(NV_FTR(MMFR2, BBM) | NV_FTR(MMFR2, TTL) | GENMASK_ULL(47, 44) | NV_FTR(MMFR2, ST) | NV_FTR(MMFR2, CCIDX) | NV_FTR(MMFR2, VARange)); /* Force TTL support */ val |= FIELD_PREP(NV_FTR(MMFR2, TTL), 0b0001); kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR2_EL1, val); val = 0; if (!cpus_have_final_cap(ARM64_HAS_HCR_NV1)) val |= FIELD_PREP(NV_FTR(MMFR4, E2H0), ID_AA64MMFR4_EL1_E2H0_NI_NV1); kvm_set_vm_id_reg(kvm, SYS_ID_AA64MMFR4_EL1, val); /* Only limited support for PMU, Debug, BPs and WPs */ val = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1); val &= (NV_FTR(DFR0, PMUVer) | NV_FTR(DFR0, WRPs) | NV_FTR(DFR0, BRPs) | NV_FTR(DFR0, DebugVer)); /* Cap Debug to ARMv8.1 */ tmp = FIELD_GET(NV_FTR(DFR0, DebugVer), val); if (tmp > 0b0111) { val &= ~NV_FTR(DFR0, DebugVer); val |= FIELD_PREP(NV_FTR(DFR0, DebugVer), 0b0111); } kvm_set_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1, val); } u64 kvm_vcpu_sanitise_vncr_reg(const struct kvm_vcpu *vcpu, enum vcpu_sysreg sr) { u64 v = ctxt_sys_reg(&vcpu->arch.ctxt, sr); struct kvm_sysreg_masks *masks; masks = vcpu->kvm->arch.sysreg_masks; if (masks) { sr -= __VNCR_START__; v &= ~masks->mask[sr].res0; v |= masks->mask[sr].res1; } return v; } static void set_sysreg_masks(struct kvm *kvm, int sr, u64 res0, u64 res1) { int i = sr - __VNCR_START__; kvm->arch.sysreg_masks->mask[i].res0 = res0; kvm->arch.sysreg_masks->mask[i].res1 = res1; } int kvm_init_nv_sysregs(struct kvm *kvm) { u64 res0, res1; int ret = 0; mutex_lock(&kvm->arch.config_lock); if (kvm->arch.sysreg_masks) goto out; kvm->arch.sysreg_masks = kzalloc(sizeof(*(kvm->arch.sysreg_masks)), GFP_KERNEL_ACCOUNT); if (!kvm->arch.sysreg_masks) { ret = -ENOMEM; goto out; } limit_nv_id_regs(kvm); /* VTTBR_EL2 */ res0 = res1 = 0; if (!kvm_has_feat_enum(kvm, ID_AA64MMFR1_EL1, VMIDBits, 16)) res0 |= GENMASK(63, 56); if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, CnP, IMP)) res0 |= VTTBR_CNP_BIT; set_sysreg_masks(kvm, VTTBR_EL2, res0, res1); /* VTCR_EL2 */ res0 = GENMASK(63, 32) | GENMASK(30, 20); res1 = BIT(31); set_sysreg_masks(kvm, VTCR_EL2, res0, res1); /* VMPIDR_EL2 */ res0 = GENMASK(63, 40) | GENMASK(30, 24); res1 = BIT(31); set_sysreg_masks(kvm, VMPIDR_EL2, res0, res1); /* HCR_EL2 */ res0 = BIT(48); res1 = HCR_RW; if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, TWED, IMP)) res0 |= GENMASK(63, 59); if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, MTE, MTE2)) res0 |= (HCR_TID5 | HCR_DCT | HCR_ATA); if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, TTLBxS)) res0 |= (HCR_TTLBIS | HCR_TTLBOS); if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) && !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2)) res0 |= HCR_ENSCXT; if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, EVT, IMP)) res0 |= (HCR_TOCU | HCR_TICAB | HCR_TID4); if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1)) res0 |= HCR_AMVOFFEN; if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, V1P1)) res0 |= HCR_FIEN; if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, FWB, IMP)) res0 |= HCR_FWB; if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, NV2)) res0 |= HCR_NV2; if (!kvm_has_feat(kvm, ID_AA64MMFR2_EL1, NV, IMP)) res0 |= (HCR_AT | HCR_NV1 | HCR_NV); if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) && __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC))) res0 |= (HCR_API | HCR_APK); if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TME, IMP)) res0 |= BIT(39); if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP)) res0 |= (HCR_TEA | HCR_TERR); if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP)) res0 |= HCR_TLOR; if (!kvm_has_feat(kvm, ID_AA64MMFR4_EL1, E2H0, IMP)) res1 |= HCR_E2H; set_sysreg_masks(kvm, HCR_EL2, res0, res1); /* HCRX_EL2 */ res0 = HCRX_EL2_RES0; res1 = HCRX_EL2_RES1; if (!kvm_has_feat(kvm, ID_AA64ISAR3_EL1, PACM, TRIVIAL_IMP)) res0 |= HCRX_EL2_PACMEn; if (!kvm_has_feat(kvm, ID_AA64PFR2_EL1, FPMR, IMP)) res0 |= HCRX_EL2_EnFPM; if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP)) res0 |= HCRX_EL2_GCSEn; if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, SYSREG_128, IMP)) res0 |= HCRX_EL2_EnIDCP128; if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, ADERR, DEV_ASYNC)) res0 |= (HCRX_EL2_EnSDERR | HCRX_EL2_EnSNERR); if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, DF2, IMP)) res0 |= HCRX_EL2_TMEA; if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, D128, IMP)) res0 |= HCRX_EL2_D128En; if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP)) res0 |= HCRX_EL2_PTTWI; if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, SCTLRX, IMP)) res0 |= HCRX_EL2_SCTLR2En; if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, TCRX, IMP)) res0 |= HCRX_EL2_TCR2En; if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, MOPS, IMP)) res0 |= (HCRX_EL2_MSCEn | HCRX_EL2_MCE2); if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, CMOW, IMP)) res0 |= HCRX_EL2_CMOW; if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, NMI, IMP)) res0 |= (HCRX_EL2_VFNMI | HCRX_EL2_VINMI | HCRX_EL2_TALLINT); if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP) || !(read_sysreg_s(SYS_SMIDR_EL1) & SMIDR_EL1_SMPS)) res0 |= HCRX_EL2_SMPME; if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, XS, IMP)) res0 |= (HCRX_EL2_FGTnXS | HCRX_EL2_FnXS); if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_V)) res0 |= HCRX_EL2_EnASR; if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64)) res0 |= HCRX_EL2_EnALS; if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA)) res0 |= HCRX_EL2_EnAS0; set_sysreg_masks(kvm, HCRX_EL2, res0, res1); /* HFG[RW]TR_EL2 */ res0 = res1 = 0; if (!(__vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_ADDRESS) && __vcpu_has_feature(&kvm->arch, KVM_ARM_VCPU_PTRAUTH_GENERIC))) res0 |= (HFGxTR_EL2_APDAKey | HFGxTR_EL2_APDBKey | HFGxTR_EL2_APGAKey | HFGxTR_EL2_APIAKey | HFGxTR_EL2_APIBKey); if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, LO, IMP)) res0 |= (HFGxTR_EL2_LORC_EL1 | HFGxTR_EL2_LOREA_EL1 | HFGxTR_EL2_LORID_EL1 | HFGxTR_EL2_LORN_EL1 | HFGxTR_EL2_LORSA_EL1); if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, CSV2, CSV2_2) && !kvm_has_feat(kvm, ID_AA64PFR1_EL1, CSV2_frac, CSV2_1p2)) res0 |= (HFGxTR_EL2_SCXTNUM_EL1 | HFGxTR_EL2_SCXTNUM_EL0); if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, GIC, IMP)) res0 |= HFGxTR_EL2_ICC_IGRPENn_EL1; if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, RAS, IMP)) res0 |= (HFGxTR_EL2_ERRIDR_EL1 | HFGxTR_EL2_ERRSELR_EL1 | HFGxTR_EL2_ERXFR_EL1 | HFGxTR_EL2_ERXCTLR_EL1 | HFGxTR_EL2_ERXSTATUS_EL1 | HFGxTR_EL2_ERXMISCn_EL1 | HFGxTR_EL2_ERXPFGF_EL1 | HFGxTR_EL2_ERXPFGCTL_EL1 | HFGxTR_EL2_ERXPFGCDN_EL1 | HFGxTR_EL2_ERXADDR_EL1); if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, LS64, LS64_ACCDATA)) res0 |= HFGxTR_EL2_nACCDATA_EL1; if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP)) res0 |= (HFGxTR_EL2_nGCS_EL0 | HFGxTR_EL2_nGCS_EL1); if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, SME, IMP)) res0 |= (HFGxTR_EL2_nSMPRI_EL1 | HFGxTR_EL2_nTPIDR2_EL0); if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, THE, IMP)) res0 |= HFGxTR_EL2_nRCWMASK_EL1; if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1PIE, IMP)) res0 |= (HFGxTR_EL2_nPIRE0_EL1 | HFGxTR_EL2_nPIR_EL1); if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S1POE, IMP)) res0 |= (HFGxTR_EL2_nPOR_EL0 | HFGxTR_EL2_nPOR_EL1); if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, S2POE, IMP)) res0 |= HFGxTR_EL2_nS2POR_EL1; if (!kvm_has_feat(kvm, ID_AA64MMFR3_EL1, AIE, IMP)) res0 |= (HFGxTR_EL2_nMAIR2_EL1 | HFGxTR_EL2_nAMAIR2_EL1); set_sysreg_masks(kvm, HFGRTR_EL2, res0 | __HFGRTR_EL2_RES0, res1); set_sysreg_masks(kvm, HFGWTR_EL2, res0 | __HFGWTR_EL2_RES0, res1); /* HDFG[RW]TR_EL2 */ res0 = res1 = 0; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, DoubleLock, IMP)) res0 |= HDFGRTR_EL2_OSDLR_EL1; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP)) res0 |= (HDFGRTR_EL2_PMEVCNTRn_EL0 | HDFGRTR_EL2_PMEVTYPERn_EL0 | HDFGRTR_EL2_PMCCFILTR_EL0 | HDFGRTR_EL2_PMCCNTR_EL0 | HDFGRTR_EL2_PMCNTEN | HDFGRTR_EL2_PMINTEN | HDFGRTR_EL2_PMOVS | HDFGRTR_EL2_PMSELR_EL0 | HDFGRTR_EL2_PMMIR_EL1 | HDFGRTR_EL2_PMUSERENR_EL0 | HDFGRTR_EL2_PMCEIDn_EL0); if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, IMP)) res0 |= (HDFGRTR_EL2_PMBLIMITR_EL1 | HDFGRTR_EL2_PMBPTR_EL1 | HDFGRTR_EL2_PMBSR_EL1 | HDFGRTR_EL2_PMSCR_EL1 | HDFGRTR_EL2_PMSEVFR_EL1 | HDFGRTR_EL2_PMSFCR_EL1 | HDFGRTR_EL2_PMSICR_EL1 | HDFGRTR_EL2_PMSIDR_EL1 | HDFGRTR_EL2_PMSIRR_EL1 | HDFGRTR_EL2_PMSLATFR_EL1 | HDFGRTR_EL2_PMBIDR_EL1); if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP)) res0 |= (HDFGRTR_EL2_TRC | HDFGRTR_EL2_TRCAUTHSTATUS | HDFGRTR_EL2_TRCAUXCTLR | HDFGRTR_EL2_TRCCLAIM | HDFGRTR_EL2_TRCCNTVRn | HDFGRTR_EL2_TRCID | HDFGRTR_EL2_TRCIMSPECn | HDFGRTR_EL2_TRCOSLSR | HDFGRTR_EL2_TRCPRGCTLR | HDFGRTR_EL2_TRCSEQSTR | HDFGRTR_EL2_TRCSSCSRn | HDFGRTR_EL2_TRCSTATR | HDFGRTR_EL2_TRCVICTLR); if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceBuffer, IMP)) res0 |= (HDFGRTR_EL2_TRBBASER_EL1 | HDFGRTR_EL2_TRBIDR_EL1 | HDFGRTR_EL2_TRBLIMITR_EL1 | HDFGRTR_EL2_TRBMAR_EL1 | HDFGRTR_EL2_TRBPTR_EL1 | HDFGRTR_EL2_TRBSR_EL1 | HDFGRTR_EL2_TRBTRG_EL1); if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP)) res0 |= (HDFGRTR_EL2_nBRBIDR | HDFGRTR_EL2_nBRBCTL | HDFGRTR_EL2_nBRBDATA); if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMSVer, V1P2)) res0 |= HDFGRTR_EL2_nPMSNEVFR_EL1; set_sysreg_masks(kvm, HDFGRTR_EL2, res0 | HDFGRTR_EL2_RES0, res1); /* Reuse the bits from the read-side and add the write-specific stuff */ if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, PMUVer, IMP)) res0 |= (HDFGWTR_EL2_PMCR_EL0 | HDFGWTR_EL2_PMSWINC_EL0); if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceVer, IMP)) res0 |= HDFGWTR_EL2_TRCOSLAR; if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, TraceFilt, IMP)) res0 |= HDFGWTR_EL2_TRFCR_EL1; set_sysreg_masks(kvm, HFGWTR_EL2, res0 | HDFGWTR_EL2_RES0, res1); /* HFGITR_EL2 */ res0 = HFGITR_EL2_RES0; res1 = HFGITR_EL2_RES1; if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, DPB, DPB2)) res0 |= HFGITR_EL2_DCCVADP; if (!kvm_has_feat(kvm, ID_AA64MMFR1_EL1, PAN, PAN2)) res0 |= (HFGITR_EL2_ATS1E1RP | HFGITR_EL2_ATS1E1WP); if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, OS)) res0 |= (HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS | HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS | HFGITR_EL2_TLBIVAALE1OS | HFGITR_EL2_TLBIVALE1OS | HFGITR_EL2_TLBIVAAE1OS | HFGITR_EL2_TLBIASIDE1OS | HFGITR_EL2_TLBIVAE1OS | HFGITR_EL2_TLBIVMALLE1OS); if (!kvm_has_feat(kvm, ID_AA64ISAR0_EL1, TLB, RANGE)) res0 |= (HFGITR_EL2_TLBIRVAALE1 | HFGITR_EL2_TLBIRVALE1 | HFGITR_EL2_TLBIRVAAE1 | HFGITR_EL2_TLBIRVAE1 | HFGITR_EL2_TLBIRVAALE1IS | HFGITR_EL2_TLBIRVALE1IS | HFGITR_EL2_TLBIRVAAE1IS | HFGITR_EL2_TLBIRVAE1IS | HFGITR_EL2_TLBIRVAALE1OS | HFGITR_EL2_TLBIRVALE1OS | HFGITR_EL2_TLBIRVAAE1OS | HFGITR_EL2_TLBIRVAE1OS); if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, IMP)) res0 |= (HFGITR_EL2_CFPRCTX | HFGITR_EL2_DVPRCTX | HFGITR_EL2_CPPRCTX); if (!kvm_has_feat(kvm, ID_AA64DFR0_EL1, BRBE, IMP)) res0 |= (HFGITR_EL2_nBRBINJ | HFGITR_EL2_nBRBIALL); if (!kvm_has_feat(kvm, ID_AA64PFR1_EL1, GCS, IMP)) res0 |= (HFGITR_EL2_nGCSPUSHM_EL1 | HFGITR_EL2_nGCSSTR_EL1 | HFGITR_EL2_nGCSEPP); if (!kvm_has_feat(kvm, ID_AA64ISAR1_EL1, SPECRES, COSP_RCTX)) res0 |= HFGITR_EL2_COSPRCTX; if (!kvm_has_feat(kvm, ID_AA64ISAR2_EL1, ATS1A, IMP)) res0 |= HFGITR_EL2_ATS1E1A; set_sysreg_masks(kvm, HFGITR_EL2, res0, res1); /* HAFGRTR_EL2 - not a lot to see here */ res0 = HAFGRTR_EL2_RES0; res1 = HAFGRTR_EL2_RES1; if (!kvm_has_feat(kvm, ID_AA64PFR0_EL1, AMU, V1P1)) res0 |= ~(res0 | res1); set_sysreg_masks(kvm, HAFGRTR_EL2, res0, res1); out: mutex_unlock(&kvm->arch.config_lock); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1