Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Marc Zyngier | 1767 | 40.20% | 40 | 35.71% |
Shannon Zhao | 1242 | 28.25% | 14 | 12.50% |
Alexandru Elisei | 266 | 6.05% | 6 | 5.36% |
Christoffer Dall | 265 | 6.03% | 10 | 8.93% |
Reiji Watanabe | 173 | 3.94% | 8 | 7.14% |
Andrew Murray | 169 | 3.84% | 5 | 4.46% |
Oliver Upton | 157 | 3.57% | 8 | 7.14% |
Raghavendra Rao Ananta | 98 | 2.23% | 2 | 1.79% |
Julien Thierry | 74 | 1.68% | 1 | 0.89% |
Eric Auger | 51 | 1.16% | 3 | 2.68% |
Andrew Jones | 48 | 1.09% | 2 | 1.79% |
Alexander Graf | 24 | 0.55% | 1 | 0.89% |
Andre Przywara | 24 | 0.55% | 2 | 1.79% |
James Clark | 11 | 0.25% | 1 | 0.89% |
Mark Rutland | 8 | 0.18% | 2 | 1.79% |
Zenghui Yu | 5 | 0.11% | 1 | 0.89% |
Mark Brown | 5 | 0.11% | 1 | 0.89% |
Will Deacon | 2 | 0.05% | 1 | 0.89% |
Wei Huang | 2 | 0.05% | 1 | 0.89% |
Randy Dunlap | 2 | 0.05% | 1 | 0.89% |
Thomas Gleixner | 2 | 0.05% | 1 | 0.89% |
Jia He | 1 | 0.02% | 1 | 0.89% |
Total | 4396 | 112 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Linaro Ltd. * Author: Shannon Zhao <shannon.zhao@linaro.org> */ #include <linux/cpu.h> #include <linux/kvm.h> #include <linux/kvm_host.h> #include <linux/list.h> #include <linux/perf_event.h> #include <linux/perf/arm_pmu.h> #include <linux/uaccess.h> #include <asm/kvm_emulate.h> #include <kvm/arm_pmu.h> #include <kvm/arm_vgic.h> #define PERF_ATTR_CFG1_COUNTER_64BIT BIT(0) DEFINE_STATIC_KEY_FALSE(kvm_arm_pmu_available); static LIST_HEAD(arm_pmus); static DEFINE_MUTEX(arm_pmus_lock); static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc); static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc); static struct kvm_vcpu *kvm_pmc_to_vcpu(const struct kvm_pmc *pmc) { return container_of(pmc, struct kvm_vcpu, arch.pmu.pmc[pmc->idx]); } static struct kvm_pmc *kvm_vcpu_idx_to_pmc(struct kvm_vcpu *vcpu, int cnt_idx) { return &vcpu->arch.pmu.pmc[cnt_idx]; } static u32 __kvm_pmu_event_mask(unsigned int pmuver) { switch (pmuver) { case ID_AA64DFR0_EL1_PMUVer_IMP: return GENMASK(9, 0); case ID_AA64DFR0_EL1_PMUVer_V3P1: case ID_AA64DFR0_EL1_PMUVer_V3P4: case ID_AA64DFR0_EL1_PMUVer_V3P5: case ID_AA64DFR0_EL1_PMUVer_V3P7: return GENMASK(15, 0); default: /* Shouldn't be here, just for sanity */ WARN_ONCE(1, "Unknown PMU version %d\n", pmuver); return 0; } } static u32 kvm_pmu_event_mask(struct kvm *kvm) { u64 dfr0 = kvm_read_vm_id_reg(kvm, SYS_ID_AA64DFR0_EL1); u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, dfr0); return __kvm_pmu_event_mask(pmuver); } u64 kvm_pmu_evtyper_mask(struct kvm *kvm) { u64 mask = ARMV8_PMU_EXCLUDE_EL1 | ARMV8_PMU_EXCLUDE_EL0 | kvm_pmu_event_mask(kvm); if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL2, IMP)) mask |= ARMV8_PMU_INCLUDE_EL2; if (kvm_has_feat(kvm, ID_AA64PFR0_EL1, EL3, IMP)) mask |= ARMV8_PMU_EXCLUDE_NS_EL0 | ARMV8_PMU_EXCLUDE_NS_EL1 | ARMV8_PMU_EXCLUDE_EL3; return mask; } /** * kvm_pmc_is_64bit - determine if counter is 64bit * @pmc: counter context */ static bool kvm_pmc_is_64bit(struct kvm_pmc *pmc) { struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); return (pmc->idx == ARMV8_PMU_CYCLE_IDX || kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5)); } static bool kvm_pmc_has_64bit_overflow(struct kvm_pmc *pmc) { u64 val = kvm_vcpu_read_pmcr(kvm_pmc_to_vcpu(pmc)); return (pmc->idx < ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LP)) || (pmc->idx == ARMV8_PMU_CYCLE_IDX && (val & ARMV8_PMU_PMCR_LC)); } static bool kvm_pmu_counter_can_chain(struct kvm_pmc *pmc) { return (!(pmc->idx & 1) && (pmc->idx + 1) < ARMV8_PMU_CYCLE_IDX && !kvm_pmc_has_64bit_overflow(pmc)); } static u32 counter_index_to_reg(u64 idx) { return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCNTR_EL0 : PMEVCNTR0_EL0 + idx; } static u32 counter_index_to_evtreg(u64 idx) { return (idx == ARMV8_PMU_CYCLE_IDX) ? PMCCFILTR_EL0 : PMEVTYPER0_EL0 + idx; } static u64 kvm_pmu_get_pmc_value(struct kvm_pmc *pmc) { struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); u64 counter, reg, enabled, running; reg = counter_index_to_reg(pmc->idx); counter = __vcpu_sys_reg(vcpu, reg); /* * The real counter value is equal to the value of counter register plus * the value perf event counts. */ if (pmc->perf_event) counter += perf_event_read_value(pmc->perf_event, &enabled, &running); if (!kvm_pmc_is_64bit(pmc)) counter = lower_32_bits(counter); return counter; } /** * kvm_pmu_get_counter_value - get PMU counter value * @vcpu: The vcpu pointer * @select_idx: The counter index */ u64 kvm_pmu_get_counter_value(struct kvm_vcpu *vcpu, u64 select_idx) { if (!kvm_vcpu_has_pmu(vcpu)) return 0; return kvm_pmu_get_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx)); } static void kvm_pmu_set_pmc_value(struct kvm_pmc *pmc, u64 val, bool force) { struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); u64 reg; kvm_pmu_release_perf_event(pmc); reg = counter_index_to_reg(pmc->idx); if (vcpu_mode_is_32bit(vcpu) && pmc->idx != ARMV8_PMU_CYCLE_IDX && !force) { /* * Even with PMUv3p5, AArch32 cannot write to the top * 32bit of the counters. The only possible course of * action is to use PMCR.P, which will reset them to * 0 (the only use of the 'force' parameter). */ val = __vcpu_sys_reg(vcpu, reg) & GENMASK(63, 32); val |= lower_32_bits(val); } __vcpu_sys_reg(vcpu, reg) = val; /* Recreate the perf event to reflect the updated sample_period */ kvm_pmu_create_perf_event(pmc); } /** * kvm_pmu_set_counter_value - set PMU counter value * @vcpu: The vcpu pointer * @select_idx: The counter index * @val: The counter value */ void kvm_pmu_set_counter_value(struct kvm_vcpu *vcpu, u64 select_idx, u64 val) { if (!kvm_vcpu_has_pmu(vcpu)) return; kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, select_idx), val, false); } /** * kvm_pmu_release_perf_event - remove the perf event * @pmc: The PMU counter pointer */ static void kvm_pmu_release_perf_event(struct kvm_pmc *pmc) { if (pmc->perf_event) { perf_event_disable(pmc->perf_event); perf_event_release_kernel(pmc->perf_event); pmc->perf_event = NULL; } } /** * kvm_pmu_stop_counter - stop PMU counter * @pmc: The PMU counter pointer * * If this counter has been configured to monitor some event, release it here. */ static void kvm_pmu_stop_counter(struct kvm_pmc *pmc) { struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); u64 reg, val; if (!pmc->perf_event) return; val = kvm_pmu_get_pmc_value(pmc); reg = counter_index_to_reg(pmc->idx); __vcpu_sys_reg(vcpu, reg) = val; kvm_pmu_release_perf_event(pmc); } /** * kvm_pmu_vcpu_init - assign pmu counter idx for cpu * @vcpu: The vcpu pointer * */ void kvm_pmu_vcpu_init(struct kvm_vcpu *vcpu) { int i; struct kvm_pmu *pmu = &vcpu->arch.pmu; for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) pmu->pmc[i].idx = i; } /** * kvm_pmu_vcpu_reset - reset pmu state for cpu * @vcpu: The vcpu pointer * */ void kvm_pmu_vcpu_reset(struct kvm_vcpu *vcpu) { unsigned long mask = kvm_pmu_valid_counter_mask(vcpu); int i; for_each_set_bit(i, &mask, 32) kvm_pmu_stop_counter(kvm_vcpu_idx_to_pmc(vcpu, i)); } /** * kvm_pmu_vcpu_destroy - free perf event of PMU for cpu * @vcpu: The vcpu pointer * */ void kvm_pmu_vcpu_destroy(struct kvm_vcpu *vcpu) { int i; for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) kvm_pmu_release_perf_event(kvm_vcpu_idx_to_pmc(vcpu, i)); irq_work_sync(&vcpu->arch.pmu.overflow_work); } u64 kvm_pmu_valid_counter_mask(struct kvm_vcpu *vcpu) { u64 val = FIELD_GET(ARMV8_PMU_PMCR_N, kvm_vcpu_read_pmcr(vcpu)); if (val == 0) return BIT(ARMV8_PMU_CYCLE_IDX); else return GENMASK(val - 1, 0) | BIT(ARMV8_PMU_CYCLE_IDX); } /** * kvm_pmu_enable_counter_mask - enable selected PMU counters * @vcpu: The vcpu pointer * @val: the value guest writes to PMCNTENSET register * * Call perf_event_enable to start counting the perf event */ void kvm_pmu_enable_counter_mask(struct kvm_vcpu *vcpu, u64 val) { int i; if (!kvm_vcpu_has_pmu(vcpu)) return; if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) || !val) return; for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) { struct kvm_pmc *pmc; if (!(val & BIT(i))) continue; pmc = kvm_vcpu_idx_to_pmc(vcpu, i); if (!pmc->perf_event) { kvm_pmu_create_perf_event(pmc); } else { perf_event_enable(pmc->perf_event); if (pmc->perf_event->state != PERF_EVENT_STATE_ACTIVE) kvm_debug("fail to enable perf event\n"); } } } /** * kvm_pmu_disable_counter_mask - disable selected PMU counters * @vcpu: The vcpu pointer * @val: the value guest writes to PMCNTENCLR register * * Call perf_event_disable to stop counting the perf event */ void kvm_pmu_disable_counter_mask(struct kvm_vcpu *vcpu, u64 val) { int i; if (!kvm_vcpu_has_pmu(vcpu) || !val) return; for (i = 0; i < ARMV8_PMU_MAX_COUNTERS; i++) { struct kvm_pmc *pmc; if (!(val & BIT(i))) continue; pmc = kvm_vcpu_idx_to_pmc(vcpu, i); if (pmc->perf_event) perf_event_disable(pmc->perf_event); } } static u64 kvm_pmu_overflow_status(struct kvm_vcpu *vcpu) { u64 reg = 0; if ((kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E)) { reg = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); reg &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); reg &= __vcpu_sys_reg(vcpu, PMINTENSET_EL1); } return reg; } static void kvm_pmu_update_state(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = &vcpu->arch.pmu; bool overflow; if (!kvm_vcpu_has_pmu(vcpu)) return; overflow = !!kvm_pmu_overflow_status(vcpu); if (pmu->irq_level == overflow) return; pmu->irq_level = overflow; if (likely(irqchip_in_kernel(vcpu->kvm))) { int ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu, pmu->irq_num, overflow, pmu); WARN_ON(ret); } } bool kvm_pmu_should_notify_user(struct kvm_vcpu *vcpu) { struct kvm_pmu *pmu = &vcpu->arch.pmu; struct kvm_sync_regs *sregs = &vcpu->run->s.regs; bool run_level = sregs->device_irq_level & KVM_ARM_DEV_PMU; if (likely(irqchip_in_kernel(vcpu->kvm))) return false; return pmu->irq_level != run_level; } /* * Reflect the PMU overflow interrupt output level into the kvm_run structure */ void kvm_pmu_update_run(struct kvm_vcpu *vcpu) { struct kvm_sync_regs *regs = &vcpu->run->s.regs; /* Populate the timer bitmap for user space */ regs->device_irq_level &= ~KVM_ARM_DEV_PMU; if (vcpu->arch.pmu.irq_level) regs->device_irq_level |= KVM_ARM_DEV_PMU; } /** * kvm_pmu_flush_hwstate - flush pmu state to cpu * @vcpu: The vcpu pointer * * Check if the PMU has overflowed while we were running in the host, and inject * an interrupt if that was the case. */ void kvm_pmu_flush_hwstate(struct kvm_vcpu *vcpu) { kvm_pmu_update_state(vcpu); } /** * kvm_pmu_sync_hwstate - sync pmu state from cpu * @vcpu: The vcpu pointer * * Check if the PMU has overflowed while we were running in the guest, and * inject an interrupt if that was the case. */ void kvm_pmu_sync_hwstate(struct kvm_vcpu *vcpu) { kvm_pmu_update_state(vcpu); } /* * When perf interrupt is an NMI, we cannot safely notify the vcpu corresponding * to the event. * This is why we need a callback to do it once outside of the NMI context. */ static void kvm_pmu_perf_overflow_notify_vcpu(struct irq_work *work) { struct kvm_vcpu *vcpu; vcpu = container_of(work, struct kvm_vcpu, arch.pmu.overflow_work); kvm_vcpu_kick(vcpu); } /* * Perform an increment on any of the counters described in @mask, * generating the overflow if required, and propagate it as a chained * event if possible. */ static void kvm_pmu_counter_increment(struct kvm_vcpu *vcpu, unsigned long mask, u32 event) { int i; if (!(kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E)) return; /* Weed out disabled counters */ mask &= __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); for_each_set_bit(i, &mask, ARMV8_PMU_CYCLE_IDX) { struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, i); u64 type, reg; /* Filter on event type */ type = __vcpu_sys_reg(vcpu, counter_index_to_evtreg(i)); type &= kvm_pmu_event_mask(vcpu->kvm); if (type != event) continue; /* Increment this counter */ reg = __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) + 1; if (!kvm_pmc_is_64bit(pmc)) reg = lower_32_bits(reg); __vcpu_sys_reg(vcpu, counter_index_to_reg(i)) = reg; /* No overflow? move on */ if (kvm_pmc_has_64bit_overflow(pmc) ? reg : lower_32_bits(reg)) continue; /* Mark overflow */ __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(i); if (kvm_pmu_counter_can_chain(pmc)) kvm_pmu_counter_increment(vcpu, BIT(i + 1), ARMV8_PMUV3_PERFCTR_CHAIN); } } /* Compute the sample period for a given counter value */ static u64 compute_period(struct kvm_pmc *pmc, u64 counter) { u64 val; if (kvm_pmc_is_64bit(pmc) && kvm_pmc_has_64bit_overflow(pmc)) val = (-counter) & GENMASK(63, 0); else val = (-counter) & GENMASK(31, 0); return val; } /* * When the perf event overflows, set the overflow status and inform the vcpu. */ static void kvm_pmu_perf_overflow(struct perf_event *perf_event, struct perf_sample_data *data, struct pt_regs *regs) { struct kvm_pmc *pmc = perf_event->overflow_handler_context; struct arm_pmu *cpu_pmu = to_arm_pmu(perf_event->pmu); struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); int idx = pmc->idx; u64 period; cpu_pmu->pmu.stop(perf_event, PERF_EF_UPDATE); /* * Reset the sample period to the architectural limit, * i.e. the point where the counter overflows. */ period = compute_period(pmc, local64_read(&perf_event->count)); local64_set(&perf_event->hw.period_left, 0); perf_event->attr.sample_period = period; perf_event->hw.sample_period = period; __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= BIT(idx); if (kvm_pmu_counter_can_chain(pmc)) kvm_pmu_counter_increment(vcpu, BIT(idx + 1), ARMV8_PMUV3_PERFCTR_CHAIN); if (kvm_pmu_overflow_status(vcpu)) { kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); if (!in_nmi()) kvm_vcpu_kick(vcpu); else irq_work_queue(&vcpu->arch.pmu.overflow_work); } cpu_pmu->pmu.start(perf_event, PERF_EF_RELOAD); } /** * kvm_pmu_software_increment - do software increment * @vcpu: The vcpu pointer * @val: the value guest writes to PMSWINC register */ void kvm_pmu_software_increment(struct kvm_vcpu *vcpu, u64 val) { kvm_pmu_counter_increment(vcpu, val, ARMV8_PMUV3_PERFCTR_SW_INCR); } /** * kvm_pmu_handle_pmcr - handle PMCR register * @vcpu: The vcpu pointer * @val: the value guest writes to PMCR register */ void kvm_pmu_handle_pmcr(struct kvm_vcpu *vcpu, u64 val) { int i; if (!kvm_vcpu_has_pmu(vcpu)) return; /* Fixup PMCR_EL0 to reconcile the PMU version and the LP bit */ if (!kvm_has_feat(vcpu->kvm, ID_AA64DFR0_EL1, PMUVer, V3P5)) val &= ~ARMV8_PMU_PMCR_LP; /* The reset bits don't indicate any state, and shouldn't be saved. */ __vcpu_sys_reg(vcpu, PMCR_EL0) = val & ~(ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_P); if (val & ARMV8_PMU_PMCR_E) { kvm_pmu_enable_counter_mask(vcpu, __vcpu_sys_reg(vcpu, PMCNTENSET_EL0)); } else { kvm_pmu_disable_counter_mask(vcpu, __vcpu_sys_reg(vcpu, PMCNTENSET_EL0)); } if (val & ARMV8_PMU_PMCR_C) kvm_pmu_set_counter_value(vcpu, ARMV8_PMU_CYCLE_IDX, 0); if (val & ARMV8_PMU_PMCR_P) { unsigned long mask = kvm_pmu_valid_counter_mask(vcpu); mask &= ~BIT(ARMV8_PMU_CYCLE_IDX); for_each_set_bit(i, &mask, 32) kvm_pmu_set_pmc_value(kvm_vcpu_idx_to_pmc(vcpu, i), 0, true); } kvm_vcpu_pmu_restore_guest(vcpu); } static bool kvm_pmu_counter_is_enabled(struct kvm_pmc *pmc) { struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); return (kvm_vcpu_read_pmcr(vcpu) & ARMV8_PMU_PMCR_E) && (__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & BIT(pmc->idx)); } /** * kvm_pmu_create_perf_event - create a perf event for a counter * @pmc: Counter context */ static void kvm_pmu_create_perf_event(struct kvm_pmc *pmc) { struct kvm_vcpu *vcpu = kvm_pmc_to_vcpu(pmc); struct arm_pmu *arm_pmu = vcpu->kvm->arch.arm_pmu; struct perf_event *event; struct perf_event_attr attr; u64 eventsel, reg, data; bool p, u, nsk, nsu; reg = counter_index_to_evtreg(pmc->idx); data = __vcpu_sys_reg(vcpu, reg); kvm_pmu_stop_counter(pmc); if (pmc->idx == ARMV8_PMU_CYCLE_IDX) eventsel = ARMV8_PMUV3_PERFCTR_CPU_CYCLES; else eventsel = data & kvm_pmu_event_mask(vcpu->kvm); /* * Neither SW increment nor chained events need to be backed * by a perf event. */ if (eventsel == ARMV8_PMUV3_PERFCTR_SW_INCR || eventsel == ARMV8_PMUV3_PERFCTR_CHAIN) return; /* * If we have a filter in place and that the event isn't allowed, do * not install a perf event either. */ if (vcpu->kvm->arch.pmu_filter && !test_bit(eventsel, vcpu->kvm->arch.pmu_filter)) return; p = data & ARMV8_PMU_EXCLUDE_EL1; u = data & ARMV8_PMU_EXCLUDE_EL0; nsk = data & ARMV8_PMU_EXCLUDE_NS_EL1; nsu = data & ARMV8_PMU_EXCLUDE_NS_EL0; memset(&attr, 0, sizeof(struct perf_event_attr)); attr.type = arm_pmu->pmu.type; attr.size = sizeof(attr); attr.pinned = 1; attr.disabled = !kvm_pmu_counter_is_enabled(pmc); attr.exclude_user = (u != nsu); attr.exclude_kernel = (p != nsk); attr.exclude_hv = 1; /* Don't count EL2 events */ attr.exclude_host = 1; /* Don't count host events */ attr.config = eventsel; /* * If counting with a 64bit counter, advertise it to the perf * code, carefully dealing with the initial sample period * which also depends on the overflow. */ if (kvm_pmc_is_64bit(pmc)) attr.config1 |= PERF_ATTR_CFG1_COUNTER_64BIT; attr.sample_period = compute_period(pmc, kvm_pmu_get_pmc_value(pmc)); event = perf_event_create_kernel_counter(&attr, -1, current, kvm_pmu_perf_overflow, pmc); if (IS_ERR(event)) { pr_err_once("kvm: pmu event creation failed %ld\n", PTR_ERR(event)); return; } pmc->perf_event = event; } /** * kvm_pmu_set_counter_event_type - set selected counter to monitor some event * @vcpu: The vcpu pointer * @data: The data guest writes to PMXEVTYPER_EL0 * @select_idx: The number of selected counter * * When OS accesses PMXEVTYPER_EL0, that means it wants to set a PMC to count an * event with given hardware event number. Here we call perf_event API to * emulate this action and create a kernel perf event for it. */ void kvm_pmu_set_counter_event_type(struct kvm_vcpu *vcpu, u64 data, u64 select_idx) { struct kvm_pmc *pmc = kvm_vcpu_idx_to_pmc(vcpu, select_idx); u64 reg; if (!kvm_vcpu_has_pmu(vcpu)) return; reg = counter_index_to_evtreg(pmc->idx); __vcpu_sys_reg(vcpu, reg) = data & kvm_pmu_evtyper_mask(vcpu->kvm); kvm_pmu_create_perf_event(pmc); } void kvm_host_pmu_init(struct arm_pmu *pmu) { struct arm_pmu_entry *entry; /* * Check the sanitised PMU version for the system, as KVM does not * support implementations where PMUv3 exists on a subset of CPUs. */ if (!pmuv3_implemented(kvm_arm_pmu_get_pmuver_limit())) return; mutex_lock(&arm_pmus_lock); entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) goto out_unlock; entry->arm_pmu = pmu; list_add_tail(&entry->entry, &arm_pmus); if (list_is_singular(&arm_pmus)) static_branch_enable(&kvm_arm_pmu_available); out_unlock: mutex_unlock(&arm_pmus_lock); } static struct arm_pmu *kvm_pmu_probe_armpmu(void) { struct arm_pmu *tmp, *pmu = NULL; struct arm_pmu_entry *entry; int cpu; mutex_lock(&arm_pmus_lock); /* * It is safe to use a stale cpu to iterate the list of PMUs so long as * the same value is used for the entirety of the loop. Given this, and * the fact that no percpu data is used for the lookup there is no need * to disable preemption. * * It is still necessary to get a valid cpu, though, to probe for the * default PMU instance as userspace is not required to specify a PMU * type. In order to uphold the preexisting behavior KVM selects the * PMU instance for the core during vcpu init. A dependent use * case would be a user with disdain of all things big.LITTLE that * affines the VMM to a particular cluster of cores. * * In any case, userspace should just do the sane thing and use the UAPI * to select a PMU type directly. But, be wary of the baggage being * carried here. */ cpu = raw_smp_processor_id(); list_for_each_entry(entry, &arm_pmus, entry) { tmp = entry->arm_pmu; if (cpumask_test_cpu(cpu, &tmp->supported_cpus)) { pmu = tmp; break; } } mutex_unlock(&arm_pmus_lock); return pmu; } u64 kvm_pmu_get_pmceid(struct kvm_vcpu *vcpu, bool pmceid1) { unsigned long *bmap = vcpu->kvm->arch.pmu_filter; u64 val, mask = 0; int base, i, nr_events; if (!kvm_vcpu_has_pmu(vcpu)) return 0; if (!pmceid1) { val = read_sysreg(pmceid0_el0); /* always support CHAIN */ val |= BIT(ARMV8_PMUV3_PERFCTR_CHAIN); base = 0; } else { val = read_sysreg(pmceid1_el0); /* * Don't advertise STALL_SLOT*, as PMMIR_EL0 is handled * as RAZ */ val &= ~(BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT - 32) | BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND - 32) | BIT_ULL(ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND - 32)); base = 32; } if (!bmap) return val; nr_events = kvm_pmu_event_mask(vcpu->kvm) + 1; for (i = 0; i < 32; i += 8) { u64 byte; byte = bitmap_get_value8(bmap, base + i); mask |= byte << i; if (nr_events >= (0x4000 + base + 32)) { byte = bitmap_get_value8(bmap, 0x4000 + base + i); mask |= byte << (32 + i); } } return val & mask; } void kvm_vcpu_reload_pmu(struct kvm_vcpu *vcpu) { u64 mask = kvm_pmu_valid_counter_mask(vcpu); kvm_pmu_handle_pmcr(vcpu, kvm_vcpu_read_pmcr(vcpu)); __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= mask; __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= mask; __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= mask; } int kvm_arm_pmu_v3_enable(struct kvm_vcpu *vcpu) { if (!kvm_vcpu_has_pmu(vcpu)) return 0; if (!vcpu->arch.pmu.created) return -EINVAL; /* * A valid interrupt configuration for the PMU is either to have a * properly configured interrupt number and using an in-kernel * irqchip, or to not have an in-kernel GIC and not set an IRQ. */ if (irqchip_in_kernel(vcpu->kvm)) { int irq = vcpu->arch.pmu.irq_num; /* * If we are using an in-kernel vgic, at this point we know * the vgic will be initialized, so we can check the PMU irq * number against the dimensions of the vgic and make sure * it's valid. */ if (!irq_is_ppi(irq) && !vgic_valid_spi(vcpu->kvm, irq)) return -EINVAL; } else if (kvm_arm_pmu_irq_initialized(vcpu)) { return -EINVAL; } /* One-off reload of the PMU on first run */ kvm_make_request(KVM_REQ_RELOAD_PMU, vcpu); return 0; } static int kvm_arm_pmu_v3_init(struct kvm_vcpu *vcpu) { if (irqchip_in_kernel(vcpu->kvm)) { int ret; /* * If using the PMU with an in-kernel virtual GIC * implementation, we require the GIC to be already * initialized when initializing the PMU. */ if (!vgic_initialized(vcpu->kvm)) return -ENODEV; if (!kvm_arm_pmu_irq_initialized(vcpu)) return -ENXIO; ret = kvm_vgic_set_owner(vcpu, vcpu->arch.pmu.irq_num, &vcpu->arch.pmu); if (ret) return ret; } init_irq_work(&vcpu->arch.pmu.overflow_work, kvm_pmu_perf_overflow_notify_vcpu); vcpu->arch.pmu.created = true; return 0; } /* * For one VM the interrupt type must be same for each vcpu. * As a PPI, the interrupt number is the same for all vcpus, * while as an SPI it must be a separate number per vcpu. */ static bool pmu_irq_is_valid(struct kvm *kvm, int irq) { unsigned long i; struct kvm_vcpu *vcpu; kvm_for_each_vcpu(i, vcpu, kvm) { if (!kvm_arm_pmu_irq_initialized(vcpu)) continue; if (irq_is_ppi(irq)) { if (vcpu->arch.pmu.irq_num != irq) return false; } else { if (vcpu->arch.pmu.irq_num == irq) return false; } } return true; } /** * kvm_arm_pmu_get_max_counters - Return the max number of PMU counters. * @kvm: The kvm pointer */ u8 kvm_arm_pmu_get_max_counters(struct kvm *kvm) { struct arm_pmu *arm_pmu = kvm->arch.arm_pmu; /* * The arm_pmu->num_events considers the cycle counter as well. * Ignore that and return only the general-purpose counters. */ return arm_pmu->num_events - 1; } static void kvm_arm_set_pmu(struct kvm *kvm, struct arm_pmu *arm_pmu) { lockdep_assert_held(&kvm->arch.config_lock); kvm->arch.arm_pmu = arm_pmu; kvm->arch.pmcr_n = kvm_arm_pmu_get_max_counters(kvm); } /** * kvm_arm_set_default_pmu - No PMU set, get the default one. * @kvm: The kvm pointer * * The observant among you will notice that the supported_cpus * mask does not get updated for the default PMU even though it * is quite possible the selected instance supports only a * subset of cores in the system. This is intentional, and * upholds the preexisting behavior on heterogeneous systems * where vCPUs can be scheduled on any core but the guest * counters could stop working. */ int kvm_arm_set_default_pmu(struct kvm *kvm) { struct arm_pmu *arm_pmu = kvm_pmu_probe_armpmu(); if (!arm_pmu) return -ENODEV; kvm_arm_set_pmu(kvm, arm_pmu); return 0; } static int kvm_arm_pmu_v3_set_pmu(struct kvm_vcpu *vcpu, int pmu_id) { struct kvm *kvm = vcpu->kvm; struct arm_pmu_entry *entry; struct arm_pmu *arm_pmu; int ret = -ENXIO; lockdep_assert_held(&kvm->arch.config_lock); mutex_lock(&arm_pmus_lock); list_for_each_entry(entry, &arm_pmus, entry) { arm_pmu = entry->arm_pmu; if (arm_pmu->pmu.type == pmu_id) { if (kvm_vm_has_ran_once(kvm) || (kvm->arch.pmu_filter && kvm->arch.arm_pmu != arm_pmu)) { ret = -EBUSY; break; } kvm_arm_set_pmu(kvm, arm_pmu); cpumask_copy(kvm->arch.supported_cpus, &arm_pmu->supported_cpus); ret = 0; break; } } mutex_unlock(&arm_pmus_lock); return ret; } int kvm_arm_pmu_v3_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { struct kvm *kvm = vcpu->kvm; lockdep_assert_held(&kvm->arch.config_lock); if (!kvm_vcpu_has_pmu(vcpu)) return -ENODEV; if (vcpu->arch.pmu.created) return -EBUSY; switch (attr->attr) { case KVM_ARM_VCPU_PMU_V3_IRQ: { int __user *uaddr = (int __user *)(long)attr->addr; int irq; if (!irqchip_in_kernel(kvm)) return -EINVAL; if (get_user(irq, uaddr)) return -EFAULT; /* The PMU overflow interrupt can be a PPI or a valid SPI. */ if (!(irq_is_ppi(irq) || irq_is_spi(irq))) return -EINVAL; if (!pmu_irq_is_valid(kvm, irq)) return -EINVAL; if (kvm_arm_pmu_irq_initialized(vcpu)) return -EBUSY; kvm_debug("Set kvm ARM PMU irq: %d\n", irq); vcpu->arch.pmu.irq_num = irq; return 0; } case KVM_ARM_VCPU_PMU_V3_FILTER: { u8 pmuver = kvm_arm_pmu_get_pmuver_limit(); struct kvm_pmu_event_filter __user *uaddr; struct kvm_pmu_event_filter filter; int nr_events; /* * Allow userspace to specify an event filter for the entire * event range supported by PMUVer of the hardware, rather * than the guest's PMUVer for KVM backward compatibility. */ nr_events = __kvm_pmu_event_mask(pmuver) + 1; uaddr = (struct kvm_pmu_event_filter __user *)(long)attr->addr; if (copy_from_user(&filter, uaddr, sizeof(filter))) return -EFAULT; if (((u32)filter.base_event + filter.nevents) > nr_events || (filter.action != KVM_PMU_EVENT_ALLOW && filter.action != KVM_PMU_EVENT_DENY)) return -EINVAL; if (kvm_vm_has_ran_once(kvm)) return -EBUSY; if (!kvm->arch.pmu_filter) { kvm->arch.pmu_filter = bitmap_alloc(nr_events, GFP_KERNEL_ACCOUNT); if (!kvm->arch.pmu_filter) return -ENOMEM; /* * The default depends on the first applied filter. * If it allows events, the default is to deny. * Conversely, if the first filter denies a set of * events, the default is to allow. */ if (filter.action == KVM_PMU_EVENT_ALLOW) bitmap_zero(kvm->arch.pmu_filter, nr_events); else bitmap_fill(kvm->arch.pmu_filter, nr_events); } if (filter.action == KVM_PMU_EVENT_ALLOW) bitmap_set(kvm->arch.pmu_filter, filter.base_event, filter.nevents); else bitmap_clear(kvm->arch.pmu_filter, filter.base_event, filter.nevents); return 0; } case KVM_ARM_VCPU_PMU_V3_SET_PMU: { int __user *uaddr = (int __user *)(long)attr->addr; int pmu_id; if (get_user(pmu_id, uaddr)) return -EFAULT; return kvm_arm_pmu_v3_set_pmu(vcpu, pmu_id); } case KVM_ARM_VCPU_PMU_V3_INIT: return kvm_arm_pmu_v3_init(vcpu); } return -ENXIO; } int kvm_arm_pmu_v3_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { switch (attr->attr) { case KVM_ARM_VCPU_PMU_V3_IRQ: { int __user *uaddr = (int __user *)(long)attr->addr; int irq; if (!irqchip_in_kernel(vcpu->kvm)) return -EINVAL; if (!kvm_vcpu_has_pmu(vcpu)) return -ENODEV; if (!kvm_arm_pmu_irq_initialized(vcpu)) return -ENXIO; irq = vcpu->arch.pmu.irq_num; return put_user(irq, uaddr); } } return -ENXIO; } int kvm_arm_pmu_v3_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr) { switch (attr->attr) { case KVM_ARM_VCPU_PMU_V3_IRQ: case KVM_ARM_VCPU_PMU_V3_INIT: case KVM_ARM_VCPU_PMU_V3_FILTER: case KVM_ARM_VCPU_PMU_V3_SET_PMU: if (kvm_vcpu_has_pmu(vcpu)) return 0; } return -ENXIO; } u8 kvm_arm_pmu_get_pmuver_limit(void) { u64 tmp; tmp = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); tmp = cpuid_feature_cap_perfmon_field(tmp, ID_AA64DFR0_EL1_PMUVer_SHIFT, ID_AA64DFR0_EL1_PMUVer_V3P5); return FIELD_GET(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMUVer), tmp); } /** * kvm_vcpu_read_pmcr - Read PMCR_EL0 register for the vCPU * @vcpu: The vcpu pointer */ u64 kvm_vcpu_read_pmcr(struct kvm_vcpu *vcpu) { u64 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0); return u64_replace_bits(pmcr, vcpu->kvm->arch.pmcr_n, ARMV8_PMU_PMCR_N); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1