Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Richard Kuo | 806 | 91.59% | 1 | 8.33% |
David Hildenbrand | 35 | 3.98% | 1 | 8.33% |
Palmer Dabbelt | 11 | 1.25% | 1 | 8.33% |
Mike Rapoport | 7 | 0.80% | 2 | 16.67% |
Russell King | 7 | 0.80% | 2 | 16.67% |
Vineet Gupta | 6 | 0.68% | 1 | 8.33% |
Matthew Wilcox | 4 | 0.45% | 1 | 8.33% |
Thomas Gleixner | 2 | 0.23% | 1 | 8.33% |
Rick Edgecombe | 1 | 0.11% | 1 | 8.33% |
Kirill A. Shutemov | 1 | 0.11% | 1 | 8.33% |
Total | 880 | 12 |
/* SPDX-License-Identifier: GPL-2.0-only */ /* * Page table support for the Hexagon architecture * * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. */ #ifndef _ASM_PGTABLE_H #define _ASM_PGTABLE_H /* * Page table definitions for Qualcomm Hexagon processor. */ #include <asm/page.h> #include <asm-generic/pgtable-nopmd.h> /* A handy thing to have if one has the RAM. Declared in head.S */ extern unsigned long empty_zero_page; /* * The PTE model described here is that of the Hexagon Virtual Machine, * which autonomously walks 2-level page tables. At a lower level, we * also describe the RISCish software-loaded TLB entry structure of * the underlying Hexagon processor. A kernel built to run on the * virtual machine has no need to know about the underlying hardware. */ #include <asm/vm_mmu.h> /* * To maximize the comfort level for the PTE manipulation macros, * define the "well known" architecture-specific bits. */ #define _PAGE_READ __HVM_PTE_R #define _PAGE_WRITE __HVM_PTE_W #define _PAGE_EXECUTE __HVM_PTE_X #define _PAGE_USER __HVM_PTE_U /* * We have a total of 4 "soft" bits available in the abstract PTE. * The two mandatory software bits are Dirty and Accessed. * To make nonlinear swap work according to the more recent * model, we want a low order "Present" bit to indicate whether * the PTE describes MMU programming or swap space. */ #define _PAGE_PRESENT (1<<0) #define _PAGE_DIRTY (1<<1) #define _PAGE_ACCESSED (1<<2) /* * For now, let's say that Valid and Present are the same thing. * Alternatively, we could say that it's the "or" of R, W, and X * permissions. */ #define _PAGE_VALID _PAGE_PRESENT /* * We're not defining _PAGE_GLOBAL here, since there's no concept * of global pages or ASIDs exposed to the Hexagon Virtual Machine, * and we want to use the same page table structures and macros in * the native kernel as we do in the virtual machine kernel. * So we'll put up with a bit of inefficiency for now... */ /* We borrow bit 6 to store the exclusive marker in swap PTEs. */ #define _PAGE_SWP_EXCLUSIVE (1<<6) /* * Top "FOURTH" level (pgd), which for the Hexagon VM is really * only the second from the bottom, pgd and pud both being collapsed. * Each entry represents 4MB of virtual address space, 4K of table * thus maps the full 4GB. */ #define PGDIR_SHIFT 22 #define PTRS_PER_PGD 1024 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) #ifdef CONFIG_PAGE_SIZE_4KB #define PTRS_PER_PTE 1024 #endif #ifdef CONFIG_PAGE_SIZE_16KB #define PTRS_PER_PTE 256 #endif #ifdef CONFIG_PAGE_SIZE_64KB #define PTRS_PER_PTE 64 #endif #ifdef CONFIG_PAGE_SIZE_256KB #define PTRS_PER_PTE 16 #endif #ifdef CONFIG_PAGE_SIZE_1MB #define PTRS_PER_PTE 4 #endif /* Any bigger and the PTE disappears. */ #define pgd_ERROR(e) \ printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ pgd_val(e)) /* * Page Protection Constants. Includes (in this variant) cache attributes. */ extern unsigned long _dflt_cache_att; #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ _dflt_cache_att) #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) #define PAGE_COPY PAGE_READONLY #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) #define PAGE_COPY_EXEC PAGE_EXEC #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) /* * Aliases for mapping mmap() protection bits to page protections. * These get used for static initialization, so using the _dflt_cache_att * variable for the default cache attribute isn't workable. If the * default gets changed at boot time, the boot option code has to * update data structures like the protaction_map[] array. */ #define CACHEDEF (CACHE_DEFAULT << 6) extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ /* HUGETLB not working currently */ #ifdef CONFIG_HUGETLB_PAGE #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) #endif /* * For now, assume that higher-level code will do TLB/MMU invalidations * and don't insert that overhead into this low-level function. */ extern void sync_icache_dcache(pte_t pte); #define pte_present_exec_user(pte) \ ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ (_PAGE_EXECUTE | _PAGE_USER)) static inline void set_pte(pte_t *ptep, pte_t pteval) { /* should really be using pte_exec, if it weren't declared later. */ if (pte_present_exec_user(pteval)) sync_icache_dcache(pteval); *ptep = pteval; } /* * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 * as a universal null entry, but some of those least significant bits * are interpreted by software. */ #define _NULL_PMD 0x7 #define _NULL_PTE 0x0 static inline void pmd_clear(pmd_t *pmd_entry_ptr) { pmd_val(*pmd_entry_ptr) = _NULL_PMD; } /* * Conveniently, a null PTE value is invalid. */ static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_val(*ptep) = _NULL_PTE; } /** * pmd_none - check if pmd_entry is mapped * @pmd_entry: pmd entry * * MIPS checks it against that "invalid pte table" thing. */ static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) == _NULL_PMD; } /** * pmd_present - is there a page table behind this? * Essentially the inverse of pmd_none. We maybe * save an inline instruction by defining it this * way, instead of simply "!pmd_none". */ static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) != (unsigned long)_NULL_PMD; } /** * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. * As we have no known cause of badness, it's null, as it is for many * architectures. */ static inline int pmd_bad(pmd_t pmd) { return 0; } /* * pmd_pfn - converts a PMD entry to a page frame number */ #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) /* * pmd_page - converts a PMD entry to a page pointer */ #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) /** * pte_none - check if pte is mapped * @pte: pte_t entry */ static inline int pte_none(pte_t pte) { return pte_val(pte) == _NULL_PTE; }; /* * pte_present - check if page is present */ static inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } /* mk_pte - make a PTE out of a page pointer and protection bits */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ #define pte_page(x) pfn_to_page(pte_pfn(x)) /* pte_mkold - mark PTE as not recently accessed */ static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } /* pte_mkyoung - mark PTE as recently accessed */ static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } /* pte_mkclean - mark page as in sync with backing store */ static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } /* pte_mkdirty - mark page as modified */ static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } /* pte_young - "is PTE marked as accessed"? */ static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } /* pte_dirty - "is PTE dirty?" */ static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } /* pte_modify - set protection bits on PTE */ static inline pte_t pte_modify(pte_t pte, pgprot_t prot) { pte_val(pte) &= PAGE_MASK; pte_val(pte) |= pgprot_val(prot); return pte; } /* pte_wrprotect - mark page as not writable */ static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } /* pte_mkwrite - mark page as writable */ static inline pte_t pte_mkwrite_novma(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } /* pte_mkexec - mark PTE as executable */ static inline pte_t pte_mkexec(pte_t pte) { pte_val(pte) |= _PAGE_EXECUTE; return pte; } /* pte_read - "is PTE marked as readable?" */ static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } /* pte_write - "is PTE marked as writable?" */ static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } /* pte_exec - "is PTE marked as executable?" */ static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; } /* __pte_to_swp_entry - extract swap entry from PTE */ #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) /* __swp_entry_to_pte - extract PTE from swap entry */ #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) #define PFN_PTE_SHIFT PAGE_SHIFT /* pfn_pte - convert page number and protection value to page table entry */ #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) /* pte_pfn - convert pte to page frame number */ #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK); } /* ZERO_PAGE - returns the globally shared zero page */ #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) /* * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that * are !pte_none() && !pte_present(). * * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is * interpreted as swap information. The remaining free bits are interpreted as * listed below. Rather than have the TLB fill handler test * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to * all zeros for swap entries, which speeds up the miss handler at the cost of * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon * processor architecture and target applications suggest a lot of TLB misses * and not much swap space. * * Format of swap PTE: * bit 0: Present (zero) * bits 1-5: swap type (arch independent layer uses 5 bits max) * bit 6: exclusive marker * bits 7-9: bits 2:0 of offset * bits 10-12: effectively _PAGE_PROTNONE (all zero) * bits 13-31: bits 21:3 of swap offset * * The split offset makes some of the following macros a little gnarly, * but there's plenty of precedent for this sort of thing. */ /* Used for swap PTEs */ #define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f) #define __swp_offset(swp_pte) \ ((((swp_pte).val >> 7) & 0x7) | (((swp_pte).val >> 10) & 0x3ffff8)) #define __swp_entry(type, offset) \ ((swp_entry_t) { \ (((type & 0x1f) << 1) | \ ((offset & 0x3ffff8) << 10) | ((offset & 0x7) << 7)) }) static inline int pte_swp_exclusive(pte_t pte) { return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; } static inline pte_t pte_swp_mkexclusive(pte_t pte) { pte_val(pte) |= _PAGE_SWP_EXCLUSIVE; return pte; } static inline pte_t pte_swp_clear_exclusive(pte_t pte) { pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE; return pte; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1