Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ralf Baechle | 112 | 29.47% | 14 | 28.57% |
Linus Torvalds (pre-git) | 60 | 15.79% | 7 | 14.29% |
Maciej W. Rozycki | 52 | 13.68% | 4 | 8.16% |
Florian Fainelli | 44 | 11.58% | 1 | 2.04% |
Andrew Morton | 21 | 5.53% | 4 | 8.16% |
Paul Burton | 17 | 4.47% | 3 | 6.12% |
Jiaxun Yang | 16 | 4.21% | 1 | 2.04% |
David Daney | 15 | 3.95% | 2 | 4.08% |
Atsushi Nemoto | 11 | 2.89% | 1 | 2.04% |
Linus Torvalds | 9 | 2.37% | 2 | 4.08% |
Christoph Hellwig | 7 | 1.84% | 3 | 6.12% |
Huacai Chen | 7 | 1.84% | 1 | 2.04% |
Serge Semin | 3 | 0.79% | 1 | 2.04% |
Björn Helgaas | 2 | 0.53% | 1 | 2.04% |
Kefeng Wang | 1 | 0.26% | 1 | 2.04% |
Sinan Kaya | 1 | 0.26% | 1 | 2.04% |
Randy Dunlap | 1 | 0.26% | 1 | 2.04% |
Franck Bui-Huu | 1 | 0.26% | 1 | 2.04% |
Total | 380 | 49 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994, 1995 Waldorf GmbH * Copyright (C) 1994 - 2000, 06 Ralf Baechle * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved. * Author: Maciej W. Rozycki <macro@mips.com> */ #ifndef _ASM_IO_H #define _ASM_IO_H #include <linux/compiler.h> #include <linux/types.h> #include <linux/irqflags.h> #include <asm/addrspace.h> #include <asm/barrier.h> #include <asm/bug.h> #include <asm/byteorder.h> #include <asm/cpu.h> #include <asm/cpu-features.h> #include <asm/page.h> #include <asm/pgtable-bits.h> #include <asm/string.h> #include <mangle-port.h> /* * Raw operations are never swapped in software. OTOH values that raw * operations are working on may or may not have been swapped by the bus * hardware. An example use would be for flash memory that's used for * execute in place. */ # define __raw_ioswabb(a, x) (x) # define __raw_ioswabw(a, x) (x) # define __raw_ioswabl(a, x) (x) # define __raw_ioswabq(a, x) (x) # define ____raw_ioswabq(a, x) (x) # define _ioswabb ioswabb # define _ioswabw ioswabw # define _ioswabl ioswabl # define _ioswabq ioswabq # define __relaxed_ioswabb ioswabb # define __relaxed_ioswabw ioswabw # define __relaxed_ioswabl ioswabl # define __relaxed_ioswabq ioswabq /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */ /* * On MIPS I/O ports are memory mapped, so we access them using normal * load/store instructions. mips_io_port_base is the virtual address to * which all ports are being mapped. For sake of efficiency some code * assumes that this is an address that can be loaded with a single lui * instruction, so the lower 16 bits must be zero. Should be true on * any sane architecture; generic code does not use this assumption. */ extern unsigned long mips_io_port_base; static inline void set_io_port_base(unsigned long base) { mips_io_port_base = base; } /* * Provide the necessary definitions for generic iomap. We make use of * mips_io_port_base for iomap(), but we don't reserve any low addresses for * use with I/O ports. */ #define HAVE_ARCH_PIO_SIZE #define PIO_OFFSET mips_io_port_base #define PIO_MASK IO_SPACE_LIMIT #define PIO_RESERVED 0x0UL /* * Enforce in-order execution of data I/O. In the MIPS architecture * these are equivalent to corresponding platform-specific memory * barriers defined in <asm/barrier.h>. API pinched from PowerPC, * with sync additionally defined. */ #define iobarrier_rw() mb() #define iobarrier_r() rmb() #define iobarrier_w() wmb() #define iobarrier_sync() iob() /* * virt_to_phys - map virtual addresses to physical * @address: address to remap * * The returned physical address is the physical (CPU) mapping for * the memory address given. It is only valid to use this function on * addresses directly mapped or allocated via kmalloc. * * This function does not give bus mappings for DMA transfers. In * almost all conceivable cases a device driver should not be using * this function */ static inline unsigned long __virt_to_phys_nodebug(volatile const void *address) { return __pa(address); } #ifdef CONFIG_DEBUG_VIRTUAL extern phys_addr_t __virt_to_phys(volatile const void *x); #else #define __virt_to_phys(x) __virt_to_phys_nodebug(x) #endif #define virt_to_phys virt_to_phys static inline phys_addr_t virt_to_phys(const volatile void *x) { return __virt_to_phys(x); } /* * ISA I/O bus memory addresses are 1:1 with the physical address. */ static inline unsigned long isa_virt_to_bus(volatile void *address) { return virt_to_phys(address); } /* * Change "struct page" to physical address. */ #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT) void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size, unsigned long prot_val); void iounmap(const volatile void __iomem *addr); /* * ioremap - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. */ #define ioremap(offset, size) \ ioremap_prot((offset), (size), _CACHE_UNCACHED) /* * ioremap_cache - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap_cache performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * This version of ioremap ensures that the memory is marked cacheable by * the CPU. Also enables full write-combining. Useful for some * memory-like regions on I/O busses. */ #define ioremap_cache(offset, size) \ ioremap_prot((offset), (size), _page_cachable_default) /* * ioremap_wc - map bus memory into CPU space * @offset: bus address of the memory * @size: size of the resource to map * * ioremap_wc performs a platform specific sequence of operations to * make bus memory CPU accessible via the readb/readw/readl/writeb/ * writew/writel functions and the other mmio helpers. The returned * address is not guaranteed to be usable directly as a virtual * address. * * This version of ioremap ensures that the memory is marked uncacheable * but accelerated by means of write-combining feature. It is specifically * useful for PCIe prefetchable windows, which may vastly improve a * communications performance. If it was determined on boot stage, what * CPU CCA doesn't support UCA, the method shall fall-back to the * _CACHE_UNCACHED option (see cpu_probe() method). */ #define ioremap_wc(offset, size) \ ioremap_prot((offset), (size), boot_cpu_data.writecombine) #if defined(CONFIG_CPU_CAVIUM_OCTEON) #define war_io_reorder_wmb() wmb() #else #define war_io_reorder_wmb() barrier() #endif #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq) \ \ static inline void pfx##write##bwlq(type val, \ volatile void __iomem *mem) \ { \ volatile type *__mem; \ type __val; \ \ if (barrier) \ iobarrier_rw(); \ else \ war_io_reorder_wmb(); \ \ __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ \ __val = pfx##ioswab##bwlq(__mem, val); \ \ if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ *__mem = __val; \ else if (cpu_has_64bits) { \ unsigned long __flags; \ type __tmp; \ \ if (irq) \ local_irq_save(__flags); \ __asm__ __volatile__( \ ".set push" "\t\t# __writeq""\n\t" \ ".set arch=r4000" "\n\t" \ "dsll32 %L0, %L0, 0" "\n\t" \ "dsrl32 %L0, %L0, 0" "\n\t" \ "dsll32 %M0, %M0, 0" "\n\t" \ "or %L0, %L0, %M0" "\n\t" \ "sd %L0, %2" "\n\t" \ ".set pop" "\n" \ : "=r" (__tmp) \ : "0" (__val), "m" (*__mem)); \ if (irq) \ local_irq_restore(__flags); \ } else \ BUG(); \ } \ \ static inline type pfx##read##bwlq(const volatile void __iomem *mem) \ { \ volatile type *__mem; \ type __val; \ \ __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \ \ if (barrier) \ iobarrier_rw(); \ \ if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \ __val = *__mem; \ else if (cpu_has_64bits) { \ unsigned long __flags; \ \ if (irq) \ local_irq_save(__flags); \ __asm__ __volatile__( \ ".set push" "\t\t# __readq" "\n\t" \ ".set arch=r4000" "\n\t" \ "ld %L0, %1" "\n\t" \ "dsra32 %M0, %L0, 0" "\n\t" \ "sll %L0, %L0, 0" "\n\t" \ ".set pop" "\n" \ : "=r" (__val) \ : "m" (*__mem)); \ if (irq) \ local_irq_restore(__flags); \ } else { \ __val = 0; \ BUG(); \ } \ \ /* prevent prefetching of coherent DMA data prematurely */ \ if (!relax) \ rmb(); \ return pfx##ioswab##bwlq(__mem, __val); \ } #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax) \ \ static inline void pfx##out##bwlq(type val, unsigned long port) \ { \ volatile type *__addr; \ type __val; \ \ if (barrier) \ iobarrier_rw(); \ else \ war_io_reorder_wmb(); \ \ __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ \ __val = pfx##ioswab##bwlq(__addr, val); \ \ /* Really, we want this to be atomic */ \ BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ \ *__addr = __val; \ } \ \ static inline type pfx##in##bwlq(unsigned long port) \ { \ volatile type *__addr; \ type __val; \ \ __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \ \ BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \ \ if (barrier) \ iobarrier_rw(); \ \ __val = *__addr; \ \ /* prevent prefetching of coherent DMA data prematurely */ \ if (!relax) \ rmb(); \ return pfx##ioswab##bwlq(__addr, __val); \ } #define __BUILD_MEMORY_PFX(bus, bwlq, type, relax) \ \ __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1) #define BUILDIO_MEM(bwlq, type) \ \ __BUILD_MEMORY_PFX(__raw_, bwlq, type, 0) \ __BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1) \ __BUILD_MEMORY_PFX(__mem_, bwlq, type, 0) \ __BUILD_MEMORY_PFX(, bwlq, type, 0) BUILDIO_MEM(b, u8) BUILDIO_MEM(w, u16) BUILDIO_MEM(l, u32) #ifdef CONFIG_64BIT BUILDIO_MEM(q, u64) #else __BUILD_MEMORY_PFX(__raw_, q, u64, 0) __BUILD_MEMORY_PFX(__mem_, q, u64, 0) #endif #define __BUILD_IOPORT_PFX(bus, bwlq, type) \ __BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0) #define BUILDIO_IOPORT(bwlq, type) \ __BUILD_IOPORT_PFX(_, bwlq, type) \ __BUILD_IOPORT_PFX(__mem_, bwlq, type) BUILDIO_IOPORT(b, u8) BUILDIO_IOPORT(w, u16) BUILDIO_IOPORT(l, u32) #ifdef CONFIG_64BIT BUILDIO_IOPORT(q, u64) #endif #define __BUILDIO(bwlq, type) \ \ __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0) __BUILDIO(q, u64) #define readb_relaxed __relaxed_readb #define readw_relaxed __relaxed_readw #define readl_relaxed __relaxed_readl #ifdef CONFIG_64BIT #define readq_relaxed __relaxed_readq #endif #define writeb_relaxed __relaxed_writeb #define writew_relaxed __relaxed_writew #define writel_relaxed __relaxed_writel #ifdef CONFIG_64BIT #define writeq_relaxed __relaxed_writeq #endif #define readb_be(addr) \ __raw_readb((__force unsigned *)(addr)) #define readw_be(addr) \ be16_to_cpu(__raw_readw((__force unsigned *)(addr))) #define readl_be(addr) \ be32_to_cpu(__raw_readl((__force unsigned *)(addr))) #define readq_be(addr) \ be64_to_cpu(__raw_readq((__force unsigned *)(addr))) #define writeb_be(val, addr) \ __raw_writeb((val), (__force unsigned *)(addr)) #define writew_be(val, addr) \ __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr)) #define writel_be(val, addr) \ __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr)) #define writeq_be(val, addr) \ __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr)) #define __BUILD_MEMORY_STRING(bwlq, type) \ \ static inline void writes##bwlq(volatile void __iomem *mem, \ const void *addr, unsigned int count) \ { \ const volatile type *__addr = addr; \ \ while (count--) { \ __mem_write##bwlq(*__addr, mem); \ __addr++; \ } \ } \ \ static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \ unsigned int count) \ { \ volatile type *__addr = addr; \ \ while (count--) { \ *__addr = __mem_read##bwlq(mem); \ __addr++; \ } \ } #define __BUILD_IOPORT_STRING(bwlq, type) \ \ static inline void outs##bwlq(unsigned long port, const void *addr, \ unsigned int count) \ { \ const volatile type *__addr = addr; \ \ while (count--) { \ __mem_out##bwlq(*__addr, port); \ __addr++; \ } \ } \ \ static inline void ins##bwlq(unsigned long port, void *addr, \ unsigned int count) \ { \ volatile type *__addr = addr; \ \ while (count--) { \ *__addr = __mem_in##bwlq(port); \ __addr++; \ } \ } #define BUILDSTRING(bwlq, type) \ \ __BUILD_MEMORY_STRING(bwlq, type) \ __BUILD_IOPORT_STRING(bwlq, type) BUILDSTRING(b, u8) BUILDSTRING(w, u16) BUILDSTRING(l, u32) #ifdef CONFIG_64BIT BUILDSTRING(q, u64) #endif /* * The caches on some architectures aren't dma-coherent and have need to * handle this in software. There are three types of operations that * can be applied to dma buffers. * * - dma_cache_wback_inv(start, size) makes caches and coherent by * writing the content of the caches back to memory, if necessary. * The function also invalidates the affected part of the caches as * necessary before DMA transfers from outside to memory. * - dma_cache_wback(start, size) makes caches and coherent by * writing the content of the caches back to memory, if necessary. * The function also invalidates the affected part of the caches as * necessary before DMA transfers from outside to memory. * - dma_cache_inv(start, size) invalidates the affected parts of the * caches. Dirty lines of the caches may be written back or simply * be discarded. This operation is necessary before dma operations * to the memory. * * This API used to be exported; it now is for arch code internal use only. */ #ifdef CONFIG_DMA_NONCOHERENT extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); extern void (*_dma_cache_wback)(unsigned long start, unsigned long size); extern void (*_dma_cache_inv)(unsigned long start, unsigned long size); #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size) #define dma_cache_wback(start, size) _dma_cache_wback(start, size) #define dma_cache_inv(start, size) _dma_cache_inv(start, size) #else /* Sane hardware */ #define dma_cache_wback_inv(start,size) \ do { (void) (start); (void) (size); } while (0) #define dma_cache_wback(start,size) \ do { (void) (start); (void) (size); } while (0) #define dma_cache_inv(start,size) \ do { (void) (start); (void) (size); } while (0) #endif /* CONFIG_DMA_NONCOHERENT */ /* * Read a 32-bit register that requires a 64-bit read cycle on the bus. * Avoid interrupt mucking, just adjust the address for 4-byte access. * Assume the addresses are 8-byte aligned. */ #ifdef __MIPSEB__ #define __CSR_32_ADJUST 4 #else #define __CSR_32_ADJUST 0 #endif #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v)) #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST)) #define __raw_readb __raw_readb #define __raw_readw __raw_readw #define __raw_readl __raw_readl #ifdef CONFIG_64BIT #define __raw_readq __raw_readq #endif #define __raw_writeb __raw_writeb #define __raw_writew __raw_writew #define __raw_writel __raw_writel #ifdef CONFIG_64BIT #define __raw_writeq __raw_writeq #endif #define readb readb #define readw readw #define readl readl #ifdef CONFIG_64BIT #define readq readq #endif #define writeb writeb #define writew writew #define writel writel #ifdef CONFIG_64BIT #define writeq writeq #endif #define readsb readsb #define readsw readsw #define readsl readsl #ifdef CONFIG_64BIT #define readsq readsq #endif #define writesb writesb #define writesw writesw #define writesl writesl #ifdef CONFIG_64BIT #define writesq writesq #endif #define _inb _inb #define _inw _inw #define _inl _inl #define insb insb #define insw insw #define insl insl #define _outb _outb #define _outw _outw #define _outl _outl #define outsb outsb #define outsw outsw #define outsl outsl void __ioread64_copy(void *to, const void __iomem *from, size_t count); #include <asm-generic/io.h> static inline void *isa_bus_to_virt(unsigned long address) { return phys_to_virt(address); } #endif /* _ASM_IO_H */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1