Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Burton | 408 | 90.07% | 15 | 68.18% |
Geert Uytterhoeven | 23 | 5.08% | 1 | 4.55% |
Matt Redfearn | 11 | 2.43% | 2 | 9.09% |
John Crispin | 6 | 1.32% | 1 | 4.55% |
Thomas Gleixner | 2 | 0.44% | 1 | 4.55% |
Masahiro Yamada | 2 | 0.44% | 1 | 4.55% |
Ilya Lipnitskiy | 1 | 0.22% | 1 | 4.55% |
Total | 453 | 22 |
/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright (C) 2017 Imagination Technologies * Author: Paul Burton <paul.burton@mips.com> */ #ifndef __MIPS_ASM_MIPS_CPS_H__ #define __MIPS_ASM_MIPS_CPS_H__ #include <linux/bitfield.h> #include <linux/cpumask.h> #include <linux/io.h> #include <linux/types.h> extern unsigned long __cps_access_bad_size(void) __compiletime_error("Bad size for CPS accessor"); #define CPS_ACCESSOR_A(unit, off, name) \ static inline void *addr_##unit##_##name(void) \ { \ return mips_##unit##_base + (off); \ } #define CPS_ACCESSOR_R(unit, sz, name) \ static inline uint##sz##_t read_##unit##_##name(void) \ { \ uint64_t val64; \ \ switch (sz) { \ case 32: \ return __raw_readl(addr_##unit##_##name()); \ \ case 64: \ if (mips_cm_is64) \ return __raw_readq(addr_##unit##_##name()); \ \ val64 = __raw_readl(addr_##unit##_##name() + 4); \ val64 <<= 32; \ val64 |= __raw_readl(addr_##unit##_##name()); \ return val64; \ \ default: \ return __cps_access_bad_size(); \ } \ } #define CPS_ACCESSOR_W(unit, sz, name) \ static inline void write_##unit##_##name(uint##sz##_t val) \ { \ switch (sz) { \ case 32: \ __raw_writel(val, addr_##unit##_##name()); \ break; \ \ case 64: \ if (mips_cm_is64) { \ __raw_writeq(val, addr_##unit##_##name()); \ break; \ } \ \ __raw_writel((uint64_t)val >> 32, \ addr_##unit##_##name() + 4); \ __raw_writel(val, addr_##unit##_##name()); \ break; \ \ default: \ __cps_access_bad_size(); \ break; \ } \ } #define CPS_ACCESSOR_M(unit, sz, name) \ static inline void change_##unit##_##name(uint##sz##_t mask, \ uint##sz##_t val) \ { \ uint##sz##_t reg_val = read_##unit##_##name(); \ reg_val &= ~mask; \ reg_val |= val; \ write_##unit##_##name(reg_val); \ } \ \ static inline void set_##unit##_##name(uint##sz##_t val) \ { \ change_##unit##_##name(val, val); \ } \ \ static inline void clear_##unit##_##name(uint##sz##_t val) \ { \ change_##unit##_##name(val, 0); \ } #define CPS_ACCESSOR_RO(unit, sz, off, name) \ CPS_ACCESSOR_A(unit, off, name) \ CPS_ACCESSOR_R(unit, sz, name) #define CPS_ACCESSOR_WO(unit, sz, off, name) \ CPS_ACCESSOR_A(unit, off, name) \ CPS_ACCESSOR_W(unit, sz, name) #define CPS_ACCESSOR_RW(unit, sz, off, name) \ CPS_ACCESSOR_A(unit, off, name) \ CPS_ACCESSOR_R(unit, sz, name) \ CPS_ACCESSOR_W(unit, sz, name) \ CPS_ACCESSOR_M(unit, sz, name) #include <asm/mips-cm.h> #include <asm/mips-cpc.h> #include <asm/mips-gic.h> /** * mips_cps_numclusters - return the number of clusters present in the system * * Returns the number of clusters in the system. */ static inline unsigned int mips_cps_numclusters(void) { if (mips_cm_revision() < CM_REV_CM3_5) return 1; return FIELD_GET(CM_GCR_CONFIG_NUM_CLUSTERS, read_gcr_config()); } /** * mips_cps_cluster_config - return (GCR|CPC)_CONFIG from a cluster * @cluster: the ID of the cluster whose config we want * * Read the value of GCR_CONFIG (or its CPC_CONFIG mirror) from a @cluster. * * Returns the value of GCR_CONFIG. */ static inline uint64_t mips_cps_cluster_config(unsigned int cluster) { uint64_t config; if (mips_cm_revision() < CM_REV_CM3_5) { /* * Prior to CM 3.5 we don't have the notion of multiple * clusters so we can trivially read the GCR_CONFIG register * within this cluster. */ WARN_ON(cluster != 0); config = read_gcr_config(); } else { /* * From CM 3.5 onwards we read the CPC_CONFIG mirror of * GCR_CONFIG via the redirect region, since the CPC is always * powered up allowing us not to need to power up the CM. */ mips_cm_lock_other(cluster, 0, 0, CM_GCR_Cx_OTHER_BLOCK_GLOBAL); config = read_cpc_redir_config(); mips_cm_unlock_other(); } return config; } /** * mips_cps_numcores - return the number of cores present in a cluster * @cluster: the ID of the cluster whose core count we want * * Returns the value of the PCORES field of the GCR_CONFIG register plus 1, or * zero if no Coherence Manager is present. */ static inline unsigned int mips_cps_numcores(unsigned int cluster) { if (!mips_cm_present()) return 0; /* Add one before masking to handle 0xff indicating no cores */ return FIELD_GET(CM_GCR_CONFIG_PCORES, mips_cps_cluster_config(cluster) + 1); } /** * mips_cps_numiocu - return the number of IOCUs present in a cluster * @cluster: the ID of the cluster whose IOCU count we want * * Returns the value of the NUMIOCU field of the GCR_CONFIG register, or zero * if no Coherence Manager is present. */ static inline unsigned int mips_cps_numiocu(unsigned int cluster) { if (!mips_cm_present()) return 0; return FIELD_GET(CM_GCR_CONFIG_NUMIOCU, mips_cps_cluster_config(cluster)); } /** * mips_cps_numvps - return the number of VPs (threads) supported by a core * @cluster: the ID of the cluster containing the core we want to examine * @core: the ID of the core whose VP count we want * * Returns the number of Virtual Processors (VPs, ie. hardware threads) that * are supported by the given @core in the given @cluster. If the core or the * kernel do not support hardware mutlti-threading this returns 1. */ static inline unsigned int mips_cps_numvps(unsigned int cluster, unsigned int core) { unsigned int cfg; if (!mips_cm_present()) return 1; if ((!IS_ENABLED(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt) && (!IS_ENABLED(CONFIG_CPU_MIPSR6) || !cpu_has_vp)) return 1; mips_cm_lock_other(cluster, core, 0, CM_GCR_Cx_OTHER_BLOCK_LOCAL); if (mips_cm_revision() < CM_REV_CM3_5) { /* * Prior to CM 3.5 we can only have one cluster & don't have * CPC_Cx_CONFIG, so we read GCR_Cx_CONFIG. */ cfg = read_gcr_co_config(); } else { /* * From CM 3.5 onwards we read CPC_Cx_CONFIG because the CPC is * always powered, which allows us to not worry about powering * up the cluster's CM here. */ cfg = read_cpc_co_config(); } mips_cm_unlock_other(); return FIELD_GET(CM_GCR_Cx_CONFIG_PVPE, cfg + 1); } /** * mips_cps_multicluster_cpus() - Detect whether CPUs are in multiple clusters * * Determine whether the system includes CPUs in multiple clusters - ie. * whether we can treat the system as single or multi-cluster as far as CPUs * are concerned. Note that this is slightly different to simply checking * whether multiple clusters are present - it is possible for there to be * clusters which contain no CPUs, which this function will effectively ignore. * * Returns true if CPUs are spread across multiple clusters, else false. */ static inline bool mips_cps_multicluster_cpus(void) { unsigned int first_cl, last_cl; /* * CPUs are numbered sequentially by cluster - ie. CPUs 0..X will be in * cluster 0, CPUs X+1..Y in cluster 1, CPUs Y+1..Z in cluster 2 etc. * * Thus we can detect multiple clusters trivially by checking whether * the first & last CPUs belong to the same cluster. */ first_cl = cpu_cluster(&boot_cpu_data); last_cl = cpu_cluster(&cpu_data[nr_cpu_ids - 1]); return first_cl != last_cl; } /** * mips_cps_first_online_in_cluster() - Detect if CPU is first online in cluster * * Determine whether the local CPU is the first to be brought online in its * cluster - that is, whether there are any other online CPUs in the local * cluster. * * Returns true if this CPU is first online, else false. */ extern unsigned int mips_cps_first_online_in_cluster(void); #endif /* __MIPS_ASM_MIPS_CPS_H__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1