Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Huacai Chen | 2923 | 77.57% | 15 | 31.25% |
Tiezhu Yang | 478 | 12.69% | 4 | 8.33% |
Jiaxun Yang | 259 | 6.87% | 6 | 12.50% |
Paul Burton | 22 | 0.58% | 2 | 4.17% |
Ralf Baechle | 18 | 0.48% | 2 | 4.17% |
Sebastian Andrzej Siewior | 18 | 0.48% | 1 | 2.08% |
Dengcheng Zhu | 9 | 0.24% | 1 | 2.08% |
Ingo Molnar | 6 | 0.16% | 2 | 4.17% |
Josh Poimboeuf | 6 | 0.16% | 2 | 4.17% |
Thomas Gleixner | 5 | 0.13% | 2 | 4.17% |
Alex Smith | 4 | 0.11% | 1 | 2.08% |
Wu Zhangjin | 3 | 0.08% | 1 | 2.08% |
Nicolas Schichan | 3 | 0.08% | 1 | 2.08% |
James Hogan | 3 | 0.08% | 1 | 2.08% |
Linus Torvalds (pre-git) | 3 | 0.08% | 1 | 2.08% |
David Howells | 2 | 0.05% | 1 | 2.08% |
siyanteng | 2 | 0.05% | 1 | 2.08% |
Jens Axboe | 1 | 0.03% | 1 | 2.08% |
Björn Helgaas | 1 | 0.03% | 1 | 2.08% |
Baoquan He | 1 | 0.03% | 1 | 2.08% |
Matt Redfearn | 1 | 0.03% | 1 | 2.08% |
Total | 3768 | 48 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2010, 2011, 2012, Lemote, Inc. * Author: Chen Huacai, chenhc@lemote.com */ #include <irq.h> #include <linux/init.h> #include <linux/cpu.h> #include <linux/sched.h> #include <linux/sched/hotplug.h> #include <linux/sched/task_stack.h> #include <linux/smp.h> #include <linux/cpufreq.h> #include <linux/kexec.h> #include <asm/processor.h> #include <asm/smp.h> #include <asm/time.h> #include <asm/tlbflush.h> #include <asm/cacheflush.h> #include <loongson.h> #include <loongson_regs.h> #include <workarounds.h> #include "smp.h" DEFINE_PER_CPU(int, cpu_state); #define LS_IPI_IRQ (MIPS_CPU_IRQ_BASE + 6) static void __iomem *ipi_set0_regs[16]; static void __iomem *ipi_clear0_regs[16]; static void __iomem *ipi_status0_regs[16]; static void __iomem *ipi_en0_regs[16]; static void __iomem *ipi_mailbox_buf[16]; static u32 (*ipi_read_clear)(int cpu); static void (*ipi_write_action)(int cpu, u32 action); static void (*ipi_write_enable)(int cpu); static void (*ipi_clear_buf)(int cpu); static void (*ipi_write_buf)(int cpu, struct task_struct *idle); /* send mail via Mail_Send register for 3A4000+ CPU */ static void csr_mail_send(uint64_t data, int cpu, int mailbox) { uint64_t val; /* send high 32 bits */ val = CSR_MAIL_SEND_BLOCK; val |= (CSR_MAIL_SEND_BOX_HIGH(mailbox) << CSR_MAIL_SEND_BOX_SHIFT); val |= (cpu << CSR_MAIL_SEND_CPU_SHIFT); val |= (data & CSR_MAIL_SEND_H32_MASK); csr_writeq(val, LOONGSON_CSR_MAIL_SEND); /* send low 32 bits */ val = CSR_MAIL_SEND_BLOCK; val |= (CSR_MAIL_SEND_BOX_LOW(mailbox) << CSR_MAIL_SEND_BOX_SHIFT); val |= (cpu << CSR_MAIL_SEND_CPU_SHIFT); val |= (data << CSR_MAIL_SEND_BUF_SHIFT); csr_writeq(val, LOONGSON_CSR_MAIL_SEND); }; static u32 csr_ipi_read_clear(int cpu) { u32 action; /* Load the ipi register to figure out what we're supposed to do */ action = csr_readl(LOONGSON_CSR_IPI_STATUS); /* Clear the ipi register to clear the interrupt */ csr_writel(action, LOONGSON_CSR_IPI_CLEAR); return action; } static void csr_ipi_write_action(int cpu, u32 action) { unsigned int irq = 0; while ((irq = ffs(action))) { uint32_t val = CSR_IPI_SEND_BLOCK; val |= (irq - 1); val |= (cpu << CSR_IPI_SEND_CPU_SHIFT); csr_writel(val, LOONGSON_CSR_IPI_SEND); action &= ~BIT(irq - 1); } } static void csr_ipi_write_enable(int cpu) { csr_writel(0xffffffff, LOONGSON_CSR_IPI_EN); } static void csr_ipi_clear_buf(int cpu) { csr_writeq(0, LOONGSON_CSR_MAIL_BUF0); } static void csr_ipi_write_buf(int cpu, struct task_struct *idle) { unsigned long startargs[4]; /* startargs[] are initial PC, SP and GP for secondary CPU */ startargs[0] = (unsigned long)&smp_bootstrap; startargs[1] = (unsigned long)__KSTK_TOS(idle); startargs[2] = (unsigned long)task_thread_info(idle); startargs[3] = 0; pr_debug("CPU#%d, func_pc=%lx, sp=%lx, gp=%lx\n", cpu, startargs[0], startargs[1], startargs[2]); csr_mail_send(startargs[3], cpu_logical_map(cpu), 3); csr_mail_send(startargs[2], cpu_logical_map(cpu), 2); csr_mail_send(startargs[1], cpu_logical_map(cpu), 1); csr_mail_send(startargs[0], cpu_logical_map(cpu), 0); } static u32 legacy_ipi_read_clear(int cpu) { u32 action; /* Load the ipi register to figure out what we're supposed to do */ action = readl_relaxed(ipi_status0_regs[cpu_logical_map(cpu)]); /* Clear the ipi register to clear the interrupt */ writel_relaxed(action, ipi_clear0_regs[cpu_logical_map(cpu)]); nudge_writes(); return action; } static void legacy_ipi_write_action(int cpu, u32 action) { writel_relaxed((u32)action, ipi_set0_regs[cpu]); nudge_writes(); } static void legacy_ipi_write_enable(int cpu) { writel_relaxed(0xffffffff, ipi_en0_regs[cpu_logical_map(cpu)]); } static void legacy_ipi_clear_buf(int cpu) { writeq_relaxed(0, ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x0); } static void legacy_ipi_write_buf(int cpu, struct task_struct *idle) { unsigned long startargs[4]; /* startargs[] are initial PC, SP and GP for secondary CPU */ startargs[0] = (unsigned long)&smp_bootstrap; startargs[1] = (unsigned long)__KSTK_TOS(idle); startargs[2] = (unsigned long)task_thread_info(idle); startargs[3] = 0; pr_debug("CPU#%d, func_pc=%lx, sp=%lx, gp=%lx\n", cpu, startargs[0], startargs[1], startargs[2]); writeq_relaxed(startargs[3], ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x18); writeq_relaxed(startargs[2], ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x10); writeq_relaxed(startargs[1], ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x8); writeq_relaxed(startargs[0], ipi_mailbox_buf[cpu_logical_map(cpu)] + 0x0); nudge_writes(); } static void csr_ipi_probe(void) { if (cpu_has_csr() && csr_readl(LOONGSON_CSR_FEATURES) & LOONGSON_CSRF_IPI) { ipi_read_clear = csr_ipi_read_clear; ipi_write_action = csr_ipi_write_action; ipi_write_enable = csr_ipi_write_enable; ipi_clear_buf = csr_ipi_clear_buf; ipi_write_buf = csr_ipi_write_buf; } else { ipi_read_clear = legacy_ipi_read_clear; ipi_write_action = legacy_ipi_write_action; ipi_write_enable = legacy_ipi_write_enable; ipi_clear_buf = legacy_ipi_clear_buf; ipi_write_buf = legacy_ipi_write_buf; } } static void ipi_set0_regs_init(void) { ipi_set0_regs[0] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + SET0); ipi_set0_regs[1] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + SET0); ipi_set0_regs[2] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + SET0); ipi_set0_regs[3] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + SET0); ipi_set0_regs[4] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + SET0); ipi_set0_regs[5] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + SET0); ipi_set0_regs[6] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + SET0); ipi_set0_regs[7] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + SET0); ipi_set0_regs[8] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + SET0); ipi_set0_regs[9] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + SET0); ipi_set0_regs[10] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + SET0); ipi_set0_regs[11] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + SET0); ipi_set0_regs[12] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + SET0); ipi_set0_regs[13] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + SET0); ipi_set0_regs[14] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + SET0); ipi_set0_regs[15] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + SET0); } static void ipi_clear0_regs_init(void) { ipi_clear0_regs[0] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + CLEAR0); ipi_clear0_regs[1] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + CLEAR0); ipi_clear0_regs[2] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + CLEAR0); ipi_clear0_regs[3] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + CLEAR0); ipi_clear0_regs[4] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + CLEAR0); ipi_clear0_regs[5] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + CLEAR0); ipi_clear0_regs[6] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + CLEAR0); ipi_clear0_regs[7] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + CLEAR0); ipi_clear0_regs[8] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + CLEAR0); ipi_clear0_regs[9] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + CLEAR0); ipi_clear0_regs[10] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + CLEAR0); ipi_clear0_regs[11] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + CLEAR0); ipi_clear0_regs[12] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + CLEAR0); ipi_clear0_regs[13] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + CLEAR0); ipi_clear0_regs[14] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + CLEAR0); ipi_clear0_regs[15] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + CLEAR0); } static void ipi_status0_regs_init(void) { ipi_status0_regs[0] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + STATUS0); ipi_status0_regs[1] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + STATUS0); ipi_status0_regs[2] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + STATUS0); ipi_status0_regs[3] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + STATUS0); ipi_status0_regs[4] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + STATUS0); ipi_status0_regs[5] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + STATUS0); ipi_status0_regs[6] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + STATUS0); ipi_status0_regs[7] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + STATUS0); ipi_status0_regs[8] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + STATUS0); ipi_status0_regs[9] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + STATUS0); ipi_status0_regs[10] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + STATUS0); ipi_status0_regs[11] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + STATUS0); ipi_status0_regs[12] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + STATUS0); ipi_status0_regs[13] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + STATUS0); ipi_status0_regs[14] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + STATUS0); ipi_status0_regs[15] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + STATUS0); } static void ipi_en0_regs_init(void) { ipi_en0_regs[0] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + EN0); ipi_en0_regs[1] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + EN0); ipi_en0_regs[2] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + EN0); ipi_en0_regs[3] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + EN0); ipi_en0_regs[4] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + EN0); ipi_en0_regs[5] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + EN0); ipi_en0_regs[6] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + EN0); ipi_en0_regs[7] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + EN0); ipi_en0_regs[8] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + EN0); ipi_en0_regs[9] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + EN0); ipi_en0_regs[10] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + EN0); ipi_en0_regs[11] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + EN0); ipi_en0_regs[12] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + EN0); ipi_en0_regs[13] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + EN0); ipi_en0_regs[14] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + EN0); ipi_en0_regs[15] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + EN0); } static void ipi_mailbox_buf_init(void) { ipi_mailbox_buf[0] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE0_OFFSET + BUF); ipi_mailbox_buf[1] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE1_OFFSET + BUF); ipi_mailbox_buf[2] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE2_OFFSET + BUF); ipi_mailbox_buf[3] = (void __iomem *) (SMP_CORE_GROUP0_BASE + SMP_CORE3_OFFSET + BUF); ipi_mailbox_buf[4] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE0_OFFSET + BUF); ipi_mailbox_buf[5] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE1_OFFSET + BUF); ipi_mailbox_buf[6] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE2_OFFSET + BUF); ipi_mailbox_buf[7] = (void __iomem *) (SMP_CORE_GROUP1_BASE + SMP_CORE3_OFFSET + BUF); ipi_mailbox_buf[8] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE0_OFFSET + BUF); ipi_mailbox_buf[9] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE1_OFFSET + BUF); ipi_mailbox_buf[10] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE2_OFFSET + BUF); ipi_mailbox_buf[11] = (void __iomem *) (SMP_CORE_GROUP2_BASE + SMP_CORE3_OFFSET + BUF); ipi_mailbox_buf[12] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE0_OFFSET + BUF); ipi_mailbox_buf[13] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE1_OFFSET + BUF); ipi_mailbox_buf[14] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE2_OFFSET + BUF); ipi_mailbox_buf[15] = (void __iomem *) (SMP_CORE_GROUP3_BASE + SMP_CORE3_OFFSET + BUF); } /* * Simple enough, just poke the appropriate ipi register */ static void loongson3_send_ipi_single(int cpu, unsigned int action) { ipi_write_action(cpu_logical_map(cpu), (u32)action); } static void loongson3_send_ipi_mask(const struct cpumask *mask, unsigned int action) { unsigned int i; for_each_cpu(i, mask) ipi_write_action(cpu_logical_map(i), (u32)action); } static irqreturn_t loongson3_ipi_interrupt(int irq, void *dev_id) { int cpu = smp_processor_id(); unsigned int action; action = ipi_read_clear(cpu); if (action & SMP_RESCHEDULE_YOURSELF) scheduler_ipi(); if (action & SMP_CALL_FUNCTION) { irq_enter(); generic_smp_call_function_interrupt(); irq_exit(); } return IRQ_HANDLED; } /* * SMP init and finish on secondary CPUs */ static void loongson3_init_secondary(void) { unsigned int cpu = smp_processor_id(); unsigned int imask = STATUSF_IP7 | STATUSF_IP6 | STATUSF_IP3 | STATUSF_IP2; /* Set interrupt mask, but don't enable */ change_c0_status(ST0_IM, imask); ipi_write_enable(cpu); per_cpu(cpu_state, cpu) = CPU_ONLINE; cpu_set_core(&cpu_data[cpu], cpu_logical_map(cpu) % loongson_sysconf.cores_per_package); cpu_data[cpu].package = cpu_logical_map(cpu) / loongson_sysconf.cores_per_package; } static void loongson3_smp_finish(void) { int cpu = smp_processor_id(); write_c0_compare(read_c0_count() + mips_hpt_frequency/HZ); local_irq_enable(); ipi_clear_buf(cpu); pr_info("CPU#%d finished, CP0_ST=%x\n", smp_processor_id(), read_c0_status()); } static void __init loongson3_smp_setup(void) { int i = 0, num = 0; /* i: physical id, num: logical id */ int max_cpus = 0; init_cpu_possible(cpu_none_mask); for (i = 0; i < ARRAY_SIZE(smp_group); i++) { if (!smp_group[i]) break; max_cpus += loongson_sysconf.cores_per_node; } if (max_cpus < loongson_sysconf.nr_cpus) { pr_err("SMP Groups are less than the number of CPUs\n"); loongson_sysconf.nr_cpus = max_cpus ? max_cpus : 1; } /* For unified kernel, NR_CPUS is the maximum possible value, * loongson_sysconf.nr_cpus is the really present value */ i = 0; while (i < loongson_sysconf.nr_cpus) { if (loongson_sysconf.reserved_cpus_mask & (1<<i)) { /* Reserved physical CPU cores */ __cpu_number_map[i] = -1; } else { __cpu_number_map[i] = num; __cpu_logical_map[num] = i; set_cpu_possible(num, true); /* Loongson processors are always grouped by 4 */ cpu_set_cluster(&cpu_data[num], i / 4); num++; } i++; } pr_info("Detected %i available CPU(s)\n", num); while (num < loongson_sysconf.nr_cpus) { __cpu_logical_map[num] = -1; num++; } csr_ipi_probe(); ipi_set0_regs_init(); ipi_clear0_regs_init(); ipi_status0_regs_init(); ipi_en0_regs_init(); ipi_mailbox_buf_init(); if (smp_group[0]) ipi_write_enable(0); cpu_set_core(&cpu_data[0], cpu_logical_map(0) % loongson_sysconf.cores_per_package); cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package; } static void __init loongson3_prepare_cpus(unsigned int max_cpus) { if (request_irq(LS_IPI_IRQ, loongson3_ipi_interrupt, IRQF_PERCPU | IRQF_NO_SUSPEND, "SMP_IPI", NULL)) pr_err("Failed to request IPI IRQ\n"); init_cpu_present(cpu_possible_mask); per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; } /* * Setup the PC, SP, and GP of a secondary processor and start it running! */ static int loongson3_boot_secondary(int cpu, struct task_struct *idle) { pr_info("Booting CPU#%d...\n", cpu); ipi_write_buf(cpu, idle); return 0; } #ifdef CONFIG_HOTPLUG_CPU static int loongson3_cpu_disable(void) { unsigned long flags; unsigned int cpu = smp_processor_id(); set_cpu_online(cpu, false); calculate_cpu_foreign_map(); local_irq_save(flags); clear_c0_status(ST0_IM); local_irq_restore(flags); local_flush_tlb_all(); return 0; } static void loongson3_cpu_die(unsigned int cpu) { while (per_cpu(cpu_state, cpu) != CPU_DEAD) cpu_relax(); mb(); } /* To shutdown a core in Loongson 3, the target core should go to CKSEG1 and * flush all L1 entries at first. Then, another core (usually Core 0) can * safely disable the clock of the target core. loongson3_play_dead() is * called via CKSEG1 (uncached and unmmaped) */ static void loongson3_type1_play_dead(int *state_addr) { register int val; register long cpuid, core, node, count; register void *addr, *base, *initfunc; __asm__ __volatile__( " .set push \n" " .set noreorder \n" " li %[addr], 0x80000000 \n" /* KSEG0 */ "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */ " cache 0, 1(%[addr]) \n" " cache 0, 2(%[addr]) \n" " cache 0, 3(%[addr]) \n" " cache 1, 0(%[addr]) \n" /* flush L1 DCache */ " cache 1, 1(%[addr]) \n" " cache 1, 2(%[addr]) \n" " cache 1, 3(%[addr]) \n" " addiu %[sets], %[sets], -1 \n" " bnez %[sets], 1b \n" " addiu %[addr], %[addr], 0x20 \n" " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */ " sw %[val], (%[state_addr]) \n" " sync \n" " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */ " .set pop \n" : [addr] "=&r" (addr), [val] "=&r" (val) : [state_addr] "r" (state_addr), [sets] "r" (cpu_data[smp_processor_id()].dcache.sets)); __asm__ __volatile__( " .set push \n" " .set noreorder \n" " .set mips64 \n" " mfc0 %[cpuid], $15, 1 \n" " andi %[cpuid], 0x3ff \n" " dli %[base], 0x900000003ff01000 \n" " andi %[core], %[cpuid], 0x3 \n" " sll %[core], 8 \n" /* get core id */ " or %[base], %[base], %[core] \n" " andi %[node], %[cpuid], 0xc \n" " dsll %[node], 42 \n" /* get node id */ " or %[base], %[base], %[node] \n" "1: li %[count], 0x100 \n" /* wait for init loop */ "2: bnez %[count], 2b \n" /* limit mailbox access */ " addiu %[count], -1 \n" " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */ " beqz %[initfunc], 1b \n" " nop \n" " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */ " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */ " ld $a1, 0x38(%[base]) \n" " jr %[initfunc] \n" /* jump to initial PC */ " nop \n" " .set pop \n" : [core] "=&r" (core), [node] "=&r" (node), [base] "=&r" (base), [cpuid] "=&r" (cpuid), [count] "=&r" (count), [initfunc] "=&r" (initfunc) : /* No Input */ : "a1"); } static void loongson3_type2_play_dead(int *state_addr) { register int val; register long cpuid, core, node, count; register void *addr, *base, *initfunc; __asm__ __volatile__( " .set push \n" " .set noreorder \n" " li %[addr], 0x80000000 \n" /* KSEG0 */ "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */ " cache 0, 1(%[addr]) \n" " cache 0, 2(%[addr]) \n" " cache 0, 3(%[addr]) \n" " cache 1, 0(%[addr]) \n" /* flush L1 DCache */ " cache 1, 1(%[addr]) \n" " cache 1, 2(%[addr]) \n" " cache 1, 3(%[addr]) \n" " addiu %[sets], %[sets], -1 \n" " bnez %[sets], 1b \n" " addiu %[addr], %[addr], 0x20 \n" " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */ " sw %[val], (%[state_addr]) \n" " sync \n" " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */ " .set pop \n" : [addr] "=&r" (addr), [val] "=&r" (val) : [state_addr] "r" (state_addr), [sets] "r" (cpu_data[smp_processor_id()].dcache.sets)); __asm__ __volatile__( " .set push \n" " .set noreorder \n" " .set mips64 \n" " mfc0 %[cpuid], $15, 1 \n" " andi %[cpuid], 0x3ff \n" " dli %[base], 0x900000003ff01000 \n" " andi %[core], %[cpuid], 0x3 \n" " sll %[core], 8 \n" /* get core id */ " or %[base], %[base], %[core] \n" " andi %[node], %[cpuid], 0xc \n" " dsll %[node], 42 \n" /* get node id */ " or %[base], %[base], %[node] \n" " dsrl %[node], 30 \n" /* 15:14 */ " or %[base], %[base], %[node] \n" "1: li %[count], 0x100 \n" /* wait for init loop */ "2: bnez %[count], 2b \n" /* limit mailbox access */ " addiu %[count], -1 \n" " ld %[initfunc], 0x20(%[base]) \n" /* get PC via mailbox */ " beqz %[initfunc], 1b \n" " nop \n" " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */ " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */ " ld $a1, 0x38(%[base]) \n" " jr %[initfunc] \n" /* jump to initial PC */ " nop \n" " .set pop \n" : [core] "=&r" (core), [node] "=&r" (node), [base] "=&r" (base), [cpuid] "=&r" (cpuid), [count] "=&r" (count), [initfunc] "=&r" (initfunc) : /* No Input */ : "a1"); } static void loongson3_type3_play_dead(int *state_addr) { register int val; register long cpuid, core, node, count; register void *addr, *base, *initfunc; __asm__ __volatile__( " .set push \n" " .set noreorder \n" " li %[addr], 0x80000000 \n" /* KSEG0 */ "1: cache 0, 0(%[addr]) \n" /* flush L1 ICache */ " cache 0, 1(%[addr]) \n" " cache 0, 2(%[addr]) \n" " cache 0, 3(%[addr]) \n" " cache 1, 0(%[addr]) \n" /* flush L1 DCache */ " cache 1, 1(%[addr]) \n" " cache 1, 2(%[addr]) \n" " cache 1, 3(%[addr]) \n" " addiu %[sets], %[sets], -1 \n" " bnez %[sets], 1b \n" " addiu %[addr], %[addr], 0x40 \n" " li %[addr], 0x80000000 \n" /* KSEG0 */ "2: cache 2, 0(%[addr]) \n" /* flush L1 VCache */ " cache 2, 1(%[addr]) \n" " cache 2, 2(%[addr]) \n" " cache 2, 3(%[addr]) \n" " cache 2, 4(%[addr]) \n" " cache 2, 5(%[addr]) \n" " cache 2, 6(%[addr]) \n" " cache 2, 7(%[addr]) \n" " cache 2, 8(%[addr]) \n" " cache 2, 9(%[addr]) \n" " cache 2, 10(%[addr]) \n" " cache 2, 11(%[addr]) \n" " cache 2, 12(%[addr]) \n" " cache 2, 13(%[addr]) \n" " cache 2, 14(%[addr]) \n" " cache 2, 15(%[addr]) \n" " addiu %[vsets], %[vsets], -1 \n" " bnez %[vsets], 2b \n" " addiu %[addr], %[addr], 0x40 \n" " li %[val], 0x7 \n" /* *state_addr = CPU_DEAD; */ " sw %[val], (%[state_addr]) \n" " sync \n" " cache 21, (%[state_addr]) \n" /* flush entry of *state_addr */ " .set pop \n" : [addr] "=&r" (addr), [val] "=&r" (val) : [state_addr] "r" (state_addr), [sets] "r" (cpu_data[smp_processor_id()].dcache.sets), [vsets] "r" (cpu_data[smp_processor_id()].vcache.sets)); __asm__ __volatile__( " .set push \n" " .set noreorder \n" " .set mips64 \n" " mfc0 %[cpuid], $15, 1 \n" " andi %[cpuid], 0x3ff \n" " dli %[base], 0x900000003ff01000 \n" " andi %[core], %[cpuid], 0x3 \n" " sll %[core], 8 \n" /* get core id */ " or %[base], %[base], %[core] \n" " andi %[node], %[cpuid], 0xc \n" " dsll %[node], 42 \n" /* get node id */ " or %[base], %[base], %[node] \n" "1: li %[count], 0x100 \n" /* wait for init loop */ "2: bnez %[count], 2b \n" /* limit mailbox access */ " addiu %[count], -1 \n" " lw %[initfunc], 0x20(%[base]) \n" /* check lower 32-bit as jump indicator */ " beqz %[initfunc], 1b \n" " nop \n" " ld %[initfunc], 0x20(%[base]) \n" /* get PC (whole 64-bit) via mailbox */ " ld $sp, 0x28(%[base]) \n" /* get SP via mailbox */ " ld $gp, 0x30(%[base]) \n" /* get GP via mailbox */ " ld $a1, 0x38(%[base]) \n" " jr %[initfunc] \n" /* jump to initial PC */ " nop \n" " .set pop \n" : [core] "=&r" (core), [node] "=&r" (node), [base] "=&r" (base), [cpuid] "=&r" (cpuid), [count] "=&r" (count), [initfunc] "=&r" (initfunc) : /* No Input */ : "a1"); } void play_dead(void) { int prid_imp, prid_rev, *state_addr; unsigned int cpu = smp_processor_id(); void (*play_dead_at_ckseg1)(int *); idle_task_exit(); cpuhp_ap_report_dead(); prid_imp = read_c0_prid() & PRID_IMP_MASK; prid_rev = read_c0_prid() & PRID_REV_MASK; if (prid_imp == PRID_IMP_LOONGSON_64G) { play_dead_at_ckseg1 = (void *)CKSEG1ADDR((unsigned long)loongson3_type3_play_dead); goto out; } switch (prid_rev) { case PRID_REV_LOONGSON3A_R1: default: play_dead_at_ckseg1 = (void *)CKSEG1ADDR((unsigned long)loongson3_type1_play_dead); break; case PRID_REV_LOONGSON3B_R1: case PRID_REV_LOONGSON3B_R2: play_dead_at_ckseg1 = (void *)CKSEG1ADDR((unsigned long)loongson3_type2_play_dead); break; case PRID_REV_LOONGSON3A_R2_0: case PRID_REV_LOONGSON3A_R2_1: case PRID_REV_LOONGSON3A_R3_0: case PRID_REV_LOONGSON3A_R3_1: play_dead_at_ckseg1 = (void *)CKSEG1ADDR((unsigned long)loongson3_type3_play_dead); break; } out: state_addr = &per_cpu(cpu_state, cpu); mb(); play_dead_at_ckseg1(state_addr); BUG(); } static int loongson3_disable_clock(unsigned int cpu) { uint64_t core_id = cpu_core(&cpu_data[cpu]); uint64_t package_id = cpu_data[cpu].package; if (!loongson_chipcfg[package_id] || !loongson_freqctrl[package_id]) return 0; if ((read_c0_prid() & PRID_REV_MASK) == PRID_REV_LOONGSON3A_R1) { LOONGSON_CHIPCFG(package_id) &= ~(1 << (12 + core_id)); } else { if (!(loongson_sysconf.workarounds & WORKAROUND_CPUHOTPLUG)) LOONGSON_FREQCTRL(package_id) &= ~(1 << (core_id * 4 + 3)); } return 0; } static int loongson3_enable_clock(unsigned int cpu) { uint64_t core_id = cpu_core(&cpu_data[cpu]); uint64_t package_id = cpu_data[cpu].package; if (!loongson_chipcfg[package_id] || !loongson_freqctrl[package_id]) return 0; if ((read_c0_prid() & PRID_REV_MASK) == PRID_REV_LOONGSON3A_R1) { LOONGSON_CHIPCFG(package_id) |= 1 << (12 + core_id); } else { if (!(loongson_sysconf.workarounds & WORKAROUND_CPUHOTPLUG)) LOONGSON_FREQCTRL(package_id) |= 1 << (core_id * 4 + 3); } return 0; } static int register_loongson3_notifier(void) { return cpuhp_setup_state_nocalls(CPUHP_MIPS_SOC_PREPARE, "mips/loongson:prepare", loongson3_enable_clock, loongson3_disable_clock); } early_initcall(register_loongson3_notifier); #endif const struct plat_smp_ops loongson3_smp_ops = { .send_ipi_single = loongson3_send_ipi_single, .send_ipi_mask = loongson3_send_ipi_mask, .init_secondary = loongson3_init_secondary, .smp_finish = loongson3_smp_finish, .boot_secondary = loongson3_boot_secondary, .smp_setup = loongson3_smp_setup, .prepare_cpus = loongson3_prepare_cpus, #ifdef CONFIG_HOTPLUG_CPU .cpu_disable = loongson3_cpu_disable, .cpu_die = loongson3_cpu_die, #endif #ifdef CONFIG_KEXEC_CORE .kexec_nonboot_cpu = kexec_nonboot_cpu_jump, #endif };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1