Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stefan Kristiansson | 560 | 51.00% | 1 | 7.14% |
Stafford Horne | 362 | 32.97% | 5 | 35.71% |
Jan Henrik Weinstock | 84 | 7.65% | 2 | 14.29% |
Jonas Bonn | 83 | 7.56% | 3 | 21.43% |
Rob Herring | 4 | 0.36% | 1 | 7.14% |
Julia Lawall | 4 | 0.36% | 1 | 7.14% |
Valentin Schneider | 1 | 0.09% | 1 | 7.14% |
Total | 1098 | 14 |
/* * Copyright (C) 2014 Stefan Kristiansson <stefan.kristiansson@saunalahti.fi> * Copyright (C) 2017 Stafford Horne <shorne@gmail.com> * * Based on arm64 and arc implementations * Copyright (C) 2013 ARM Ltd. * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ #include <linux/smp.h> #include <linux/cpu.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/irq.h> #include <linux/of.h> #include <asm/cpuinfo.h> #include <asm/mmu_context.h> #include <asm/tlbflush.h> #include <asm/cacheflush.h> #include <asm/time.h> asmlinkage __init void secondary_start_kernel(void); static void (*smp_cross_call)(const struct cpumask *, unsigned int); unsigned long secondary_release = -1; struct thread_info *secondary_thread_info; enum ipi_msg_type { IPI_WAKEUP, IPI_RESCHEDULE, IPI_CALL_FUNC, IPI_CALL_FUNC_SINGLE, }; static DEFINE_SPINLOCK(boot_lock); static void boot_secondary(unsigned int cpu, struct task_struct *idle) { /* * set synchronisation state between this boot processor * and the secondary one */ spin_lock(&boot_lock); secondary_release = cpu; smp_cross_call(cpumask_of(cpu), IPI_WAKEUP); /* * now the secondary core is starting up let it run its * calibrations, then wait for it to finish */ spin_unlock(&boot_lock); } void __init smp_init_cpus(void) { struct device_node *cpu; u32 cpu_id; for_each_of_cpu_node(cpu) { cpu_id = of_get_cpu_hwid(cpu, 0); if (cpu_id < NR_CPUS) set_cpu_possible(cpu_id, true); } } void __init smp_prepare_cpus(unsigned int max_cpus) { unsigned int cpu; /* * Initialise the present map, which describes the set of CPUs * actually populated at the present time. */ for_each_possible_cpu(cpu) { if (cpu < max_cpus) set_cpu_present(cpu, true); } } void __init smp_cpus_done(unsigned int max_cpus) { } static DECLARE_COMPLETION(cpu_running); int __cpu_up(unsigned int cpu, struct task_struct *idle) { if (smp_cross_call == NULL) { pr_warn("CPU%u: failed to start, IPI controller missing", cpu); return -EIO; } secondary_thread_info = task_thread_info(idle); current_pgd[cpu] = init_mm.pgd; boot_secondary(cpu, idle); if (!wait_for_completion_timeout(&cpu_running, msecs_to_jiffies(1000))) { pr_crit("CPU%u: failed to start\n", cpu); return -EIO; } synchronise_count_master(cpu); return 0; } asmlinkage __init void secondary_start_kernel(void) { struct mm_struct *mm = &init_mm; unsigned int cpu = smp_processor_id(); /* * All kernel threads share the same mm context; grab a * reference and switch to it. */ mmgrab(mm); current->active_mm = mm; cpumask_set_cpu(cpu, mm_cpumask(mm)); pr_info("CPU%u: Booted secondary processor\n", cpu); setup_cpuinfo(); openrisc_clockevent_init(); notify_cpu_starting(cpu); /* * OK, now it's safe to let the boot CPU continue */ complete(&cpu_running); synchronise_count_slave(cpu); set_cpu_online(cpu, true); local_irq_enable(); /* * OK, it's off to the idle thread for us */ cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); } void handle_IPI(unsigned int ipi_msg) { unsigned int cpu = smp_processor_id(); switch (ipi_msg) { case IPI_WAKEUP: break; case IPI_RESCHEDULE: scheduler_ipi(); break; case IPI_CALL_FUNC: generic_smp_call_function_interrupt(); break; case IPI_CALL_FUNC_SINGLE: generic_smp_call_function_single_interrupt(); break; default: WARN(1, "CPU%u: Unknown IPI message 0x%x\n", cpu, ipi_msg); break; } } void arch_smp_send_reschedule(int cpu) { smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE); } static void stop_this_cpu(void *dummy) { /* Remove this CPU */ set_cpu_online(smp_processor_id(), false); local_irq_disable(); /* CPU Doze */ if (mfspr(SPR_UPR) & SPR_UPR_PMP) mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME); /* If that didn't work, infinite loop */ while (1) ; } void smp_send_stop(void) { smp_call_function(stop_this_cpu, NULL, 0); } void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int)) { smp_cross_call = fn; } void arch_send_call_function_single_ipi(int cpu) { smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE); } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { smp_cross_call(mask, IPI_CALL_FUNC); } /* TLB flush operations - Performed on each CPU*/ static inline void ipi_flush_tlb_all(void *ignored) { local_flush_tlb_all(); } static inline void ipi_flush_tlb_mm(void *info) { struct mm_struct *mm = (struct mm_struct *)info; local_flush_tlb_mm(mm); } static void smp_flush_tlb_mm(struct cpumask *cmask, struct mm_struct *mm) { unsigned int cpuid; if (cpumask_empty(cmask)) return; cpuid = get_cpu(); if (cpumask_any_but(cmask, cpuid) >= nr_cpu_ids) { /* local cpu is the only cpu present in cpumask */ local_flush_tlb_mm(mm); } else { on_each_cpu_mask(cmask, ipi_flush_tlb_mm, mm, 1); } put_cpu(); } struct flush_tlb_data { unsigned long addr1; unsigned long addr2; }; static inline void ipi_flush_tlb_page(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_page(NULL, fd->addr1); } static inline void ipi_flush_tlb_range(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_range(NULL, fd->addr1, fd->addr2); } static void smp_flush_tlb_range(const struct cpumask *cmask, unsigned long start, unsigned long end) { unsigned int cpuid; if (cpumask_empty(cmask)) return; cpuid = get_cpu(); if (cpumask_any_but(cmask, cpuid) >= nr_cpu_ids) { /* local cpu is the only cpu present in cpumask */ if ((end - start) <= PAGE_SIZE) local_flush_tlb_page(NULL, start); else local_flush_tlb_range(NULL, start, end); } else { struct flush_tlb_data fd; fd.addr1 = start; fd.addr2 = end; if ((end - start) <= PAGE_SIZE) on_each_cpu_mask(cmask, ipi_flush_tlb_page, &fd, 1); else on_each_cpu_mask(cmask, ipi_flush_tlb_range, &fd, 1); } put_cpu(); } void flush_tlb_all(void) { on_each_cpu(ipi_flush_tlb_all, NULL, 1); } void flush_tlb_mm(struct mm_struct *mm) { smp_flush_tlb_mm(mm_cpumask(mm), mm); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) { smp_flush_tlb_range(mm_cpumask(vma->vm_mm), uaddr, uaddr + PAGE_SIZE); } void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { const struct cpumask *cmask = vma ? mm_cpumask(vma->vm_mm) : cpu_online_mask; smp_flush_tlb_range(cmask, start, end); } /* Instruction cache invalidate - performed on each cpu */ static void ipi_icache_page_inv(void *arg) { struct page *page = arg; local_icache_page_inv(page); } void smp_icache_page_inv(struct page *page) { on_each_cpu(ipi_icache_page_inv, page, 1); } EXPORT_SYMBOL(smp_icache_page_inv);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1